Academic literature on the topic 'Cross-domain retrieval'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cross-domain retrieval.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cross-domain retrieval"
Guo, Aibo, Xinyi Li, Ning Pang, and Xiang Zhao. "Adversarial Cross-domain Community Question Retrieval." ACM Transactions on Asian and Low-Resource Language Information Processing 21, no. 3 (May 31, 2022): 1–22. http://dx.doi.org/10.1145/3487291.
Full textWang, Xu, Dezhong Peng, Ming Yan, and Peng Hu. "Correspondence-Free Domain Alignment for Unsupervised Cross-Domain Image Retrieval." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 8 (June 26, 2023): 10200–10208. http://dx.doi.org/10.1609/aaai.v37i8.26215.
Full textXu, Bowen, Zhenchang Xing, Xin Xia, David Lo, and Shanping Li. "Domain-specific cross-language relevant question retrieval." Empirical Software Engineering 23, no. 2 (November 4, 2017): 1084–122. http://dx.doi.org/10.1007/s10664-017-9568-3.
Full textIkeda, Kanami, Hidenori Suzuki, and Eriko Watanabe. "Optical correlation-based cross-domain image retrieval system." Optics Letters 42, no. 13 (June 29, 2017): 2603. http://dx.doi.org/10.1364/ol.42.002603.
Full textWang, Xinggang, Xiong Duan, and Xiang Bai. "Deep sketch feature for cross-domain image retrieval." Neurocomputing 207 (September 2016): 387–97. http://dx.doi.org/10.1016/j.neucom.2016.04.046.
Full textNoh, Hae-Chan, and Jae-Pil Heo. "Mutually Orthogonal Softmax Axes for Cross-Domain Retrieval." IEEE Access 8 (2020): 56491–500. http://dx.doi.org/10.1109/access.2020.2982557.
Full textZhao, Wentian, Xinxiao Wu, and Jiebo Luo. "Cross-Domain Image Captioning via Cross-Modal Retrieval and Model Adaptation." IEEE Transactions on Image Processing 30 (2021): 1180–92. http://dx.doi.org/10.1109/tip.2020.3042086.
Full textPham, Hai X., Ricardo Guerrero, Vladimir Pavlovic, and Jiatong Li. "CHEF: Cross-modal Hierarchical Embeddings for Food Domain Retrieval." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 3 (May 18, 2021): 2423–30. http://dx.doi.org/10.1609/aaai.v35i3.16343.
Full textZi, Lingling, Junping Du, and Qian Wang. "Domain-Oriented Subject Aware Model for Multimedia Data Retrieval." Mathematical Problems in Engineering 2013 (2013): 1–13. http://dx.doi.org/10.1155/2013/429696.
Full textDong, Jianfeng, Zhongzi Long, Xiaofeng Mao, Changting Lin, Yuan He, and Shouling Ji. "Multi-level Alignment Network for Domain Adaptive Cross-modal Retrieval." Neurocomputing 440 (June 2021): 207–19. http://dx.doi.org/10.1016/j.neucom.2021.01.114.
Full textDissertations / Theses on the topic "Cross-domain retrieval"
Suyoto, Iman S. H., and ishs@ishs net. "Cross-Domain Content-Based Retrieval of Audio Music through Transcription." RMIT University. Computer Science and Information Technology, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20090527.092841.
Full textWigder, Chaya. "Word embeddings for monolingual and cross-language domain-specific information retrieval." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233028.
Full textFlera studier har visat att ordinbäddningsmodeller är användningsbara för många olika språkteknologiuppgifter. Denna avhandling undersöker hur ordinbäddningsmodeller kan användas i sökmotorer för både enspråkig och tvärspråklig domänspecifik sökning. Experiment gjordes för att optimera hyperparametrarna till ordinbäddningsmodellerna och för att hitta det bästa sättet att vikta ord efter hur viktiga de är i dokumentet eller sökfrågan. Dessutom undersöktes metoder för att skapa domänspecifika tvåspråkiga inbäddningar. Systemet jämfördes med en baslinje utan inbäddningar baserad på cosinuslikhet, och för både enspråkiga och tvärspråkliga sökningar var systemet som använde enspråkiga inbäddningar bättre än baslinjen. Däremot var de tvåspråkiga inbäddningarna, särskilt för domänspecifika ord, av låg kvalitet och gav för dåliga resultat för direkt användning inom sökmotorer.
Franco, Salvador Marc. "A Cross-domain and Cross-language Knowledge-based Representation of Text and its Meaning." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/84285.
Full textEl Procesamiento del Lenguaje Natural (PLN) es un campo de la informática, la inteligencia artificial y la lingüística computacional centrado en las interacciones entre las máquinas y el lenguaje de los humanos. Uno de sus mayores desafíos implica capacitar a las máquinas para inferir el significado del lenguaje natural humano. Con este propósito, diversas representaciones del significado y el contexto han sido propuestas obteniendo un rendimiento competitivo. Sin embargo, estas representaciones todavía tienen un margen de mejora en escenarios transdominios y translingües. En esta tesis estudiamos el uso de grafos de conocimiento como una representación transdominio y translingüe del texto y su significado. Un grafo de conocimiento es un grafo que expande y relaciona los conceptos originales pertenecientes a un conjunto de palabras. Sus propiedades se consiguen gracias al uso como base de conocimiento de una red semántica multilingüe de amplia cobertura. Esto permite tener una cobertura de cientos de lenguajes y millones de conceptos generales y específicos del ser humano. Como punto de partida de nuestra investigación empleamos características basadas en grafos de conocimiento - junto con otras tradicionales y meta-aprendizaje - para la tarea de PLN de clasificación de la polaridad mono- y transdominio. El análisis y conclusiones de ese trabajo muestra evidencias de que los grafos de conocimiento capturan el significado de una forma independiente del dominio. La siguiente parte de nuestra investigación aprovecha la capacidad de la red semántica multilingüe y se centra en tareas de Recuperación de Información (RI). Primero proponemos un modelo de análisis de similitud completamente basado en grafos de conocimiento para detección de plagio translingüe. A continuación, mejoramos ese modelo para cubrir palabras fuera de vocabulario y tiempos verbales, y lo aplicamos a las tareas translingües de recuperación de documentos, clasificación, y detección de plagio. Por último, estudiamos el uso de grafos de conocimiento para las tareas de PLN de respuesta de preguntas en comunidades, identificación del lenguaje nativo, y identificación de la variedad del lenguaje. Las contribuciones de esta tesis ponen de manifiesto el potencial de los grafos de conocimiento como representación transdominio y translingüe del texto y su significado en tareas de PLN y RI. Estas contribuciones han sido publicadas en diversas revistas y conferencias internacionales.
El Processament del Llenguatge Natural (PLN) és un camp de la informàtica, la intel·ligència artificial i la lingüística computacional centrat en les interaccions entre les màquines i el llenguatge dels humans. Un dels seus majors reptes implica capacitar les màquines per inferir el significat del llenguatge natural humà. Amb aquest propòsit, diverses representacions del significat i el context han estat proposades obtenint un rendiment competitiu. No obstant això, aquestes representacions encara tenen un marge de millora en escenaris trans-dominis i trans-llenguatges. En aquesta tesi estudiem l'ús de grafs de coneixement com una representació trans-domini i trans-llenguatge del text i el seu significat. Un graf de coneixement és un graf que expandeix i relaciona els conceptes originals pertanyents a un conjunt de paraules. Les seves propietats s'aconsegueixen gràcies a l'ús com a base de coneixement d'una xarxa semàntica multilingüe d'àmplia cobertura. Això permet tenir una cobertura de centenars de llenguatges i milions de conceptes generals i específics de l'ésser humà. Com a punt de partida de la nostra investigació emprem característiques basades en grafs de coneixement - juntament amb altres tradicionals i meta-aprenentatge - per a la tasca de PLN de classificació de la polaritat mono- i trans-domini. L'anàlisi i conclusions d'aquest treball mostra evidències que els grafs de coneixement capturen el significat d'una forma independent del domini. La següent part de la nostra investigació aprofita la capacitat\hyphenation{ca-pa-ci-tat} de la xarxa semàntica multilingüe i se centra en tasques de recuperació d'informació (RI). Primer proposem un model d'anàlisi de similitud completament basat en grafs de coneixement per a detecció de plagi trans-llenguatge. A continuació, vam millorar aquest model per cobrir paraules fora de vocabulari i temps verbals, i ho apliquem a les tasques trans-llenguatges de recuperació de documents, classificació, i detecció de plagi. Finalment, estudiem l'ús de grafs de coneixement per a les tasques de PLN de resposta de preguntes en comunitats, identificació del llenguatge natiu, i identificació de la varietat del llenguatge. Les contribucions d'aquesta tesi posen de manifest el potencial dels grafs de coneixement com a representació trans-domini i trans-llenguatge del text i el seu significat en tasques de PLN i RI. Aquestes contribucions han estat publicades en diverses revistes i conferències internacionals.
Franco Salvador, M. (2017). A Cross-domain and Cross-language Knowledge-based Representation of Text and its Meaning [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/84285
TESIS
Dobslaw, Felix. "An Adaptive, Searchable and Extendable Context Model,enabling cross-domain Context Storage, Retrieval and Reasoning : Architecture, Design, Implementation and Discussion." Thesis, Mittuniversitetet, Institutionen för informationsteknologi och medier, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-12179.
Full textMediaSense
Bhowmik, Neelanjan. "Recherche multi-descripteurs dans les fonds photographiques numérisés." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1037/document.
Full textContent-Based Image Retrieval (CBIR) is a discipline of Computer Science which aims at automatically structuring image collections according to some visual criteria. The offered functionalities include the efficient access to images in a large database of images, or the identification of their content through object detection and recognition tools. They impact a large range of fields which manipulate this kind of data, such as multimedia, culture, security, health, scientific research, etc.To index an image from its visual content first requires producing a visual summary of this content for a given use, which will be the index of this image in the database. From now on, the literature on image descriptors is very rich; several families of descriptors exist and in each family, a lot of approaches live together. Many descriptors do not describe the same information and do not have the same properties. Therefore it is relevant to combine some of them to better describe the image content. The combination can be implemented differently according to the involved descriptors and to the application. In this thesis, we focus on the family of local descriptors, with application to image and object retrieval by example in a collection of images. Their nice properties make them very popular for retrieval, recognition and categorization of objects and scenes. Two directions of research are investigated:Feature combination applied to query-by-example image retrieval: the core of the thesis rests on the proposal of a model for combining low-level and generic descriptors in order to obtain a descriptor richer and adapted to a given use case while maintaining genericity in order to be able to index different types of visual contents. The considered application being query-by-example, another major difficulty is the complexity of the proposal, which has to meet with reduced retrieval times, even with large datasets. To meet these goals, we propose an approach based on the fusion of inverted indices, which allows to represent the content better while being associated with an efficient access method.Complementarity of the descriptors: We focus on the evaluation of the complementarity of existing local descriptors by proposing statistical criteria of analysis of their spatial distribution. This work allows highlighting a synergy between some of these techniques when judged sufficiently complementary. The spatial criteria are employed within a regression-based prediction model which has the advantage of selecting the suitable feature combinations globally for a dataset but most importantly for each image. The approach is evaluated within the fusion of inverted indices search engine, where it shows its relevance and also highlights that the optimal combination of features may vary from an image to another.Additionally, we exploit the previous two proposals to address the problem of cross-domain image retrieval, where the images are matched across different domains, including multi-source and multi-date contents. Two applications of cross-domain matching are explored. First, cross-domain image retrieval is applied to the digitized cultural photographic collections of a museum, where it demonstrates its effectiveness for the exploration and promotion of these contents at different levels from their archiving up to their exhibition in or ex-situ. Second, we explore the application of cross-domain image localization, where the pose of a landmark is estimated by retrieving visually similar geo-referenced images to the query images
Fülleborn, Alexander [Verfasser]. "Methods to Create, Retrieve and Apply Cross-Domain Problem Solutions : A Problem-Oriented Pattern Management Approach / Alexander Fülleborn." Aachen : Shaker, 2016. http://d-nb.info/1118259440/34.
Full textLee, Tang, and 李唐. "Cross-Domain Image-Based 3D Shape Retrieval by View Sequence Learning." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/sxd2rr.
Full text國立臺灣大學
電機工程學研究所
105
We propose a cross-domain image-based 3D shape retrieval method, which learns a joint embedding space for natural images and 3D shapes in an end-to-end manner. The similarities between images and 3D shapes can be computed as the distances in this embedding space. To better encode a 3D shape, we propose a new feature aggregation method, Cross-View Convolution (CVC), which models a 3D shape as a sequence of rendered views. For bridging the gaps between images and 3D shapes, we propose a Cross-Domain Triplet Neural Network (CDTNN) that incorporates an adaptation layer to match the features from different domains better and can be trained end-to-end. In addition, we speed up the triplet training process by presenting a new fast cross-domain triplet neural network architecture. We evaluate our method on a new image to 3D shape dataset. Experimental results demonstrate that our method outperforms the state-of-the-art approaches in terms of retrieval performance. We also provide in-depth analysis of various design choices to further reduce the memory storage and computational cost.
Books on the topic "Cross-domain retrieval"
Josef, Basl, You Ilsun, Xu Lida, Weippl Edgar, and SpringerLink (Online service), eds. Multidisciplinary Research and Practice for Information Systems: IFIP WG 8.4, 8.9/TC 5 International Cross-Domain Conference and Workshop on Availability, Reliability, and Security, CD-ARES 2012, Prague, Czech Republic, August 20-24, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textStrous, Leon. Internet of Things. Information Processing in an Increasingly Connected World: First IFIP International Cross-Domain Conference, IFIPIoT 2018, Held at the 24th IFIP World Computer Congress, WCC 2018, Poznan, Poland, September 18-19, 2018, Revised Selected Papers. Cham: Springer Nature, 2019.
Find full textJacquemin, Christian, and Didier Bourigault. Term Extraction and Automatic Indexing. Edited by Ruslan Mitkov. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780199276349.013.0033.
Full textBook chapters on the topic "Cross-domain retrieval"
Liu, Chenlu, Xing Xu, Yang Yang, Huimin Lu, Fumin Shen, and Yanli Ji. "Domain Invariant Subspace Learning for Cross-Modal Retrieval." In MultiMedia Modeling, 94–105. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73600-6_9.
Full textSheridan, Páraic, Martin Braschlert, and Peter Schäuble. "Cross-language information retrieval in a Multilingual Legal Domain." In Research and Advanced Technology for Digital Libraries, 253–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0026732.
Full textHu, Conghui, and Gim Hee Lee. "Feature Representation Learning for Unsupervised Cross-Domain Image Retrieval." In Lecture Notes in Computer Science, 529–44. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-19836-6_30.
Full textKluck, Michael, and Fredric C. Gey. "The Domain-Specific Task of CLEF - Specific Evaluation Strategies in Cross-Language Information Retrieval." In Cross-Language Information Retrieval and Evaluation, 48–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44645-1_5.
Full textSacaleanu, Bogdan, and Günter Neumann. "A Cross-Lingual German-English Framework for Open-Domain Question Answering." In Evaluation of Multilingual and Multi-modal Information Retrieval, 328–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74999-8_40.
Full textZhebel, Vladimir, Denis Zubarev, and Ilya Sochenkov. "Different Approaches in Cross-Language Similar Documents Retrieval in the Legal Domain." In Speech and Computer, 679–86. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60276-5_65.
Full textLi, Mingkang, and Yonggang Qi. "XPNet: Cross-Domain Prototypical Network for Zero-Shot Sketch-Based Image Retrieval." In Pattern Recognition and Computer Vision, 394–410. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18907-4_31.
Full textAlthammer, Sophia, Sebastian Hofstätter, and Allan Hanbury. "Cross-Domain Retrieval in the Legal and Patent Domains: A Reproducibility Study." In Lecture Notes in Computer Science, 3–17. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72240-1_1.
Full textFuruya, Takahiko, and Ryutarou Ohbuchi. "Visual Saliency Weighting and Cross-Domain Manifold Ranking for Sketch-Based Image Retrieval." In MultiMedia Modeling, 37–49. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04114-8_4.
Full textGao, Kai, Jian Zhang, Chen Li, Changbo Wang, Gaoqi He, and Hong Qin. "Novel Sketch-Based 3D Model Retrieval via Cross-domain Feature Clustering and Matching." In Artificial Neural Networks and Machine Learning – ICANN 2020, 299–311. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61609-0_24.
Full textConference papers on the topic "Cross-domain retrieval"
Liu, Anan, Shu Xiang, Wenhui Li, Weizhi Nie, and Yuting Su. "Cross-Domain 3D Model Retrieval via Visual Domain Adaption." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/115.
Full textGajic, Bojana, and Ramon Baldrich. "Cross-Domain Fashion Image Retrieval." In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2018. http://dx.doi.org/10.1109/cvprw.2018.00243.
Full textNiu, Hao, Duc Nguyen, Kei Yonekawa, Mori Kurokawa, Chihiro Ono, Daichi Amagata, Takuya Maekawa, and Takahiro Hara. "User-irrelevant Cross-domain Association Analysis for Cross-domain Recommendation with Transfer Learning." In ICMR '23: International Conference on Multimedia Retrieval. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3592571.3592974.
Full textJi, Xin, Wei Wang, Meihui Zhang, and Yang Yang. "Cross-Domain Image Retrieval with Attention Modeling." In MM '17: ACM Multimedia Conference. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3123266.3123429.
Full textXu, Bowen, Zhenchang Xing, Xin Xia, David Lo, Qingye Wang, and Shanping Li. "Domain-specific cross-language relevant question retrieval." In ICSE '16: 38th International Conference on Software Engineering. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2901739.2901746.
Full textLiu, Chenlu, Huimin Lu, Hao Wei, Xing Xu, and Yanli Ji. "Domain separation network for cross-modal retrieval." In ICIMCS'18: The 10th International Conference on Internet Multimedia Computing and Service. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3240876.3240878.
Full textWang, Zhipeng, Hao Wang, Jiexi Yan, Aming Wu, and Cheng Deng. "Domain-Smoothing Network for Zero-Shot Sketch-Based Image Retrieval." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/158.
Full textLiu, Yang, Qingchao Chen, and Samuel Albanie. "Adaptive Cross-Modal Prototypes for Cross-Domain Visual-Language Retrieval." In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021. http://dx.doi.org/10.1109/cvpr46437.2021.01471.
Full textHuang, Xin, Yuxin Peng, and Mingkuan Yuan. "Cross-modal Common Representation Learning by Hybrid Transfer Network." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/263.
Full textRafailidis, Dimitrios, and Fabio Crestani. "Neural Attentive Cross-Domain Recommendation." In ICTIR '19: The 2019 ACM SIGIR International Conference on the Theory of Information Retrieval. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3341981.3344214.
Full text