Academic literature on the topic 'Cross-linked; Polymer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cross-linked; Polymer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cross-linked; Polymer"

1

Louwet, Frank, Ronny De Clercq, Johan Geudens, and Walter De Winter. "Cross-linked homodisperse polymer particles." Designed Monomers and Polymers 1, no. 4 (January 1998): 433–45. http://dx.doi.org/10.1163/156855598x00251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ding, Lei, Hui Gao, Feifei Xie, Wenqing Li, Hua Bai, and Lei Li. "Porosity-Enhanced Polymers from Hyper-Cross-Linked Polymer Precursors." Macromolecules 50, no. 3 (January 24, 2017): 956–62. http://dx.doi.org/10.1021/acs.macromol.6b02715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Morfopoulou, Christina I., Aikaterini K. Andreopoulou, and Joannis K. Kallitsis. "Cross-Linked High Temperature Polymer Electrolytes." Macromolecular Symposia 331-332, no. 1 (October 2013): 58–64. http://dx.doi.org/10.1002/masy.201300067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Andrieu, X., T. Vicedo, and C. Fringant. "Plasticization of cross-linked polymer electrolytes." Journal of Power Sources 54, no. 2 (April 1995): 487–90. http://dx.doi.org/10.1016/0378-7753(94)02131-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lysenkov, E. A. "Structure-property relationships in polymer nanocomposites based on cross-linked polyurethanes and carbon nanotubes." Functional materials 22, no. 3 (October 1, 2015): 342–49. http://dx.doi.org/10.15407/fm22.03.342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Seo, Myungeun, Soobin Kim, Jaehoon Oh, Sun-Jung Kim, and Marc A. Hillmyer. "Hierarchically Porous Polymers from Hyper-cross-linked Block Polymer Precursors." Journal of the American Chemical Society 137, no. 2 (January 7, 2015): 600–603. http://dx.doi.org/10.1021/ja511581w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

KASKHEDIKAR, N., M. BURJANADZE, Y. KARATAS, and H. WIEMHOFER. "Polymer electrolytes based on cross-linked cyclotriphosphazenes." Solid State Ionics 177, no. 35-36 (November 30, 2006): 3129–34. http://dx.doi.org/10.1016/j.ssi.2006.08.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

JCE staff. "What's Gluep? Characterizing a Cross-Linked Polymer." Journal of Chemical Education 75, no. 11 (November 1998): 1432A. http://dx.doi.org/10.1021/ed075p1432a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Snedden, Peter, Andrew I. Cooper, Keith Scott, and Neil Winterton. "Cross-Linked Polymer−Ionic Liquid Composite Materials." Macromolecules 36, no. 12 (June 2003): 4549–56. http://dx.doi.org/10.1021/ma021710n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Klopper, A. V., Carsten Svaneborg, and Ralf Everaers. "Microphase separation in cross-linked polymer blends." European Physical Journal E 28, no. 1 (January 2009): 89–96. http://dx.doi.org/10.1140/epje/i2008-10420-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cross-linked; Polymer"

1

Williams, Timothy Philip. "Computer simulation of randomly cross-linked polymer networks." Thesis, University of Bristol, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ferrier, David Christopher. "Nucleic acid detection using oligonucleotide cross-linked polymer composites." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28944.

Full text
Abstract:
There has been much interest in recent years about the potential of microRNA as a new source of biomarkers for the diagnosis of disease. The delivery of new diagnostic tools based on this potential has been limited by shortcomings in current microRNA detection techniques. This thesis explores the development of a new method of microRNA detection through the incorporation of conductive particles into oligonucleotide-functionalised polymers to form oligonucleotide cross-linked polymer composites. Such composites could provide a simple, rapid, and low-cost means of microRNA detection that could be easily multiplexed, providing a valuable tool for point-of-care medical diagnostics. This work presents oligonucleotide-functionalised carbon/polyacrylamide composites which demonstrate a selective swelling response in the presence of analyte oligonucleotide sequences and for which the electrical conductivity decreases with swelling. The composites were synthesised via UV-initiated free-radical polymerisation of carbon/- monomer mixtures upon custom electrode devices, consisting of interdigitated platinum electrodes fabricated upon a silicon substrate. The optimal cross-linker density and carbon loading concentration were determined as well as the best means of dispersing the carbon particles within the polymer. Various types of carbon particles, with differing sizes and aspect ratios, were compared and their performances as conductive additives for polymer swelling transduction evaluated. The swelling behaviour of these composites was evaluated by analysing images of composite microdroplets as they swell. The electrical characteristics of the composites were determined by measuring either the two-terminal resistance or the complex impedance of composite microdroplets on the electrode devices. Alternating and direct current measurement techniques were compared to determine the best approach for the transduction of composite swelling. The volumetric and electrical responses of oligonucleotide-functionalised carbon/polyacrylamide composites were analysed in solutions of analyte oligonucleotide and non-complementary controls. It has been demonstrated that, using carbon nanopowder composites and a direct current two-terminal resistance measurement, it is possible to differentiate between analyte and control solutions to concentrations as low as 10 nM, with single-base precision, in less than three minutes. However, the inability to detect at concentrations below this value, difficulties in differentiating between different analyte concentrations and thermal instability mean that, in their current form, oligonucleotide cross-linked polymer composites are unsuitable for the detection of circulating microRNA at clinically relevant concentrations. Potential avenues of work to address these challenges are discussed. Also presented are collaborative results for oligonucleotide-responsive polymers functionalised with morpholino nucleic acid analogues, in what is believed to be the first example of such a material. These morpholino-functionalised polymers offer significant advantages, in terms of stability and sensitivity, over their nucleic acid equivalents for bio-responsive polymer applications.
APA, Harvard, Vancouver, ISO, and other styles
3

Scavuzzo, Joseph J. "Elastomers Physically Cross-Linked By Oligo(ß-Alanine)." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1412937878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Breed, Peter G. "Organic chemistry on highly functionalised supports." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

O'Neill, Jason Michael. "Multidimensional Mass Spectrometry Studies on Amphiphilic Polymer Blends and Cross-Linked Networks." University of Akron / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=akron1624375174939496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

D, Aguiar Donna-Leigh. "Surface modified cross-linked poly(vinyl alcohol)/poly(vinyl pivalate) suspension particles." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5475.

Full text
Abstract:
Thesis (MSc (Chemistry and Polymer Science))--University of Stellenbosch, 2010.
ENGLISH ABSTRACT: In papermaking, fillers and additives are used to enhance paper properties. In this study spherical modified poly(vinyl alcohol) (PVA) particles were prepared for use as fillers. In order to determine the mechanism of adhesion of additives to cellulose (paper) fibres, these particles were modified to have surface functionality, with cationic and anionic surface charges, similar to charged polyelectrolyte additives. Typically, retention aids used to improve the fibre–fibre and fibre–filler bonding are able to conform to the surface of the fibres and fillers. Oppositely charged components show strong affinity for each other, e.g. cationic polyelectrolyte groups adhere to anionic surface charges on the fibres. The spherical PVA particles were prepared by the saponification of spherical poly(vinyl pivalate) (PVPi) precursor particles. These PVPi particles, prepared via suspension polymerisation, were cross-linked with a divinyl ether comonomer. The vinyl pivalate (VPi) suspension polymerisation was successfully carried out and afforded relatively uniformly distributed PVPi particles, with diameters of 0.5–10 mm. The cross-linked PVPi particles were then saponified in tetrahydrofuran (THF) as swelling solvent, to afford PVA with various degrees of saponification (DS). The spherical shape was lost and fibrous material was obtained when uncross-linked PVPi particles were saponified. Cross-linking the spherical PVPi particles (PVA precursor) proved innovative, and essential in maintaining the spherical form during saponification to PVA/PVPi. By varying the saponification time periods, various DS were obtained, as characterised by solid state NMR spectroscopy. Surface modification of the PVA/PVPi particles was carried out with cationic and anionic groups via the Williamson ether synthesis. Ionic modification of these rigid spherical PVA/PVPi particles was carried out in order to study their adherence to cellulose fibres, compared to the adherence of similarly modified starches with cellulose fibres. Fluorescent labelling of the different modified particles was carried out using two complimentary coloured fluorescent markers. Fluorescence imaging and scanning electron microscopy (SEM) enabled the observation of particle– fibre and particle–particle interaction. Results indicated that the negative groups are sparse on the cellulose fibres, and therefore particles with low functionality but which are able change shape and conform and adhere to the surface of the cellulose fibres are required for effective adhesion. These modified spherical PVA/PVPi particles are unique as they mirror the chemistry of functionalised starch and cellulose particles, yet maintain their shape and have a fixed size, measurable by SEM and transmission electron microscopy (TEM). Field-flow fractionation was also used to characterise and measure these relatively large cross-linked and fixed diameter particles.
AFRIKAANSE OPSOMMING: In papierproduksie word vulstowwe en bymiddels gebruik om die eienskappe van papier te verbeter. In hierdie studie is sferiese poli(vinielalkohol) (PVA) partikels berei vir gebruik as vulstowwe. Om ten einde die meganisme van die bymiddelklewing aan die sellulose vesels (papier) te bepaal, is die oppervlakke van hierdie partikels gewysig met kationiese of anioniese groepe, om 'n oppervlak soortgelyk aan dié van funksionele poliëlektrolietbymiddels te verskaf. Die retensiemiddels wat gebruik word om die vesel–vesel en vesel–vulstof binding te verbeter is tipies in staat om te konformeer aan die oppervlak van die vesels en vulstowwe. Teenoorgesteldgelaaide komponente toon 'n sterk affiniteit vir mekaar, bv. kationiese poliëlektrolietgroepe is vasklewend aan die anioniesgelaaide oppervlakke van die vesel. Die sferiese PVA partikels is berei deur die verseping van sferiese poli(vinielpivalaat) (PVPi) partikels. Hierdie voorloper PVPi partikels, berei deur suspensiepolimerisasie, is gekruisbind met 'n divinieleter ko-monomeer. Die vinielpivalaat (VPi) suspensiepolimerisasie is suksesvol uitgevoer en relatief eenvormig verspreide sferiese PVPi partikels is berei, met deursnitte tussen 0.5–10 mm. Die gekruisbinde PVPi partikels is daarna gesaponifiseer in tetrahidrofuraan (THF) as oplosmiddel, om PVA met verskillende grade van verseping (DS) te berei. Die sferiese vorm raak verlore en veselagtige materiaal is verkry wanneer PVPi partikels met geen kruisbinding verseep is. Kruisbinding van die sferiese PVPi partikels (PVA voorloper) is voordelig en noodsaaklik om die sferiese vorm tydens die verseping tot PVA/PVPi te behou. Deur die tydsduur van verseping te verander, is verskeie grade van verseping verkry en bevestig deur vaste toestand KMR spektroskopie. Oppervlakwysiging van die PVA/PVPi partikels, om kationiese en anioniese groepe aan te heg, is uitgevoer via die Williamson etersintese. Ioniese wysiging van hierdie stram, sferiese PVA/PVPi partikels is uitgevoer om ten einde hul klewing met sellulose vesels te bestudeer en te vergelyk met die klewing van soortgelyk gewysigde stysels. Fluoressensie merking van die verskillende gewysigde partikels is uitgevoer met behulp van twee komplimentêre gekleurde fluoressensie merkers. Fluoressensie beeldvorming en SEM verskaf die waarneming van partikel–vesel en partikel–partikel interaksie. Die resultate dui daarop dat die negatiewe groepe van die sellulose vesels skaars is, en daarom is partikels met ‘n lae funksionaliteit, maar wat in staat is om van vorm te verander, aan te pas en te konformeer aan die oppervlak van die sellulose vesels, nodig vir effektiewe adhesie. Hierdie gewysigde sferiese PVA/PVPi partikels is uniek aangesien hulle die chemie van gewysigde stysel en sellulose partikels naboots, maar steeds hul vorm behou met 'n vaste grootte; meetbaar deur SEM en TEM. Veld-vloei-fraksionering is ook gebruik vir die karakterisering van hierdie relatief groot, stram, gekruisbinde partikels met bepaalde deursneë.
APA, Harvard, Vancouver, ISO, and other styles
7

Patra, Leena. "Volume-Phase Transitions in Responsive Photo-Cross-Linked Polymer Network Films." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4197.

Full text
Abstract:
The overall thrust of this project is to gain an insight into a class of surface-tethered cross-linked thin films of poly(N-alkylacrylamides) that display a lower critical solution temperature (LCST).The structure of the alkyl group and the modification of the amide groups determine the LCST and resultant volume-phase transition behavior. The aim of this study involves synthesis and characterization of thin films and to correlate the volume-transition behavior to the structure of the alkyl group. For better understanding the volume-transition behavior, the polymer films are perturbed by the Hofmeister salt series to examine trends between different alkyl groups. While most of the studies have been done with bulk gels, the majority of the applications require the use of gels at surfaces and interfaces. Surface attached polymer networks provide an alternative to bulk gels showing superior response times, thus efficiency. Hence it is significant to understand the impact of confinement on the phase transition behavior of a polymer network. Anchoring a polymer network to a surface produces volume phase transition perpendicular to the substrate. The parallel swelling and collapse of the network is highly restricted due to lateral confinement, thus impacting properties such as structure, mechanical properties, dynamics and permeability of the network. Several studies have been done with poly(N-isopropylacrylamide) anchored to a substrate, which have shown significantly different behavior than unconstrained networks. Notable examples include a gradual as opposed to a sharp volume-phase transition, and significantly less swelling above and below the LCST. These studies only looked at poly(NIPAAm); therefore it remains unknown if these results are universal and will apply to other LCST polymers. Hence, we expanded upon these studies to also investigate a library of different LCST polymers belonging to the category of N-alkylacrylamides. I have synthesized the copolymers comprising of N-alkylacrylamides and methacryloxybenzophenone (MaBP). The benzophenone moiety in MaBP is photoreactive, allowing us to cross-link the copolymers by UV irradiation. Surface attached thin films were fabricated by spin coating the solution of copolymers and cross-linking by UV irradiation. The volume phase transitions of the coatings were studied under the influence of temperature and the salts of the Hofmeister series. Information concerning the state of responsive layers, the precise temperature at which the collapse occurs, and the changes in the molecular environment during the transition were investigated by ellipsometry and ATR-FTIR. In a longer perspective, understanding the transition behavior and the influence of salts governing this transition provides a better understanding of the interactions of biopolymers in natural systems.
APA, Harvard, Vancouver, ISO, and other styles
8

Deng, Guodong. "SYNTHESIS AND CHARACTERIZATION OF IONICALLY CROSS-LINKED NETWORKS THROUGH THE USE OF ION-PAIR COMONOMERS." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1534124831858723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Michon, Marie-Laure. "Heterogeneous epoxy-amine networks from the dispersion of cross-linked polymer microparticles." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0018/document.

Full text
Abstract:
Lors de cette étude, il a été étudié l'influence de l'ajout de microparticules de polymère réticulé (CPM) dans des formulations d'époxy-amine, sur la cinétique, la morphologie et les propriétés thermo-mécaniques des réseaux finaux obtenus. Tout d'abord, un protocole simple, robuste et bien contrôlé a été développé afin d’ obtenir une large gamme de taille de CPM, de Tg et de fonctionnalité amine. Ce protocole de polymérisation par précipitation, basé sur les phénomènes de séparation de phases, a également été appliqué à différentes compositions chimiques et différents monomères époxy hydrosolubles, ceci montrant les grandes possibilités de cette méthode. Une bonne interface entre les CPMs et la matrice a été recherchée en synthétisant les CPMs en excès de groupes amines. La quantification de ces groupes amines réactifs sur les CPMS était d'un grand intérêt et a donc été étudiée en profondeur. Le titrage des amines de surface a été réalisé en mettant au point un nouveau protocole qui a permis la quantification des amines primaires et secondaires sur les CPMs. Il a ensuite été mis en évidence que, bien que ces microparticules réticulées ne soient pas poreuses, des fonctions amines sont disponibles au cœur des particules et peuvent réagir avec d'autres molécules qui sont capables de diffuser dans la CPM. Il a été montré que lorsque les CPM ont été dispersées dans des mélanges d'époxy- amine, la diffusion des monomères dans le cœur de la CPM s'est produite mais différemment selon le procédé de dispersion. En effet, en utilisant le tétrahydrofurane comme solvant pour aider à la dispersion, la diffusion de la DGEBA est amplifiée et modifie les propriétés thermo-mécaniques du réseau final en modifiant le rapport stœchiométrique de la matrice. Le même phénomène a été observé mais moins amplifié lorsque les microparticules sont uniquement dispersées mécaniquement. En dispersant les CPMs dans l'amine qui est l'agent réticulant, on observe l'absorption complète de l'amine au coeur des CPMs, conduisant ainsi à la désorption de celle-ci dans une deuxième étape, permettant de créer le réseau. Ainsi, un comportement très complexe des CPM a été mis en évidence en présence des monomères et/ou solvant : le gonflement et les phénomènes de diffusion qui dépendent d'un certain nombre de paramètres tels que la température, la densité de réticulation des CPM, les paramètres de solubilité, etc. L'intensité du phénomène de diffusion conduit à une variété de comportements lorsque les CPMs sont ajoutées dans une formulation d'époxy-amine tels que: (a) une légère diminution du temps de gélification et l'augmentation de la conversion, (b) la modification de la température de transition vitreuse de la matrice
Throughout this work, the influence of the addition of cross-linked polymer microparticles (CPMs) in epoxy-amine formulations on the kinetics, morphology and thermo-mechanical properties of the final networks have been investigated. First, an easy, robust and well-controlled protocol was developed to obtain a large range of CPM size, Tg and amine functionality. This protocol based on reaction induced phase separation via precipitation polymerization was also applied to different chemistries and water soluble epoxy pre-polymers showing the large possibilities of this method. The capacity of obtaining a good compatibility between the CPMs and the matrix was ensure by synthesizing the CPMs in excess of amino groups. The study of the remaining reactive amino groups on the CPMS was of great interest and therefore deeply investigated. The titration of the surface amine was performed by developing a new protocol that enabled the quantification of primary and secondary amines on CPMs. It was then highlighted that even though these cross-linked microparticles were not porous, amino groups are available into the core and can react with other molecules that are able to diffuse into the CPM core. It was shown that when CPMs were dispersed into epoxy-amine blends, the diffusion of monomers into the CPM core occurred but differently depending on the dispersion process. Indeed, using tetrahydrofuran as solvent to help for the dispersion increased the diffusion of DGEBA into the CPM core and changed the thermo-mechanical properties of the final network by modifying the stoichiometric ratio of the matrix. Same phenomenon was observed but less amplified when CPMs were mechanically dispersed in DGEBA. Regarding the dispersion of CPMs in the amine cross-linker, IPD, its complete absorption could be observed into the CPMs, leading then to the desorption of IPD to create the network. Thus, a very complex behavior of CPMs was highlighted in presence of monomers or/and solvent: swelling and diffusion phenomena that are dependent on a number of parameters such as temperature, CPM cross-link density, solubility parameters, etc. The intensity of those phenomena leads to a variety of behaviors when CPMs are added into an epoxy-amine formulation: (a) slight decrease of gel times and increase of conversion, (b) modification of glass transition temperature of the matrix
APA, Harvard, Vancouver, ISO, and other styles
10

Shmelin, George. "A new rheological polymer based on boron siloxane cross-linked by isocyanate groups." Thesis, University of Hertfordshire, 2012. http://hdl.handle.net/2299/13901.

Full text
Abstract:
The research described in this thesis originated from an idea to develop new body protection for the sport of fencing. The ultimate goal is to develop body armour which would be flexible, wearable, washable, light and breathable, offer protection from injuries and cover the entire body of a sportsman. A new material which exhibits shear thickening behaviour has been specially developed for this purpose in the process of this investigation. The material was designed and synthesised as a soft polymeric system which is flexible, chemically stable and able to increase the value of its modulus of elasticity upon impact at a high strain rate, while remaining in its soft gel-like elastomeric state when low strain rate deformation is applied. The polymeric system that has been developed is based on interpenetrating polymeric networks (IPN) of immiscible polyurethane/urea-ester/ether and poly(boron)n(dimethylsiloxane)m (where on average m ≈ 16 n). In addition, as the polydimethylsilane (PDMS) based polymeric system strongly tends to phase separation, the siloxane polymeric network was chemically cross-linked to the polyurethane polymeric network through polyurethane chemical cross-link-bridges. In order to introduce polyurethane cross-links to a siloxane-based polymeric network, some of the attached methyl groups in the PDMS polymeric backbone were substituted by ε-pentanol groups. The resulting polymeric system combines properties of an alternating copolymer with IPN. The actual substitution of the methyl groups of PDMS into alternating ε-pentanol groups was performed by Grignard reaction of trifunctional chlorosilane monomers, magnesium and 1,5-dibromopentane. Chemical analytical techniques like FT-IR, 13C NMR and 1H NMR spectroscopy were used to reveal the chemical structure of the synthesised polymeric network. The mechanical and dynamical properties of the obtained polymeric system were analysed by dynamic mechanical analysis (DMA). This part of the investigation indicated that the novel polymeric system exhibited shear thickening behaviour, but only at a narrow diapason of deformations (i.e., deformations between 2 to 3 % of the length of the sample). At this limited diapason of deformation an effective increase of the modulus of elasticity from 6 MPa (at lower frequencies, i.e., up to ≤6 Hz of the applied oscillating stress) to 65 MPa (at frequencies between 12.5 to 25 Hz) was obtained. However, no increase in the modulus of elasticity was recorded at deformations below 1.5 % or above 3.5 % of length of the sample at the same frequencies (0 to 25Hz) of the applied oscillating stress.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Cross-linked; Polymer"

1

Crawford, Gregory Philip. Cross-linked liquid crystalline systems: From rigid polymer networks to elastomers. Boca Raton: Taylor & Francis, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dickie, Ray A., S. S. Labana, and Ronald S. Bauer, eds. Cross-Linked Polymers. Washington, DC: American Chemical Society, 1988. http://dx.doi.org/10.1021/bk-1988-0367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Korolev, G. V. Three-Dimensional Free-Radical Polymerization: Cross-Linked and Hyper-Branched Polymers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1960-, Zhang Ting'an, and Wang Ping active 2009, eds. Jiao lian qiao ju tang shu zhi: Jiaolian kejutang shuzhi. Beijing Shi: Hua xue gong ye chu ban she, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1940-, Dickie R. A., Labana Santokh S. 1936-, Bauer Ronald S. 1932-, and American Chemical Society. Division of Polymeric Materials: Science and Engineering., eds. Cross-linked polymers: Chemistry, properties, and applications. Washington, DC: American Chemical Society, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

(Editor), Ray A. Dickie, S. S. Labana (Editor), and Ronald S. Bauer (Editor), eds. Cross-Linked Polymers: Chemistry, Properties, and Applications (Acs Symposium Series). An American Chemical Society Publication, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers (Liquid Crystals Book Series). CRC, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cross-linked; Polymer"

1

Oyama, Toshiyuki. "Cross-Linked Polymer Synthesis." In Encyclopedia of Polymeric Nanomaterials, 496–505. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Oyama, Toshiyuki. "Cross-Linked Polymer Synthesis." In Encyclopedia of Polymeric Nanomaterials, 1–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_181-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yomota, Chikako, and Satoshi Okada. "Various Interactions of Drugs with Cross-Linked Hyaluronate Gel." In Polymer Gels, 326–38. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0833.ch022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Wenzhong, Xiaozu Han, Jingjiang Liu, and Huarong Zhou. "Structure and Properties of AB Cross-Linked Polymers." In Interpenetrating Polymer Networks, 571–94. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0239.ch028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Geissler, E., A. M. Hecht, F. Horkay, and M. Zrinyi. "Swelling of Lightly Cross-Linked Polymer Networks." In Springer Proceedings in Physics, 133–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-75044-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Seo, Myungeun. "Robust Mesoporous Polymers Derived from Cross-Linked Block Polymer Precursors." In Submicron Porous Materials, 53–79. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53035-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ree, Moonhor, and Do Y. Yoon. "Rodlike, Cross-Linked, Flexible Polyimide Semi-interpenetrating Polymer Network Composites." In Interpenetrating Polymer Networks, 247–67. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0239.ch012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nemirovski, Naum, and Moshe Narkis. "Polystyrene—Cross-Linked Polystyrene Blends: Latex Semi-interpenetrating Polymer Networks." In Interpenetrating Polymer Networks, 353–71. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0239.ch017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mikeš, F., J. Labský, P. Štrop, and J. Králíček. "On the Microenvironment of Soluble and Cross-Linked Polymers." In Microdomains in Polymer Solutions, 265–93. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2123-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fox, R. B., D. J. Moonay, J. P. Armistead, and C. M. Roland. "Synthetic Sequence Effects on Cross-Linked Polymer Mixtures." In ACS Symposium Series, 245–62. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/bk-1989-0395.ch010.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cross-linked; Polymer"

1

Bandyopadhyay, Ananyo, Pavan Valavala, Thomas Clancy, Kristopher Wise, and Gregory Odegard. "Atomistic Modeling of Cross-linked Epoxy Polymer." In 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-1920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bandyopadhyay, Ananyo, Benjamin Jensen, Pavan Valavala, and Gregory Odegard. "Atomistic Modeling of Cross-linked Epoxy Polymer." In 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
18th AIAA/ASME/AHS Adaptive Structures Conference
12th
. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-2811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mody, B. G., and M. K. Dabbous. "Reservoir Sweep Improvement With Cross-Linked Polymer Treatments." In Middle East Oil Show. Society of Petroleum Engineers, 1989. http://dx.doi.org/10.2118/17948-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhyhailo, Mariia, Khrystyna Rymsha, Iryna Yevchuk, Oksana Demchyna, and Victoria Kochubei. "UV curable cross-linked polymer and polymer-inorganic materials for fuel cell application." In Chemical technology and engineering. Lviv Polytechnic National University, 2019. http://dx.doi.org/10.23939/cte2019.01.074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xie, C., Z. Guan, M. Blunt, and H. Zhou. "Numerical Simulation of Oil Recovery After Cross-Linked Polymer Flooding." In Canadian International Petroleum Conference. Petroleum Society of Canada, 2007. http://dx.doi.org/10.2118/2007-019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kiyama, Ayumi, Shogo Nobukawa, and Masayuki Yamauchi. "Orientation birefringence of cross-linked rubber containing low-mass compound." In PROCEEDINGS OF PPS-30: The 30th International Conference of the Polymer Processing Society – Conference Papers. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4918394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Telin, A. G., T. A. Ismagilov, M. E. Khlebnikova, and V. Kh Singizova. "Studying of the Mechanism of the Cross-Linked Polymer Compositions Efficiency." In IOR 2003 - 12th European Symposium on Improved Oil Recovery. European Association of Geoscientists & Engineers, 2003. http://dx.doi.org/10.3997/2214-4609-pdb.7.a010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rosi, Memoria, Muhamad Prama Ekaputra, Mikrajuddin Abdullah, Khairurrijal, Mikrajuddin Abdullah, and Khairurrijal. "Synthesis and Characterization of Cross-linked Polymer Electrolyte Membranes for Supercapacitor." In THE THIRD NANOSCIENCE AND NANOTECHNOLOGY SYMPOSIUM 2010 (NNSB2010). AIP, 2010. http://dx.doi.org/10.1063/1.3515561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Casasanta, Vincenzo, Timothy Londergan, and Raluca Dinu. "Polymer blend LEDs using polyfluorene copolymers and thermally cross-linked fluoropolymers." In Integrated Optoelectronic Devices 2004, edited by James G. Grote and Toshikuni Kaino. SPIE, 2004. http://dx.doi.org/10.1117/12.528054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hong, Jianxun, Chengjun Li, Jianxin Zhou, Limin Zhou, Shuiping Chen, and Wei Chen. "A cross-linked electro-optic polymer for second order nonlinear optical applications." In Asia Pacific Optical Communications, edited by Yi Luo, Jens Buus, Fumio Koyama, and Yu-Hwa Lo. SPIE, 2008. http://dx.doi.org/10.1117/12.801791.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Cross-linked; Polymer"

1

Kelley, F. N., M. Morton, and D. Plazek. Time-Dependent Response and Fracture of Cross-Linked Polymer. Fort Belvoir, VA: Defense Technical Information Center, December 1986. http://dx.doi.org/10.21236/ada172047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography