Academic literature on the topic 'Cross-linked; Polymer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cross-linked; Polymer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cross-linked; Polymer"
Louwet, Frank, Ronny De Clercq, Johan Geudens, and Walter De Winter. "Cross-linked homodisperse polymer particles." Designed Monomers and Polymers 1, no. 4 (January 1998): 433–45. http://dx.doi.org/10.1163/156855598x00251.
Full textDing, Lei, Hui Gao, Feifei Xie, Wenqing Li, Hua Bai, and Lei Li. "Porosity-Enhanced Polymers from Hyper-Cross-Linked Polymer Precursors." Macromolecules 50, no. 3 (January 24, 2017): 956–62. http://dx.doi.org/10.1021/acs.macromol.6b02715.
Full textMorfopoulou, Christina I., Aikaterini K. Andreopoulou, and Joannis K. Kallitsis. "Cross-Linked High Temperature Polymer Electrolytes." Macromolecular Symposia 331-332, no. 1 (October 2013): 58–64. http://dx.doi.org/10.1002/masy.201300067.
Full textAndrieu, X., T. Vicedo, and C. Fringant. "Plasticization of cross-linked polymer electrolytes." Journal of Power Sources 54, no. 2 (April 1995): 487–90. http://dx.doi.org/10.1016/0378-7753(94)02131-l.
Full textLysenkov, E. A. "Structure-property relationships in polymer nanocomposites based on cross-linked polyurethanes and carbon nanotubes." Functional materials 22, no. 3 (October 1, 2015): 342–49. http://dx.doi.org/10.15407/fm22.03.342.
Full textSeo, Myungeun, Soobin Kim, Jaehoon Oh, Sun-Jung Kim, and Marc A. Hillmyer. "Hierarchically Porous Polymers from Hyper-cross-linked Block Polymer Precursors." Journal of the American Chemical Society 137, no. 2 (January 7, 2015): 600–603. http://dx.doi.org/10.1021/ja511581w.
Full textKASKHEDIKAR, N., M. BURJANADZE, Y. KARATAS, and H. WIEMHOFER. "Polymer electrolytes based on cross-linked cyclotriphosphazenes." Solid State Ionics 177, no. 35-36 (November 30, 2006): 3129–34. http://dx.doi.org/10.1016/j.ssi.2006.08.022.
Full textJCE staff. "What's Gluep? Characterizing a Cross-Linked Polymer." Journal of Chemical Education 75, no. 11 (November 1998): 1432A. http://dx.doi.org/10.1021/ed075p1432a.
Full textSnedden, Peter, Andrew I. Cooper, Keith Scott, and Neil Winterton. "Cross-Linked Polymer−Ionic Liquid Composite Materials." Macromolecules 36, no. 12 (June 2003): 4549–56. http://dx.doi.org/10.1021/ma021710n.
Full textKlopper, A. V., Carsten Svaneborg, and Ralf Everaers. "Microphase separation in cross-linked polymer blends." European Physical Journal E 28, no. 1 (January 2009): 89–96. http://dx.doi.org/10.1140/epje/i2008-10420-6.
Full textDissertations / Theses on the topic "Cross-linked; Polymer"
Williams, Timothy Philip. "Computer simulation of randomly cross-linked polymer networks." Thesis, University of Bristol, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271736.
Full textFerrier, David Christopher. "Nucleic acid detection using oligonucleotide cross-linked polymer composites." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28944.
Full textScavuzzo, Joseph J. "Elastomers Physically Cross-Linked By Oligo(ß-Alanine)." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1412937878.
Full textBreed, Peter G. "Organic chemistry on highly functionalised supports." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312151.
Full textO'Neill, Jason Michael. "Multidimensional Mass Spectrometry Studies on Amphiphilic Polymer Blends and Cross-Linked Networks." University of Akron / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=akron1624375174939496.
Full textD, Aguiar Donna-Leigh. "Surface modified cross-linked poly(vinyl alcohol)/poly(vinyl pivalate) suspension particles." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5475.
Full textENGLISH ABSTRACT: In papermaking, fillers and additives are used to enhance paper properties. In this study spherical modified poly(vinyl alcohol) (PVA) particles were prepared for use as fillers. In order to determine the mechanism of adhesion of additives to cellulose (paper) fibres, these particles were modified to have surface functionality, with cationic and anionic surface charges, similar to charged polyelectrolyte additives. Typically, retention aids used to improve the fibre–fibre and fibre–filler bonding are able to conform to the surface of the fibres and fillers. Oppositely charged components show strong affinity for each other, e.g. cationic polyelectrolyte groups adhere to anionic surface charges on the fibres. The spherical PVA particles were prepared by the saponification of spherical poly(vinyl pivalate) (PVPi) precursor particles. These PVPi particles, prepared via suspension polymerisation, were cross-linked with a divinyl ether comonomer. The vinyl pivalate (VPi) suspension polymerisation was successfully carried out and afforded relatively uniformly distributed PVPi particles, with diameters of 0.5–10 mm. The cross-linked PVPi particles were then saponified in tetrahydrofuran (THF) as swelling solvent, to afford PVA with various degrees of saponification (DS). The spherical shape was lost and fibrous material was obtained when uncross-linked PVPi particles were saponified. Cross-linking the spherical PVPi particles (PVA precursor) proved innovative, and essential in maintaining the spherical form during saponification to PVA/PVPi. By varying the saponification time periods, various DS were obtained, as characterised by solid state NMR spectroscopy. Surface modification of the PVA/PVPi particles was carried out with cationic and anionic groups via the Williamson ether synthesis. Ionic modification of these rigid spherical PVA/PVPi particles was carried out in order to study their adherence to cellulose fibres, compared to the adherence of similarly modified starches with cellulose fibres. Fluorescent labelling of the different modified particles was carried out using two complimentary coloured fluorescent markers. Fluorescence imaging and scanning electron microscopy (SEM) enabled the observation of particle– fibre and particle–particle interaction. Results indicated that the negative groups are sparse on the cellulose fibres, and therefore particles with low functionality but which are able change shape and conform and adhere to the surface of the cellulose fibres are required for effective adhesion. These modified spherical PVA/PVPi particles are unique as they mirror the chemistry of functionalised starch and cellulose particles, yet maintain their shape and have a fixed size, measurable by SEM and transmission electron microscopy (TEM). Field-flow fractionation was also used to characterise and measure these relatively large cross-linked and fixed diameter particles.
AFRIKAANSE OPSOMMING: In papierproduksie word vulstowwe en bymiddels gebruik om die eienskappe van papier te verbeter. In hierdie studie is sferiese poli(vinielalkohol) (PVA) partikels berei vir gebruik as vulstowwe. Om ten einde die meganisme van die bymiddelklewing aan die sellulose vesels (papier) te bepaal, is die oppervlakke van hierdie partikels gewysig met kationiese of anioniese groepe, om 'n oppervlak soortgelyk aan dié van funksionele poliëlektrolietbymiddels te verskaf. Die retensiemiddels wat gebruik word om die vesel–vesel en vesel–vulstof binding te verbeter is tipies in staat om te konformeer aan die oppervlak van die vesels en vulstowwe. Teenoorgesteldgelaaide komponente toon 'n sterk affiniteit vir mekaar, bv. kationiese poliëlektrolietgroepe is vasklewend aan die anioniesgelaaide oppervlakke van die vesel. Die sferiese PVA partikels is berei deur die verseping van sferiese poli(vinielpivalaat) (PVPi) partikels. Hierdie voorloper PVPi partikels, berei deur suspensiepolimerisasie, is gekruisbind met 'n divinieleter ko-monomeer. Die vinielpivalaat (VPi) suspensiepolimerisasie is suksesvol uitgevoer en relatief eenvormig verspreide sferiese PVPi partikels is berei, met deursnitte tussen 0.5–10 mm. Die gekruisbinde PVPi partikels is daarna gesaponifiseer in tetrahidrofuraan (THF) as oplosmiddel, om PVA met verskillende grade van verseping (DS) te berei. Die sferiese vorm raak verlore en veselagtige materiaal is verkry wanneer PVPi partikels met geen kruisbinding verseep is. Kruisbinding van die sferiese PVPi partikels (PVA voorloper) is voordelig en noodsaaklik om die sferiese vorm tydens die verseping tot PVA/PVPi te behou. Deur die tydsduur van verseping te verander, is verskeie grade van verseping verkry en bevestig deur vaste toestand KMR spektroskopie. Oppervlakwysiging van die PVA/PVPi partikels, om kationiese en anioniese groepe aan te heg, is uitgevoer via die Williamson etersintese. Ioniese wysiging van hierdie stram, sferiese PVA/PVPi partikels is uitgevoer om ten einde hul klewing met sellulose vesels te bestudeer en te vergelyk met die klewing van soortgelyk gewysigde stysels. Fluoressensie merking van die verskillende gewysigde partikels is uitgevoer met behulp van twee komplimentêre gekleurde fluoressensie merkers. Fluoressensie beeldvorming en SEM verskaf die waarneming van partikel–vesel en partikel–partikel interaksie. Die resultate dui daarop dat die negatiewe groepe van die sellulose vesels skaars is, en daarom is partikels met ‘n lae funksionaliteit, maar wat in staat is om van vorm te verander, aan te pas en te konformeer aan die oppervlak van die sellulose vesels, nodig vir effektiewe adhesie. Hierdie gewysigde sferiese PVA/PVPi partikels is uniek aangesien hulle die chemie van gewysigde stysel en sellulose partikels naboots, maar steeds hul vorm behou met 'n vaste grootte; meetbaar deur SEM en TEM. Veld-vloei-fraksionering is ook gebruik vir die karakterisering van hierdie relatief groot, stram, gekruisbinde partikels met bepaalde deursneë.
Patra, Leena. "Volume-Phase Transitions in Responsive Photo-Cross-Linked Polymer Network Films." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4197.
Full textDeng, Guodong. "SYNTHESIS AND CHARACTERIZATION OF IONICALLY CROSS-LINKED NETWORKS THROUGH THE USE OF ION-PAIR COMONOMERS." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1534124831858723.
Full textMichon, Marie-Laure. "Heterogeneous epoxy-amine networks from the dispersion of cross-linked polymer microparticles." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0018/document.
Full textThroughout this work, the influence of the addition of cross-linked polymer microparticles (CPMs) in epoxy-amine formulations on the kinetics, morphology and thermo-mechanical properties of the final networks have been investigated. First, an easy, robust and well-controlled protocol was developed to obtain a large range of CPM size, Tg and amine functionality. This protocol based on reaction induced phase separation via precipitation polymerization was also applied to different chemistries and water soluble epoxy pre-polymers showing the large possibilities of this method. The capacity of obtaining a good compatibility between the CPMs and the matrix was ensure by synthesizing the CPMs in excess of amino groups. The study of the remaining reactive amino groups on the CPMS was of great interest and therefore deeply investigated. The titration of the surface amine was performed by developing a new protocol that enabled the quantification of primary and secondary amines on CPMs. It was then highlighted that even though these cross-linked microparticles were not porous, amino groups are available into the core and can react with other molecules that are able to diffuse into the CPM core. It was shown that when CPMs were dispersed into epoxy-amine blends, the diffusion of monomers into the CPM core occurred but differently depending on the dispersion process. Indeed, using tetrahydrofuran as solvent to help for the dispersion increased the diffusion of DGEBA into the CPM core and changed the thermo-mechanical properties of the final network by modifying the stoichiometric ratio of the matrix. Same phenomenon was observed but less amplified when CPMs were mechanically dispersed in DGEBA. Regarding the dispersion of CPMs in the amine cross-linker, IPD, its complete absorption could be observed into the CPMs, leading then to the desorption of IPD to create the network. Thus, a very complex behavior of CPMs was highlighted in presence of monomers or/and solvent: swelling and diffusion phenomena that are dependent on a number of parameters such as temperature, CPM cross-link density, solubility parameters, etc. The intensity of those phenomena leads to a variety of behaviors when CPMs are added into an epoxy-amine formulation: (a) slight decrease of gel times and increase of conversion, (b) modification of glass transition temperature of the matrix
Shmelin, George. "A new rheological polymer based on boron siloxane cross-linked by isocyanate groups." Thesis, University of Hertfordshire, 2012. http://hdl.handle.net/2299/13901.
Full textBooks on the topic "Cross-linked; Polymer"
Crawford, Gregory Philip. Cross-linked liquid crystalline systems: From rigid polymer networks to elastomers. Boca Raton: Taylor & Francis, 2011.
Find full textDickie, Ray A., S. S. Labana, and Ronald S. Bauer, eds. Cross-Linked Polymers. Washington, DC: American Chemical Society, 1988. http://dx.doi.org/10.1021/bk-1988-0367.
Full textKorolev, G. V. Three-Dimensional Free-Radical Polymerization: Cross-Linked and Hyper-Branched Polymers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Find full text1960-, Zhang Ting'an, and Wang Ping active 2009, eds. Jiao lian qiao ju tang shu zhi: Jiaolian kejutang shuzhi. Beijing Shi: Hua xue gong ye chu ban she, 2009.
Find full text1940-, Dickie R. A., Labana Santokh S. 1936-, Bauer Ronald S. 1932-, and American Chemical Society. Division of Polymeric Materials: Science and Engineering., eds. Cross-linked polymers: Chemistry, properties, and applications. Washington, DC: American Chemical Society, 1988.
Find full text(Editor), Ray A. Dickie, S. S. Labana (Editor), and Ronald S. Bauer (Editor), eds. Cross-Linked Polymers: Chemistry, Properties, and Applications (Acs Symposium Series). An American Chemical Society Publication, 1998.
Find full textCross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers (Liquid Crystals Book Series). CRC, 2008.
Find full textBook chapters on the topic "Cross-linked; Polymer"
Oyama, Toshiyuki. "Cross-Linked Polymer Synthesis." In Encyclopedia of Polymeric Nanomaterials, 496–505. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_181.
Full textOyama, Toshiyuki. "Cross-Linked Polymer Synthesis." In Encyclopedia of Polymeric Nanomaterials, 1–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_181-1.
Full textYomota, Chikako, and Satoshi Okada. "Various Interactions of Drugs with Cross-Linked Hyaluronate Gel." In Polymer Gels, 326–38. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0833.ch022.
Full textLiu, Wenzhong, Xiaozu Han, Jingjiang Liu, and Huarong Zhou. "Structure and Properties of AB Cross-Linked Polymers." In Interpenetrating Polymer Networks, 571–94. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0239.ch028.
Full textGeissler, E., A. M. Hecht, F. Horkay, and M. Zrinyi. "Swelling of Lightly Cross-Linked Polymer Networks." In Springer Proceedings in Physics, 133–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-75044-1_15.
Full textSeo, Myungeun. "Robust Mesoporous Polymers Derived from Cross-Linked Block Polymer Precursors." In Submicron Porous Materials, 53–79. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53035-2_3.
Full textRee, Moonhor, and Do Y. Yoon. "Rodlike, Cross-Linked, Flexible Polyimide Semi-interpenetrating Polymer Network Composites." In Interpenetrating Polymer Networks, 247–67. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0239.ch012.
Full textNemirovski, Naum, and Moshe Narkis. "Polystyrene—Cross-Linked Polystyrene Blends: Latex Semi-interpenetrating Polymer Networks." In Interpenetrating Polymer Networks, 353–71. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0239.ch017.
Full textMikeš, F., J. Labský, P. Štrop, and J. Králíček. "On the Microenvironment of Soluble and Cross-Linked Polymers." In Microdomains in Polymer Solutions, 265–93. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2123-1_15.
Full textFox, R. B., D. J. Moonay, J. P. Armistead, and C. M. Roland. "Synthetic Sequence Effects on Cross-Linked Polymer Mixtures." In ACS Symposium Series, 245–62. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/bk-1989-0395.ch010.
Full textConference papers on the topic "Cross-linked; Polymer"
Bandyopadhyay, Ananyo, Pavan Valavala, Thomas Clancy, Kristopher Wise, and Gregory Odegard. "Atomistic Modeling of Cross-linked Epoxy Polymer." In 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-1920.
Full textBandyopadhyay, Ananyo, Benjamin Jensen, Pavan Valavala, and Gregory Odegard. "Atomistic Modeling of Cross-linked Epoxy Polymer." In 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
18th AIAA/ASME/AHS Adaptive Structures Conference
12th. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-2811.
Mody, B. G., and M. K. Dabbous. "Reservoir Sweep Improvement With Cross-Linked Polymer Treatments." In Middle East Oil Show. Society of Petroleum Engineers, 1989. http://dx.doi.org/10.2118/17948-ms.
Full textZhyhailo, Mariia, Khrystyna Rymsha, Iryna Yevchuk, Oksana Demchyna, and Victoria Kochubei. "UV curable cross-linked polymer and polymer-inorganic materials for fuel cell application." In Chemical technology and engineering. Lviv Polytechnic National University, 2019. http://dx.doi.org/10.23939/cte2019.01.074.
Full textXie, C., Z. Guan, M. Blunt, and H. Zhou. "Numerical Simulation of Oil Recovery After Cross-Linked Polymer Flooding." In Canadian International Petroleum Conference. Petroleum Society of Canada, 2007. http://dx.doi.org/10.2118/2007-019.
Full textKiyama, Ayumi, Shogo Nobukawa, and Masayuki Yamauchi. "Orientation birefringence of cross-linked rubber containing low-mass compound." In PROCEEDINGS OF PPS-30: The 30th International Conference of the Polymer Processing Society – Conference Papers. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4918394.
Full textTelin, A. G., T. A. Ismagilov, M. E. Khlebnikova, and V. Kh Singizova. "Studying of the Mechanism of the Cross-Linked Polymer Compositions Efficiency." In IOR 2003 - 12th European Symposium on Improved Oil Recovery. European Association of Geoscientists & Engineers, 2003. http://dx.doi.org/10.3997/2214-4609-pdb.7.a010.
Full textRosi, Memoria, Muhamad Prama Ekaputra, Mikrajuddin Abdullah, Khairurrijal, Mikrajuddin Abdullah, and Khairurrijal. "Synthesis and Characterization of Cross-linked Polymer Electrolyte Membranes for Supercapacitor." In THE THIRD NANOSCIENCE AND NANOTECHNOLOGY SYMPOSIUM 2010 (NNSB2010). AIP, 2010. http://dx.doi.org/10.1063/1.3515561.
Full textCasasanta, Vincenzo, Timothy Londergan, and Raluca Dinu. "Polymer blend LEDs using polyfluorene copolymers and thermally cross-linked fluoropolymers." In Integrated Optoelectronic Devices 2004, edited by James G. Grote and Toshikuni Kaino. SPIE, 2004. http://dx.doi.org/10.1117/12.528054.
Full textHong, Jianxun, Chengjun Li, Jianxin Zhou, Limin Zhou, Shuiping Chen, and Wei Chen. "A cross-linked electro-optic polymer for second order nonlinear optical applications." In Asia Pacific Optical Communications, edited by Yi Luo, Jens Buus, Fumio Koyama, and Yu-Hwa Lo. SPIE, 2008. http://dx.doi.org/10.1117/12.801791.
Full textReports on the topic "Cross-linked; Polymer"
Kelley, F. N., M. Morton, and D. Plazek. Time-Dependent Response and Fracture of Cross-Linked Polymer. Fort Belvoir, VA: Defense Technical Information Center, December 1986. http://dx.doi.org/10.21236/ada172047.
Full text