Academic literature on the topic 'Cross-Lingual knowledge transfer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cross-Lingual knowledge transfer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cross-Lingual knowledge transfer"
Wang, Yabing, Fan Wang, Jianfeng Dong, and Hao Luo. "CL2CM: Improving Cross-Lingual Cross-Modal Retrieval via Cross-Lingual Knowledge Transfer." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 6 (March 24, 2024): 5651–59. http://dx.doi.org/10.1609/aaai.v38i6.28376.
Full textAbhishek Singhal, Happa Khan, Aditya Sharma. "Empowering Multilingual AI: Cross-Lingual Transfer Learning." Tuijin Jishu/Journal of Propulsion Technology 43, no. 4 (November 26, 2023): 284–87. http://dx.doi.org/10.52783/tjjpt.v43.i4.2353.
Full textZhang, Mozhi, Yoshinari Fujinuma, and Jordan Boyd-Graber. "Exploiting Cross-Lingual Subword Similarities in Low-Resource Document Classification." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 05 (April 3, 2020): 9547–54. http://dx.doi.org/10.1609/aaai.v34i05.6500.
Full textColhon, Mihaela. "Language engineering for syntactic knowledge transfer." Computer Science and Information Systems 9, no. 3 (2012): 1231–47. http://dx.doi.org/10.2298/csis120130032c.
Full textZhan, Qingran, Xiang Xie, Chenguang Hu, Juan Zuluaga-Gomez, Jing Wang, and Haobo Cheng. "Domain-Adversarial Based Model with Phonological Knowledge for Cross-Lingual Speech Recognition." Electronics 10, no. 24 (December 20, 2021): 3172. http://dx.doi.org/10.3390/electronics10243172.
Full textXu, Zenan, Linjun Shou, Jian Pei, Ming Gong, Qinliang Su, Xiaojun Quan, and Daxin Jiang. "A Graph Fusion Approach for Cross-Lingual Machine Reading Comprehension." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 11 (June 26, 2023): 13861–68. http://dx.doi.org/10.1609/aaai.v37i11.26623.
Full textRijhwani, Shruti, Jiateng Xie, Graham Neubig, and Jaime Carbonell. "Zero-Shot Neural Transfer for Cross-Lingual Entity Linking." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 6924–31. http://dx.doi.org/10.1609/aaai.v33i01.33016924.
Full textBari, M. Saiful, Shafiq Joty, and Prathyusha Jwalapuram. "Zero-Resource Cross-Lingual Named Entity Recognition." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 05 (April 3, 2020): 7415–23. http://dx.doi.org/10.1609/aaai.v34i05.6237.
Full textQi, Kunxun, and Jianfeng Du. "Translation-Based Matching Adversarial Network for Cross-Lingual Natural Language Inference." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 05 (April 3, 2020): 8632–39. http://dx.doi.org/10.1609/aaai.v34i05.6387.
Full textZhang, Weizhao, and Hongwu Yang. "Meta-Learning for Mandarin-Tibetan Cross-Lingual Speech Synthesis." Applied Sciences 12, no. 23 (November 28, 2022): 12185. http://dx.doi.org/10.3390/app122312185.
Full textDissertations / Theses on the topic "Cross-Lingual knowledge transfer"
Aufrant, Lauriane. "Training parsers for low-resourced languages : improving cross-lingual transfer with monolingual knowledge." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS089/document.
Full textAs a result of the recent blossoming of Machine Learning techniques, the Natural Language Processing field faces an increasingly thorny bottleneck: the most efficient algorithms entirely rely on the availability of large training data. These technological advances remain consequently unavailable for the 7,000 languages in the world, out of which most are low-resourced. One way to bypass this limitation is the approach of cross-lingual transfer, whereby resources available in another (source) language are leveraged to help building accurate systems in the desired (target) language. However, despite promising results in research settings, the standard transfer techniques lack the flexibility regarding cross-lingual resources needed to be fully usable in real-world scenarios: exploiting very sparse resources, or assorted arrays of resources. This limitation strongly diminishes the applicability of that approach. This thesis consequently proposes to combine multiple sources and resources for transfer, with an emphasis on selectivity: can we estimate which resource of which language is useful for which input? This strategy is put into practice in the frame of transition-based dependency parsing. To this end, a new transfer framework is designed, with a cascading architecture: it enables the desired combination, while ensuring better targeted exploitation of each resource, down to the level of the word. Empirical evaluation dampens indeed the enthusiasm for the purely cross-lingual approach -- it remains in general preferable to annotate just a few target sentences -- but also highlights its complementarity with other approaches. Several metrics are developed to characterize precisely cross-lingual similarities, syntactic idiosyncrasies, and the added value of cross-lingual information compared to monolingual training. The substantial benefits of typological knowledge are also explored. The whole study relies on a series of technical improvements regarding the parsing framework: this work includes the release of a new open source software, PanParser, which revisits the so-called dynamic oracles to extend their use cases. Several purely monolingual contributions complete this work, including an exploration of monolingual cascading, which offers promising perspectives with easy-then-hard strategies
Raithel, Lisa. "Cross-lingual Information Extraction for the Assessment and Prevention of Adverse Drug Reactions." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG011.
Full textThe work described in this thesis deals with the cross- and multi-lingual detection and extraction of adverse drug reactions in biomedical texts written by laypeople. This includes the design and creation of a multi-lingual corpus, exploring ways to collect data without harming users' privacy and investigating whether cross-lingual data can mitigate class imbalance in document classification. It further addresses the question of whether zero- and cross-lingual learning can be successful in medical entity detection across languages. I describe the creation of a new tri-lingual corpus (German, French, Japanese) focusing on German and French, including the development of annotation guidelines applicable to any language and oriented towards user-generated texts. I further describe the annotation process and give an overview of the resulting dataset. The data is provided with annotations on four levels: document-level, for describing if a text contains ADRs or not; entity level for capturing relevant expressions; attribute level to further specify these expressions; The last level annotates relations to extract information on how the aforementioned entities interact. I then discuss the topic of user privacy in data about health-related issues and the question of how to collect such data for research purposes without harming the person's privacy. I provide a prototype study of how users react when they are directly asked about their experiences with ADRs. The study reveals that most people do not mind describing their experiences if asked, but that data collection might suffer from too many questions in the questionnaire. Next, I analyze the results of a potential second way of collecting social media data: the synthetic generation of pseudo-tweets based on real Twitter messages. In the analysis, I focus on the challenges this approach entails and find, despite some preliminary cleaning, that there are still problems to be found in the translations, both with respect to the meaning of the text and the annotated labels. I, therefore, give anecdotal examples of what can go wrong during automatic translation, summarize the lessons learned, and present potential steps for improvements. Subsequently, I present experimental results for cross-lingual document classification with respect to ADRs in English and German. For this, I fine-tuned classification models on different dataset configurations first on English and then on German documents, complicated by the strong label imbalance of either language's dataset. I find that incorporating English training data helps in the classification of relevant documents in German, but that it is not enough to mitigate the natural imbalance of document labels efficiently. Nevertheless, the developed models seem promising and might be particularly useful for collecting more texts describing experiences about side effects to extend the current corpus and improve the detection of relevant documents for other languages. Next, I describe my participation in the n2c2 2022 shared task of medication detection which is then extended from English to German, French and Spanish using datasets from different sub-domains based on different annotation guidelines. I show that the multi- and cross-lingual transfer works well but also strongly depends on the annotation types and definitions. After that, I re-use the discussed models to show some preliminary results on the presented corpus, first only on medication detection and then across all the annotated entity types. I find that medication detection shows promising results, especially considering that the models were fine-tuned on data from another sub-domain and applied in a zero-shot fashion to the new data. Regarding the detection of other medical expressions, I find that the performance of the models strongly depends on the entity type and propose ways to handle this. Lastly, the presented work is summarized and future steps are discussed
Die in dieser Dissertation beschriebene Arbeit befasst sich mit der mehrsprachigen Erkennung und Extraktion von unerwünschten Arzneimittelwirkungen in biomedizinischen Texten, die von Laien verfasst wurden. Ich beschreibe die Erstellung eines neuen dreisprachigen Korpus (Deutsch, Französisch, Japanisch) mit Schwerpunkt auf Deutsch und Französisch, einschließlich der Entwicklung von Annotationsrichtlinien, die für alle Sprachen gelten und sich an nutzergenerierten Texten orientieren. Weiterhin dokumentiere ich den Annotationsprozess und gebe einen Überblick über den resultierenden Datensatz. Anschließend gehe ich auf den Schutz der Privatsphäre der Nutzer in Bezug auf Daten über Gesundheitsprobleme ein. Ich präsentiere einen Prototyp zu einer Studie darüber, wie Nutzer reagieren, wenn sie direkt nach ihren Erfahrungen mit Nebenwirkungen befragt werden. Die Studie zeigt, dass die meisten Menschen nichts dagegen haben, ihre Erfahrungen zu schildern, wenn sie um Erlaubnis gefragt werden. Allerdings kann die Datenerhebung darunter leiden, dass der Fragebogen zu viele Fragen enthält. Als nächstes analysiere ich die Ergebnisse einer zweiten potenziellen Methode zur Datenerhebung in sozialen Medien, der synthetischen Generierung von Pseudo-Tweets, die auf echten Twitter-Nachrichten basieren. In der Analyse konzentriere ich mich auf die Herausforderungen, die dieser Ansatz mit sich bringt, und zeige, dass trotz einer vorläufigen Bereinigung noch Probleme in den Übersetzungen zu finden sind, sowohl was die Bedeutung des Textes als auch die annotierten Tags betrifft. Ich gebe daher anekdotische Beispiele dafür, was bei einer maschinellen Übersetzung schiefgehen kann, fasse die gewonnenen Erkenntnisse zusammen und stelle potenzielle Verbesserungsmaßnahmen vor. Weiterhin präsentiere ich experimentelle Ergebnisse für die Klassifizierung mehrsprachiger Dokumente bezüglich medizinischer Nebenwirkungen im Englischen und Deutschen. Dazu wurden Klassifikationsmodelle an verschiedenen Datensatzkonfigurationen verfeinert (fine-tuning), zunächst an englischen und dann an deutschen Dokumenten. Dieser Ansatz wurde durch das starke Ungleichgewicht der Labels in den beiden Datensätzen verkompliziert. Die Ergebnisse zeigen, dass die Einarbeitung englischer Trainingsdaten bei der Klassifizierung relevanter deutscher Dokumente hilft, aber nicht ausreicht, um das natürliche Ungleichgewicht der Dokumentenklassen wirksam abzuschwächen. Dennoch scheinen die entwickelten Modelle vielversprechend zu sein und könnten besonders nützlich sein, um weitere Texte zu sammeln. Dieser wiederum können das aktuelle Korpus erweitern und damit die Erkennung relevanter Dokumente für andere Sprachen verbessern. Nachfolgend beschreibe ich die Teilnahme am n2c2 2022 Shared Task zur Erkennung von Medikamenten. Die Ansätze des Shared Task werden anschließend vom Englischen auf deutsche, französische und spanische Korpora ausgeweitet, indem Datensätze aus verschiedenen Teilbereichen verwendet werden, die auf unterschiedlichen Annotationsrichtlinien basieren. Ich zeige, dass die mehrsprachige Übertragung gut funktioniert, aber auch stark von den Annotationstypen und Definitionen abhängt. Im Anschluss verwende ich die besprochenen Modelle erneut, um einige vorläufige Ergebnisse für das vorgestellte Korpus zu zeigen, zunächst nur für die Erkennung von Medikamenten und dann für alle Arten von annotierten Entitäten. Die experimentellen Ergebnisse zeigen, dass die Medikamentenerkennung vielversprechende ist, insbesondere wenn man bedenkt, dass die Modelle an Daten aus einem anderen Teilbereich verfeinert und mit einem zeroshot Ansatz auf die neuen Daten angewendet wurden. In Bezug auf die Erkennung anderer medizinischer Ausdrücke stellt sich heraus,dass die Leistung der Modelle stark von der Art der Entität abhängt. Ich schlage deshalb Möglichkeiten vor, wie man dieses Problem in Zukunft angehen könnte
Book chapters on the topic "Cross-Lingual knowledge transfer"
Gui, Lin, Qin Lu, Ruifeng Xu, Qikang Wei, and Yuhui Cao. "Improving Transfer Learning in Cross Lingual Opinion Analysis Through Negative Transfer Detection." In Knowledge Science, Engineering and Management, 394–406. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25159-2_36.
Full textTian, Lin, Xiuzhen Zhang, and Jey Han Lau. "Rumour Detection via Zero-Shot Cross-Lingual Transfer Learning." In Machine Learning and Knowledge Discovery in Databases. Research Track, 603–18. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86486-6_37.
Full textHan, Soyeon Caren, Yingru Lin, Siqu Long, and Josiah Poon. "Low Resource Named Entity Recognition Using Contextual Word Representation and Neural Cross-Lingual Knowledge Transfer." In Neural Information Processing, 299–311. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36708-4_25.
Full textDaou, Ousmane, Satya Ranjan Dash, and Shantipriya Parida. "Cross-Lingual Transfer Learning for Bambara Leveraging Resources From Other Languages." In Advances in Computational Intelligence and Robotics, 183–97. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-0728-1.ch009.
Full textConference papers on the topic "Cross-Lingual knowledge transfer"
Swietojanski, Pawel, Arnab Ghoshal, and Steve Renals. "Unsupervised cross-lingual knowledge transfer in DNN-based LVCSR." In 2012 IEEE Spoken Language Technology Workshop (SLT 2012). IEEE, 2012. http://dx.doi.org/10.1109/slt.2012.6424230.
Full textLu, Di, Xiaoman Pan, Nima Pourdamghani, Shih-Fu Chang, Heng Ji, and Kevin Knight. "A Multi-media Approach to Cross-lingual Entity Knowledge Transfer." In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2016. http://dx.doi.org/10.18653/v1/p16-1006.
Full textSingh, Sumit, and Uma Tiwary. "Silp_nlp at SemEval-2023 Task 2: Cross-lingual Knowledge Transfer for Mono-lingual Learning." In Proceedings of the The 17th International Workshop on Semantic Evaluation (SemEval-2023). Stroudsburg, PA, USA: Association for Computational Linguistics, 2023. http://dx.doi.org/10.18653/v1/2023.semeval-1.164.
Full textFeng, Xiaocheng, Xiachong Feng, Bing Qin, Zhangyin Feng, and Ting Liu. "Improving Low Resource Named Entity Recognition using Cross-lingual Knowledge Transfer." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/566.
Full textCao, Yuwei, William Groves, Tanay Kumar Saha, Joel Tetreault, Alejandro Jaimes, Hao Peng, and Philip Yu. "XLTime: A Cross-Lingual Knowledge Transfer Framework for Temporal Expression Extraction." In Findings of the Association for Computational Linguistics: NAACL 2022. Stroudsburg, PA, USA: Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.findings-naacl.148.
Full textLimkonchotiwat, Peerat, Wuttikorn Ponwitayarat, Can Udomcharoenchaikit, Ekapol Chuangsuwanich, and Sarana Nutanong. "CL-ReLKT: Cross-lingual Language Knowledge Transfer for Multilingual Retrieval Question Answering." In Findings of the Association for Computational Linguistics: NAACL 2022. Stroudsburg, PA, USA: Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.findings-naacl.165.
Full textJin, Huiming, and Katharina Kann. "Exploring Cross-Lingual Transfer of Morphological Knowledge In Sequence-to-Sequence Models." In Proceedings of the First Workshop on Subword and Character Level Models in NLP. Stroudsburg, PA, USA: Association for Computational Linguistics, 2017. http://dx.doi.org/10.18653/v1/w17-4110.
Full textZhou, Yucheng, Xiubo Geng, Tao Shen, Wenqiang Zhang, and Daxin Jiang. "Improving Zero-Shot Cross-lingual Transfer for Multilingual Question Answering over Knowledge Graph." In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA, USA: Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.naacl-main.465.
Full textFukuda, Takashi, and Samuel Thomas. "Knowledge Distillation Based Training of Universal ASR Source Models for Cross-Lingual Transfer." In Interspeech 2021. ISCA: ISCA, 2021. http://dx.doi.org/10.21437/interspeech.2021-796.
Full textGuzman Nateras, Luis, Franck Dernoncourt, and Thien Nguyen. "Hybrid Knowledge Transfer for Improved Cross-Lingual Event Detection via Hierarchical Sample Selection." In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2023. http://dx.doi.org/10.18653/v1/2023.acl-long.296.
Full text