Academic literature on the topic 'Crustal anomalies'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Crustal anomalies.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Crustal anomalies"
Raymond, Carol A., and Richard J. Blakely. "Crustal magnetic anomalies." Reviews of Geophysics 33 (1995): 177. http://dx.doi.org/10.1029/95rg00444.
Full textFilho, Nelson Ribeiro, Cristiano Mendel Martins, and Renata de Sena Santos. "A NOVEL REGIONAL-RESIDUAL SEPARATION APPROACH FOR GRAVITY DATA THROUGH CRUSTAL MODELING." Revista Brasileira de Geofísica 36, no. 4 (December 21, 2018): 1. http://dx.doi.org/10.22564/rbgf.v36i4.1980.
Full textPhillips, Jeffrey D., Richard L. Reynolds, and Herbert Frey. "CRUSTAL STRUCTURE INTERPRETED FROM MAGNETIC ANOMALIES." Reviews of Geophysics 29, S1 (January 1991): 416–27. http://dx.doi.org/10.1002/rog.1991.29.s1.416.
Full textZheng, Shuo, Kai Qin, Lixin Wu, Yanfei An, Qifeng Yin, and Chunkit Lai. "Hydrothermal anomalies of the Earth's surface and crustal seismicity related to Ms8.0 Wenchuan EQ." Natural Hazards 104, no. 3 (August 31, 2020): 2097–114. http://dx.doi.org/10.1007/s11069-020-04263-7.
Full textTang, Ming, Wei-Qiang Ji, Xu Chu, Anbin Wu, and Chen Chen. "Reconstructing crustal thickness evolution from europium anomalies in detrital zircons." Geology 49, no. 1 (September 4, 2020): 76–80. http://dx.doi.org/10.1130/g47745.1.
Full textOran, Rona, Benjamin P. Weiss, Yuri Shprits, Katarina Miljković, and Gábor Tóth. "Was the moon magnetized by impact plasmas?" Science Advances 6, no. 40 (October 2020): eabb1475. http://dx.doi.org/10.1126/sciadv.abb1475.
Full textZheng, Ying, and Jafar Arkani-Hamed. "Joint inversion of gravity and magnetic anomalies of eastern Canada." Canadian Journal of Earth Sciences 35, no. 7 (July 1, 1998): 832–53. http://dx.doi.org/10.1139/e98-035.
Full textSaleh, Salah, Oya Pamukçu, and Ladislav Brimich. "The major tectonic boundaries of the Northern Red Sea rift, Egypt derived from geophysical data analysis." Contributions to Geophysics and Geodesy 47, no. 3 (September 1, 2017): 149–99. http://dx.doi.org/10.1515/congeo-2017-0010.
Full textHalekas, J. S., D. A. Brain, R. P. Lin, and D. L. Mitchell. "Solar wind interaction with lunar crustal magnetic anomalies." Advances in Space Research 41, no. 8 (January 2008): 1319–24. http://dx.doi.org/10.1016/j.asr.2007.04.003.
Full textRiad, Samir, and Hassan A. El Etr. "Bouguer anomalies and lithosphere-crustal thickness in Uganda." Journal of Geodynamics 3, no. 1-2 (July 1985): 169–86. http://dx.doi.org/10.1016/0264-3707(85)90027-4.
Full textDissertations / Theses on the topic "Crustal anomalies"
Launay, Nicolas. "Propriétés d'aimantation des sources géologiques des anomalies du champ magnétique terrestre : magnétisme des roches et modélisation numérique." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0212/document.
Full textThe geological sources of major magnetic field anomalies are still poorly constrained, in terms of nature, geometry and vertical position. A common feature of several anomalies is their spatial correlation with cratonic shields and, for the largest anomalies, with Banded Iron Formations (BIF). This study first unveils the magnetic properties of some BIF samples from Mauritania, where the main part of the West African magnetic anomaly is observed. It shows magnetic susceptibility values up to 3.4 SI and natural remanent magnetization up to 1350 A/m can be reached by BIF rocks. Koenigsberger ratios mostly superior to 1 imply that the remanent magnetization should be taken into account to explain the anomaly. I also investigated the impact of pressure on magnetic properties of titanomagnetite, because it is not well known and most of the time neglected in numerical models of the geological sources of magnetic anomalies. My results show a pressure-dependent Curie temperature increase, as well as an intensity increase for TRM acquired under lithospheric pressure (up to +100% at 675 MPa). A numerical modeling of the crust beneath the West African anomaly is then performed using these constraints and both gravity and magnetic field data. A forward approach is used, investigating the depth, thickness and magnetization intensity of all possible crustal lithologies. Our results show that BIF slices may be the only magnetized lithology needed to explain the anomaly, and that they could be buried several kilometers deep. The results of this study provide a new perspective to address the investigation of magnetic field anomaly sources in other cratonic regions with BIF outcrops
Telmat, Hamid. "Crustal structure and gravity field anomalies in Eastern Canada." Thèse, Chicoutimi : Montréal : Université du Québec à Chicoutimi ; Université du Québec à Montréal, 1998. http://theses.uqac.ca.
Full textHussein, Musa Jad. "Integrated and comparative geophysical studies of crustal structure of pull-apart basins the Salton Trough and Death Valley, California regions /." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2007. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textTozer, Brook. "Crustal structure, gravity anomalies and subsidence history of the Parnaíba cratonic basin, Northeast Brazil." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:90ce8bb0-e55d-4b3c-87e1-aab60084ef42.
Full textHood, L. L., A. Zakharian, J. Halekas, D. L. Mitchell, R. P. Lin, M. H. Acuña, and A. B. Binder. "Initial mapping and interpretation of lunar crustal magnetic anomalies using Lunar Prospector magnetometer data." AMER GEOPHYSICAL UNION, 2001. http://hdl.handle.net/10150/624001.
Full textHalekas, J. S., D. L. Mitchell, R. P. Lin, S. Frey, L. L. Hood, M. H. Acuña, and A. B. Binder. "Mapping of crustal magnetic anomalies on the lunar near side by the Lunar Prospector electron reflectometer." American Geophysical Union, 2001. http://hdl.handle.net/10150/624000.
Full textLeinweber, Volker Thor. "Geophysical study of the conjugate East African and East Antarctic margins." Brest, 2011. http://www.theses.fr/2011BRES2017.
Full textL’étude traite des mouvements relatifs de l’Afrique et de l'Antarctique, du Jurassique moyen jusqu’à la fin du Crétacé inférieur, en utilisant les données de quatre campagnes (2006-2010). Des mesures aéromagnétiques dans le bassin Enderby Sud-Ouest montrent la COT à l’est de la dorsale de Gunnerus. Il n’y a pas d’anomalie évidente dans les données, ce qui indique une formation de croûte océanique durant le superchron normal du Crétacé. La modélisation de deux profils sismiques grand-angles à travers la marge continentale du Mozambique central révèle une croûte continentale qui s’amincit ~50% sur une distance de ~130 km vers le large. Plus au sud, de la croûte océanique se trouve sous des sédiments à hautes vitesses d’ondes P autour de 4,8 km/s. Dans la croûte inférieure se retrouve un vaste corps de grande vitesse d’ondes. Des identifications des anomalies (M41n étant interprétée comme la plus vieille) révèlent que la COT est plus proche de la côte qu’on ne le croyait. De nouvelles données magnétiques et gravimétriques à la ride du Mozambique et au bassin nord du Natal et leur similitude avec les données des plaines de la côte du Mozambique indiquent une nature de croûte océanique majoritaire des plaines vers le sud ainsi que deux sauts du centre d’écartement vers le Sud. La ride d’Astrid est scindée en deux parties magnétiquement différentes, interprétées en croûte océanique. Les résultats régionaux ont été implémentés dans un nouveau modèle cinématique, qui postule un ajustement étroit des continents du Gondwana, une fracturation diphasée et un mouvement du Craton Grunehogna vers le sud à l’est de la ride du Mozambique pendant la deuxième phase de la fracturation
Takayama, Hiromi. "Statistical Model Analysis of the Geoelectric Field to Detect Anomalous Changes due to Crustal Activities." 京都大学 (Kyoto University), 2003. http://hdl.handle.net/2433/148604.
Full textSato, Kazutoshi. "Development of a monitoring technique of anomalous crustal deformations with temporally high resolution by the application of kinematic GPS." 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/145091.
Full textRey, Denis. "Structure crustale des Alpes occidentales le long du profil ECORS-CROP d'après la sismique réflexion et le champ de pesanteur." Montpellier 2, 1989. http://www.theses.fr/1989MON20157.
Full textBooks on the topic "Crustal anomalies"
1926-, Kleinkopf M. Dean, and Geological Survey (U.S.), eds. Crustal structure of Kuwait: Constraints from gravity anomalies. [Reston, Va.]: U.S. Dept. of the Interior, U.S. Geological Survey, 1994.
Find full textE, John Barbara, and Geological Survey (U.S.), eds. Crustal extension and the peak Colorado River gravity high, southern Sacramento Mountains, California: A preliminary correlation. [Reston, Va.]: Dept. of the Interior, U.S. Geological Survey, 1994.
Find full textE, John Barbara, and Geological Survey (U.S.), eds. Crustal extension and the peak Colorado River gravity high, southern Sacramento Mountains, California: A preliminary correlation. [Reston, Va.]: Dept. of the Interior, U.S. Geological Survey, 1994.
Find full textSobczyk, Stanley Michael. Crustal thickness and structure of the Columbia Plateau using geophysical methods. 1994.
Find full textKhurshid, Akbar. Crustal structure of the Sulaiman Range, Pakistan, from gravity data. 1991.
Find full textInvestigation of lunar crustal structure and isostasy: Final technical report. [Washington, DC: National Aeronautics and Space Administration, 1987.
Find full textSoofi, Muhammad Asif. Crustal structure of the northwestern continental margin of the Indian subcontinent from gravity and magnetic data. 1991.
Find full textRoberts, Timothy H. Gravity investigation of crustal structure in the eastern Olympic Peninsula - Puget Lowland Area, Washington. 1991.
Find full textZamora, Osvaldo Sánchez. Crustal structure and thermal gradients of the northern Gulf of California determined using spectral analysis of magnetic anomalies. 1988.
Find full textBraga, Luiz F. S. Isostatic evolution and crustal structures of the Amazon continental margin determined by admittance analyses and inversion of gravity data. 1991.
Find full textBook chapters on the topic "Crustal anomalies"
Ostenso, Ned A. "Magnetic Anomalies and Crustal Structure." In The Earth's Crust and Upper Mantle, 457–63. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm013p0457.
Full textOgata, Yosihiko. "Anomalies of Seismic Activity and Transient Crustal Deformations Preceding the 2005 M 7.0 Earthquake West of Fukuoka." In Seismogenesis and Earthquake Forecasting: The Frank Evison Volume II, 261–73. Basel: Springer Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0500-7_17.
Full textMa, Zongjin, Zhengxiang Fu, Yingzhen Zhang, Chengmin Wang, Guomin Zhang, and Defu Liu. "Crustal Deformation and Anomalous Variations of Stress." In Earthquake Prediction, 112–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-61269-5_6.
Full textMalahoff, Alexander. "Gravity Anomalies Over Volcanic Regions." In The Earth's Crust and Upper Mantle, 364–79. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm013p0364.
Full textKim, Hyung Rae, Luis R. Gaya-Piqué, Ralph R. B. von Frese, Patrick T. Taylor, and Jeong Woo Kim. "CHAMP Magnetic Anomalies of the Antarctic Crust." In Earth Observation with CHAMP, 261–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26800-6_41.
Full textNagata, Takesi. "Reduction of Geomagnetic Data and Interpretation of Anomalies." In The Earth's Crust and Upper Mantle, 391–98. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm013p0391.
Full textPandey, Om Prakash. "Vindhyan Basin: Anomalous Crust-Mantle Structure." In Society of Earth Scientists Series, 143–66. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40597-7_5.
Full textSimonenko, Tatiana. "Relation of Magnetic Anomalies to Topography and Geology in the USSR." In The Earth's Crust and Upper Mantle, 415–21. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm013p0415.
Full textKhan, M. A. "Figure of the Earth and Mass Anomalies Defined by Satellite Orbital Perturbations." In The Earth's Crust and Upper Mantle, 293–304. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm013p0293.
Full textCoron, S. "Gravity Anomalies as a Function of Elevation: Some Results in Western Europe." In The Earth's Crust and Upper Mantle, 304–12. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm013p0304.
Full textConference papers on the topic "Crustal anomalies"
Arkani-Hamed, J., and D. W. Strangway. "Inversion of scalar magnetic anomalies of regional scale to crustal magnetization anomalies." In 1985 SEG Technical Program Expanded Abstracts. SEG, 1985. http://dx.doi.org/10.1190/1.1892713.
Full textChen, C. H., Y. Hobara, and R. Miyake. "Potential relationship between seismo-crustal displacement and EM anomalies." In 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS). IEEE, 2014. http://dx.doi.org/10.1109/ursigass.2014.6929864.
Full textTang, Ming, Weiqiang Ji, Xu Chu, Anbin Wu, and Chen Chen. "Reconstructing Crustal Thickness Evolution from Eu Anomalies in Detrital Zircons." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2553.
Full textZeng, Hualin, Qinghe Zhang, Yishi Li, and Jun Liu. "Fault distribution and upper crustal thickness from gravity anomalies in South China." In SEG Technical Program Expanded Abstracts 1997. Society of Exploration Geophysicists, 1997. http://dx.doi.org/10.1190/1.1885958.
Full textPeleli, Sophia, Maria Kouli, and Filippos Vallianatos. "Thermal anomalies and crustal deformation related to the November 26, 2019, Albania (Durrës) earthquake." In 2023 Joint Urban Remote Sensing Event (JURSE). IEEE, 2023. http://dx.doi.org/10.1109/jurse57346.2023.10144203.
Full textNair, Manoj, Arnaud Chulliat, Adam Woods, Patrick Alken, Brian Meyer, Benny Poedjono, Nicholas Zachman, and John Hernandez. "Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data." In Offshore Technology Conference. OTC, 2021. http://dx.doi.org/10.4043/31044-ms.
Full textClark, Chris, Steven M. Reddy, Martin Hand, Denis Fougerouse, David W. Saxey, William D. A. Rickard, and Rich Taylor. "MICRO- TO NANOSCALE CONSTRAINTS ON THE TIMING AND CONDITIONS ASSOCIATED WITH THE FORMATION LITHOSPHERIC-SCALE CONDUCTIVITY ANOMALIES IN ANHYDROUS CRUSTAL ROCKS." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-324416.
Full textLepland, A., A. Cremiere, S. Chand, D. Sahy, S. R. Noble, D. J. Condon, H. Brunstad, and T. Thorsnes. "CH4-derived Carbonate Crusts of the Barents Sea - Formation Controls and Chronology." In EAGE Shallow Anomalies Workshop. Netherlands: EAGE Publications BV, 2014. http://dx.doi.org/10.3997/2214-4609.20147422.
Full textMilsom, John, Phil Roach, Chris Toland, Don Riaroh, Chris Budden, and Naoildine Houmadi. "Comoros – New Evidence and Arguments for Continental Crust." In SPE/AAPG Africa Energy and Technology Conference. SPE, 2016. http://dx.doi.org/10.2118/afrc-2572434-ms.
Full textStapel, G., J. Verhoef, H. Kooi, and S. Cloetingh. "Iberian Crust Analyzed by, Residual Gravity Anomalies - Moho Prediction and Isostasy." In 59th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 1997. http://dx.doi.org/10.3997/2214-4609-pdb.131.gen1997_p108.
Full text