Academic literature on the topic 'Crops and climate'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Crops and climate.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Crops and climate"
Heffernan, Olive. "Cooling crops." Nature Climate Change 1, no. 902 (January 22, 2009): 14. http://dx.doi.org/10.1038/climate.2009.5.
Full textM, Gidi. "Advances in Genomics: Crops Adapting to Climate Change." Open Access Journal of Microbiology & Biotechnology 8, no. 2 (April 5, 2023): 1–8. http://dx.doi.org/10.23880/oajmb-16000264.
Full textHmielowski, Tracy. "Making Crops Climate Ready." CSA News 64, no. 4 (April 2019): 6–8. http://dx.doi.org/10.2134/csa2019.64.0403.
Full textBanga, Surinder S., and Manjit S. Kang. "Developing Climate-Resilient Crops." Journal of Crop Improvement 28, no. 1 (January 2, 2014): 57–87. http://dx.doi.org/10.1080/15427528.2014.865410.
Full textReilly, John. "Crops and climate change." Nature 367, no. 6459 (January 1994): 118–19. http://dx.doi.org/10.1038/367118a0.
Full textKopeć, Przemysław. "Climate Change—The Rise of Climate-Resilient Crops." Plants 13, no. 4 (February 8, 2024): 490. http://dx.doi.org/10.3390/plants13040490.
Full textSAAB, ANNE. "Climate-Resilient Crops and International Climate Change Adaptation Law." Leiden Journal of International Law 29, no. 2 (April 29, 2016): 503–28. http://dx.doi.org/10.1017/s0922156516000121.
Full textSharafi, Saeed, Mohammad Javad Nahvinia, and Fatemeh Salehi. "Assessing the Water Footprints (WFPs) of Agricultural Products across Arid Regions: Insights and Implications for Sustainable Farming." Water 16, no. 9 (May 6, 2024): 1311. http://dx.doi.org/10.3390/w16091311.
Full textMorton, Lois Wright, and Lori J. Abendroth. "Crops, climate, culture, and change." Journal of Soil and Water Conservation 72, no. 3 (2017): 47A—52A. http://dx.doi.org/10.2489/jswc.72.3.47a.
Full textKuden, A. B. "Climate change affects fruit crops." Acta Horticulturae, no. 1281 (June 2020): 437–40. http://dx.doi.org/10.17660/actahortic.2020.1281.57.
Full textDissertations / Theses on the topic "Crops and climate"
Kambanje, Ardinesh. "Productivity and profitability of different maize varieties and cropping systems used in the smallholder sector of the Eastern Cape Province of South Africa : implication on food security." Thesis, University of Fort Hare, 2018. http://hdl.handle.net/10353/6237.
Full textSchmidt, Holger. "Neue stabile Germylene Ligandeneffekte, Struktur, Reaktivität /." [S.l. : s.n.], 1998. http://catalog.hathitrust.org/api/volumes/oclc/76007677.html.
Full textNg, Wai-yip. "Impact of climatic change during little ice age on agricultural development in north China, 1600-1650 Xiao bing qi qi hou bian qian yu Hua bei nong ye fa zhan : 1600-1650 nian jian de guan cha /." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43209397.
Full textWang, Xuhui. "Impacts of climate change and agricultural managements on major global cereal crops." Electronic Thesis or Diss., Paris 6, 2017. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2017PA066625.pdf.
Full textCroplands accounts for one-fifth of global land surface, providing calories for human beings and altering the global biogeochemical cycle and land surface energy balance. The response of croplands to climate change and intensifying human managements is of critical importance to food security and sustainability of the environment. The present manuscript of thesis utilizes various types of data sources (yield statistics, long-term agrometeorological observations, field warming experiments, data-driven global datasets, gridded historical climate dataset and projected climate change) and also modelling approaches (statistical model vs. process model). It presents a series of detection and attribution studies exploring how crop phenology and crop yield respond to climate change and some management practices at regional and global scales, according to data availability. In Chapter 2, a statistical model is constructed with prefecture-level yield statistics and historical climate observations over Northeast China. There are asymmetrical impacts of daytime and nighttime temperatures on maize yield. Maize yield increased by 10.0±7.7% in response to a 1 oC increase of daily minimum temperature (Tmin) averaged in the growing season, but decreased by 13.4±7.1% in response to a 1 oC warming of daily maximum temperature (Tmax). There is a large spatial variation in the yield response to Tmax, which can be partly explained by the spatial gradient of growing season mean temperature (R=-0.67, P<0.01). The response of yield to precipitation is also dependent on moisture conditions. In spite of detection of significant impacts of climate change on yield variations, a large portion of the variations is not explained by climatic variables, highlighting the urgent research need to clearly attribute crop yield variations to change in climate and management practices. Chapter 3 presents the development of a Bayes-based optimization algorithm that is used to optimize key parameters controlling phenological development in ORCHIDEE-crop model for discriminating effects of managements from those of climate change on rice growth duration (LGP). The results from the optimized ORCHIDEE-crop model suggest that climate change has an effect on LGP trends, but with dependency on rice types. Climate trends have shortened LGP of early rice (-2.0±5.0 day/decade), lengthened LGP of late rice (1.1±5.4 day/decade) and have little impacts on LGP of single rice (-0.4±5.4 day/decade). ORCHIDEE-crop simulations further show that change in transplanting date caused widespread LGP change only for early rice sites, offsetting 65% of climate-change-induced LGP shortening. The primary drivers of LGP change are thus different among the three types of rice. Management is predominant driver of LGP change for early and single rice. This chapter demonstrated the capability of the optimized crop model to represent complex regional variations of LGP. Future studies should better document observational errors and management practices in order to reduce large uncertainties that exist in attribution of LGP change and to facilitate further data-model integration. In Chapter 4, a harmonized data set of field warming experiments at 48 sites across the globe for the four most-widely-grown crops (wheat, maize, rice and soybean) is combined with an ensemble of gridded global crop models to produce emergent constrained estimates of the responses of crop yield to changes in temperature (ST). The new constraining framework integrates evidences from field warming experiments and global crop modeling shows with >95% probability that warmer temperatures would reduce yields for maize (-7.1±2.8% K-1), rice (-5.6±2.0% K-1) and soybean (-10.6±5.8% K-1). For wheat, ST was less negative and only 89% likely to be negative (-2.9±2.3% K-1). The field-observation based constraints from the results of the warming experiments reduced uncertainties associated with modeled ST by 12-54% for the four crops
Champalle, Clara. "Cash crops and climate shocks: flexible livelihoods in Southeast Yunnan, China." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114509.
Full textLe paysage rural de la République Populaire de Chine s'est considérablement transformé depuis la collectivisation dans les années 50 jusqu'aux réformes de dé-collectivisation instauré par Deng Xiaoping en 1979. Au milieu des années 80, chaque ménage rural est redevenu responsable de sa propre production agricole et la sécurité alimentaire semble s'être améliorée, même dans les régions les plus reculées. Pour intensifier la transition agraire et le développement rural, l'état a commencé à la fin des années 90 à subventionner les cultures commerciales au niveau provincial, à travers sa « Stratégie de développement de l'ouest du pays ». L'objectif de ce mémoire est premièrement d'examiner l'importance des cultures commerciales subventionnées par l'état pour les agriculteurs, particulièrement issus des minorités ethniques (Yi, Hmong, Yao, et Zhuang) et de la majorité Han dans la Préfecture de Honghe, Yunnan; et deuxièmement d'évaluer les effets des phénomènes climatiques extrêmes sur leurs moyens d'existence et d'étudier les mécanismes de survie auxquels ils ont recours. Pour remplir cet objectif, j'utilise un cadre théorique incorporant les éléments clés des littératures sur les moyens d'existence durables, la sécurité alimentaire, ainsi que la vulnérabilité et la résilience à la variabilité du climat. Mes méthodes comprennent une analyse statistique des données quantitatives des récents phénomènes climatiques extrêmes dans la région et un travail ethnographique dans quatre cantons de la Préfecture de Honghe, notamment des entrevues non structurées avec les agriculteurs et semi-structurées avec les cadres locaux au cours de l'été 2011. Je constate que les cultures commerciales subventionnées par l'état ne s'accompagnent pas toujours d'une amélioration du capital financier des agriculteurs et que ces cultures sont de plus en plus exposées à de fortes précipitations et d'extrêmes températures, qui réduisent l'accès aux capitaux de subsistance, nécessaire au réinvestissement dans les cultures commerciales. Par conséquent, les agriculteurs développent des stratégies de survie et/ou d'adaptation selon leurs moyens d'existence choisis et le type de phénomènes climatiques, mais sont également affectés par leur emplacement et leur ethnicité. En somme, je remarque que l'accès des agriculteurs aux ressources est essentiellement fonction de trois variables : sociale, temporelle et spatiale ; celles-ci souvent ignorées par les cadres gouvernementaux.
Wang, Xuhui. "Impacts of climate change and agricultural managements on major global cereal crops." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066625/document.
Full textCroplands accounts for one-fifth of global land surface, providing calories for human beings and altering the global biogeochemical cycle and land surface energy balance. The response of croplands to climate change and intensifying human managements is of critical importance to food security and sustainability of the environment. The present manuscript of thesis utilizes various types of data sources (yield statistics, long-term agrometeorological observations, field warming experiments, data-driven global datasets, gridded historical climate dataset and projected climate change) and also modelling approaches (statistical model vs. process model). It presents a series of detection and attribution studies exploring how crop phenology and crop yield respond to climate change and some management practices at regional and global scales, according to data availability. In Chapter 2, a statistical model is constructed with prefecture-level yield statistics and historical climate observations over Northeast China. There are asymmetrical impacts of daytime and nighttime temperatures on maize yield. Maize yield increased by 10.0±7.7% in response to a 1 oC increase of daily minimum temperature (Tmin) averaged in the growing season, but decreased by 13.4±7.1% in response to a 1 oC warming of daily maximum temperature (Tmax). There is a large spatial variation in the yield response to Tmax, which can be partly explained by the spatial gradient of growing season mean temperature (R=-0.67, P<0.01). The response of yield to precipitation is also dependent on moisture conditions. In spite of detection of significant impacts of climate change on yield variations, a large portion of the variations is not explained by climatic variables, highlighting the urgent research need to clearly attribute crop yield variations to change in climate and management practices. Chapter 3 presents the development of a Bayes-based optimization algorithm that is used to optimize key parameters controlling phenological development in ORCHIDEE-crop model for discriminating effects of managements from those of climate change on rice growth duration (LGP). The results from the optimized ORCHIDEE-crop model suggest that climate change has an effect on LGP trends, but with dependency on rice types. Climate trends have shortened LGP of early rice (-2.0±5.0 day/decade), lengthened LGP of late rice (1.1±5.4 day/decade) and have little impacts on LGP of single rice (-0.4±5.4 day/decade). ORCHIDEE-crop simulations further show that change in transplanting date caused widespread LGP change only for early rice sites, offsetting 65% of climate-change-induced LGP shortening. The primary drivers of LGP change are thus different among the three types of rice. Management is predominant driver of LGP change for early and single rice. This chapter demonstrated the capability of the optimized crop model to represent complex regional variations of LGP. Future studies should better document observational errors and management practices in order to reduce large uncertainties that exist in attribution of LGP change and to facilitate further data-model integration. In Chapter 4, a harmonized data set of field warming experiments at 48 sites across the globe for the four most-widely-grown crops (wheat, maize, rice and soybean) is combined with an ensemble of gridded global crop models to produce emergent constrained estimates of the responses of crop yield to changes in temperature (ST). The new constraining framework integrates evidences from field warming experiments and global crop modeling shows with >95% probability that warmer temperatures would reduce yields for maize (-7.1±2.8% K-1), rice (-5.6±2.0% K-1) and soybean (-10.6±5.8% K-1). For wheat, ST was less negative and only 89% likely to be negative (-2.9±2.3% K-1). The field-observation based constraints from the results of the warming experiments reduced uncertainties associated with modeled ST by 12-54% for the four crops
Ozdes, Mehmet. "The effect of climate and aerosol on crop production: a case study of central Asia." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/48997.
Full textNg, Wai-yip, and 吳偉業. "Impact of climatic change during little ice age on agricultural development in north China, 1600-1650." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43209397.
Full textAlmaraz, Suarez Juan Jose. "Climate change and crop production in southwestern Quebec : mitigation and adaptation." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103364.
Full textLes émissions anthropogènes de gaz à effet de serre sont la cause principale de l'augmentation globale des températures. Les changements climatiques vont affecter la production agricole au Canada, et en retour, l'agriculture pourrait limiter les changements climatiques. L'analyse de données historiques du climat et des rendements de maïs, combinés avec des expériences de serre et en champ ont été entreprises pour étudier l'effet de la variabilité et des changements de climat sur le rendement de maïs, l'adaptabilité des systèmes agricoles aux changements climatiques, l'effet du travail du sol sur les émissions de gaz à effet de serre (C02 et N20) associées avec la production de maïs et de soya, et le potentiel des facteurs Nod d'augmenter la biomasse pour limiter les émissions de CO2. L'analyse des données historiques ont démontré qu'au sud-ouest du Québec, la variabilité des rendements de maïs est fortement associée avec les températures de juillet et les précipitations de mai pendant les dernières trois décennies. Les expériences au champ ont démontré que le panic raide, et le sorghum-sudangrass sont les mieux adaptés aux conditions chaudes et sèches. Le semis direct a augmenté les rendements de maïs lorsque les températures printanières étaient plus chaudes que la normale. Les flux de C02 étaient associés avec la température, mais les flux de N20 étaient associés avec les précipitations. Le travail du sol conventionnel (CT) a produit plus d'émissions de CO2 que le semis direct (NT), particulièrement après le disquage au printemps. Les deuxsystèmes ont montré un large pic d'émission de N20 pendant les périodes les pluspluvieuses. Dans le maïs, les pics de N20 ont été détectés après la fertilisation enazote. NT a montré des émissions de N20 plus importantes que CT en productionde maïs, mais CT a montré des flux de N20 plus important que NT en productionde soya. Les facteurs Nod vaporisés sur le soya ont augmenté la photosynthèse etla biomasse sous conditions controllées. Au champ, le rendement a été augmentépar les facteurs Nod sous CT, mais pas sous NT, et la sécheresse a réduit laréponse du soya aux facteurs Nod.
Sundelin, William. "Growing crops or growing conflicts? : Climate variability, rice production and political violence in Vietnam." Thesis, Försvarshögskolan, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:fhs:diva-9757.
Full textThe seminar was held digitally.
Books on the topic "Crops and climate"
N, Singh S. Climate change and crops. Berlin: Springer, 2009.
Find full textFahad, Shah, Osman Sönmez, Shah Saud, Depeng Wang, Chao Wu, Muhammad Adnan, and Veysel Turan. Developing Climate-Resilient Crops. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003109037.
Full textSingh, S. N., ed. Climate Change and Crops. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88246-6.
Full textSaikia, Siddhartha P. Climate change. Dehradun: International Book Distributors, 2010.
Find full textYadav, S. S. Crop adaptation to climate change. Chichester, West Sussex: Wiley-Blackwell, 2011.
Find full textUzoma, Nwajiuba Chinedum, ed. Climate change and adaptation in Nigeria. Weikersheim: Margraf, 2008.
Find full textEitzinger, Josef. Landwirtschaft im Klimawandel: Auswirkungen und Anpassungsstrategien für die Land- und Forstwirtschaft in Mitteleuropa. [Clenze]: Agrimedia, 2009.
Find full textEitzinger, Josef. Landwirtschaft im Klimawandel: Auswirkungen und Anpassungsstrategien für die Land- und Forstwirtschaft in Mitteleuropa. [Clenze]: Agrimedia, 2009.
Find full textMota, Fernando Silveira da. Clima e agricultura no Brasil. Porto Alegre, RS: SAGRA, 1986.
Find full textSingh, Madan Pal. Climate change: Impacts and adaptations in crop plants. New Delhi: Today & Tomorrow's Printers and Publishers, 2011.
Find full textBook chapters on the topic "Crops and climate"
Zohry, Abd El-Hafeez, and Samiha Ouda. "Climate-Resilient Crops." In Climate-Smart Agriculture, 115–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93111-7_6.
Full textAhad, Arzoo, Sami Ullah Jan, Khola Rafique, Sameera Zafar, Murtaz Aziz Ahmad, Faiza Abbas, and Alvina Gul. "Climate Change and Cereal Modeling." In Cereal Crops, 239–72. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003250845-11.
Full textUmesh, M. R., Sangu Angadi, Prasanna Gowda, Rajan Ghimire, and Sultan Begna. "Climate-Resilient Minor Crops for Food Security." In Agronomic Crops, 19–32. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9151-5_2.
Full textOuda, Samiha, and Abd El-Hafeez Zohry. "Climate Extremes and Crops." In Climate-Smart Agriculture, 93–114. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93111-7_5.
Full textDas, Susmita, Adyant Kumar, Manashi Barman, Sukanta Pal, and Pintoo Bandopadhyay. "Impact of Climate Variability on Phenology of Rice." In Agronomic Crops, 13–28. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0025-1_2.
Full textShabir, Sumera, and Noshin Ilyas. "The Possible Influence of Climate Change on Agriculture." In Agronomic Crops, 579–92. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0025-1_27.
Full textNair, Kodoth Prabhakaran. "The CWR of Minor Fruit Crops." In Springer Climate, 79–81. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23037-1_14.
Full textIjaz, Muhammad, Abdul Rehman, Komal Mazhar, Ammara Fatima, Sami Ul-Allah, Qasim Ali, and Shakeel Ahmad. "Crop Production Under Changing Climate: Past, Present, and Future." In Agronomic Crops, 149–73. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9151-5_9.
Full textJamil, Shakra, Rahil Shahzad, Shakeel Ahmad, Zulfiqar Ali, Sana Shaheen, Hamna Shahzadee, Noreen Fatima, et al. "Climate Change and Role of Genetics and Genomics in Climate-Resilient Sorghum." In Developing Climate-Resilient Crops, 111–38. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003109037-6-6.
Full textKhan, Shakeel A., Sanjeev Kumar, M. Z. Hussain, and N. Kalra. "Climate Change, Climate Variability and Indian Agriculture: Impacts Vulnerability and Adaptation Strategies." In Climate Change and Crops, 19–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88246-6_2.
Full textConference papers on the topic "Crops and climate"
Kuznetsova, G. N., and R. S. Polyakova. "PECULIARITIES OF SEED PRODUCTION OF CABBAGE CROPS." In Sustainable Agricultural Development in a Changing Climate. Federal Scientific Rice Centre, 2023. http://dx.doi.org/10.33775/conf-2023-85-89.
Full textMiladinović, Dragana, Ana Marjanović Jeromela, Ankica Kondić-Špika, Goran Bekavac, Sonja Tancic Zivanov, Miroslav Zoric, Sandra Cvejic, et al. "Breeding of climate-smart crops at IFVCNS." In XIth International Congress of Geneticists and Breeders from the Republic of Moldova. Scientific Association of Geneticists and Breeders of the Republic of Moldova, Institute of Genetics, Physiology and Plant Protection, Moldova State University, 2021. http://dx.doi.org/10.53040/cga11.2021.084.
Full text"Evaluating cover crops as a climate change adaptation strategy." In ASABE 1st Climate Change Symposium: Adaptation and Mitigation. American Society of Agricultural and Biological Engineers, 2015. http://dx.doi.org/10.13031/cc.20152144028.
Full textFedorchuk, M. "Prospects for growing niche crops in the south of Ukraine." In international scientific-practical conference. MYKOLAYIV NATIONAL AGRARIAN UNIVERSITY, 2024. http://dx.doi.org/10.31521/978-617-7149-78-0-44.
Full textTangwa, Elvis, Vit Voženílek, Jan Brus, and Vilem Pechanec. "CLIMATE CHANGE AND THE AGRICULTURAL POTENTIAL OF SELECTED LEGUME CROPS IN EAST AFRICA." In GEOLINKS International Conference. SAIMA Consult Ltd, 2020. http://dx.doi.org/10.32008/geolinks2020/b1/v2/02.
Full textCheverdin, A. Yu, Yu I. Cheverdin, and M. Yu Sautkina M.Yu. "DIAZOTROPHIC MICROBIAL PREPARATIONS IN WINTER WHEAT CROPS OF THE CENTRAL CHERNOZEM REGION." In Sustainable Agricultural Development in a Changing Climate. Federal Scientific Rice Centre, 2023. http://dx.doi.org/10.33775/conf-2023-187-189.
Full textHrabovetska, O. A. "PAWPAW, PERSIMMON, UNABI ARE REAL – PROMISING UNCOMMON FRUIT CROPS IN THE SOUTH OF UKRAINE." In CLIMATE-SMART AGRICULTURE: SCIENCE AND PRACTICE. Baltija Publishing, 2023. http://dx.doi.org/10.30525/978-9934-26-389-7-4.
Full text"AgMIP (Crops & Soils)- The crucial role of soil when modeling the impact of climate change on crop production." In ASABE 1st Climate Change Symposium: Adaptation and Mitigation. American Society of Agricultural and Biological Engineers, 2015. http://dx.doi.org/10.13031/cc.20152119457.
Full textVyskub, R. S., V. V. Vashchenko, and O. B. Bondareva. "ADAPTIVE SELECTION OF GRAIN CROPS IN THE CONDITIONS OF THE SOUTH-EASTERN STEPPE OF UKRAINE." In CLIMATE-SMART AGRICULTURE: SCIENCE AND PRACTICE. Baltija Publishing, 2023. http://dx.doi.org/10.30525/978-9934-26-389-7-16.
Full textKoloianidi, N. "Productivity of leguminous crops under conditions of climate change." In international scientific-practical conference. MYKOLAYIV NATIONAL AGRARIAN UNIVERSITY, 2024. http://dx.doi.org/10.31521/978-617-7149-78-0-20.
Full textReports on the topic "Crops and climate"
Tobin, Daniel, Maria Janowiak, David Hollinger, Howard Skinner, Christopher Swanston, Rachel Steele, Rama Radhakrishna, and Allison Chatrchyan. Northeast and Northern Forests Regional Climate Hub Assessment of Climate Change Vulnerability and Adaptation and Mitigation Strategies. USDA Northeast Climate Hub, June 2015. http://dx.doi.org/10.32747/2015.6965350.ch.
Full textKistner-Thomas, Erica. Recent Trends in Climate/Weather Impacts on Midwestern Fruit and Vegetable Production. USDA Midwest Climate Hub, November 2018. http://dx.doi.org/10.32747/2018.6893747.ch.
Full textFalck-Zepeda, José Benjamin, Patricia Biermayr-Jenzano, Maria Mercedes Roca, Ediner Fuentes-Campos, and Enoch Mutebi Kikulwe. Bio-innovations: Genome-edited crops for climate-smart food systems. Washington, DC: International Food Policy Research Institute, 2022. http://dx.doi.org/10.2499/9780896294257_10.
Full textOstoja, Steven, Tapan Pathak, Katherine Jarvis-Shean, Mark Battany, and George Zhuang. Adapt - On-farm changes in the face of climate change: NRCS Area 3. USDA California Climate Hub, April 2018. http://dx.doi.org/10.32747/2018.7444387.ch.
Full textOstoja, Steven, Tapan Pathak, Katherine Jarvis-Shean, and Mark Battany. Adapt - On-farm changes in the face of climate change: NRCS Area 1. USDA California Climate Hub, April 2018. http://dx.doi.org/10.32747/2018.7444389.ch.
Full textOstoja, Steven, Tapan Pathak, Andre S. Biscaro, and Mark Battany. Adapt - On-farm changes in the face of climate change: NRCS area 4. USDA California Climate Hub, April 2018. http://dx.doi.org/10.32747/2018.7435379.ch.
Full textOstoja, Steven, Tapan Pathak, Katherine Jarvis-Shean, Mark Battany, and Andre S. Biscaro. Adapt - On-farm changes in the face of climate change: NRCS Area 2. USDA California Climate Hub, April 2018. http://dx.doi.org/10.32747/2018.7444388.ch.
Full textNoort, M. W. J., and S. Renzetti. Breads from African climate-resilient crops for improving diets and food security. Wageningen: Wageningen Food & Biobased Research, 2023. http://dx.doi.org/10.18174/583371.
Full textSands, Ronald, and Man-Keun Kim. Modeling the Competition for Land: Methods and Application to Climate Policy. GTAP Working Paper, April 2008. http://dx.doi.org/10.21642/gtap.wp45.
Full textConover, Emily, and Adriana Camacho. The Impact of Receiving Price and Climate Information in the Agricultural Sector. Inter-American Development Bank, May 2011. http://dx.doi.org/10.18235/0011202.
Full text