Academic literature on the topic 'Crop residue'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Crop residue.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Crop residue"

1

KUMAR, KULDIP, K. M. GOH, W. R. SCOTT, and C. M. FRAMPTON. "Effects of 15N-labelled crop residues and management practices on subsequent winter wheat yields, nitrogen benefits and recovery under field conditions." Journal of Agricultural Science 136, no. 1 (February 2001): 35–53. http://dx.doi.org/10.1017/s0021859600008522.

Full text
Abstract:
Nitrogen-15 enriched ammonium sulphate was applied to micro-plots in a field in which two leguminous (white clover and peas) and two non-leguminous (ryegrass and winter wheat) crops were grown to produce 15N-labelled crop residues and roots during 1993/94. Nitrogen benefits and recovery of crop residue-N, root-N and residual fertilizer-N by three succeeding winter wheat crops were studied. Each crop residue was subjected to four different residue management treatments (ploughed, rotary hoed, mulched or burned) before the first sequential wheat crop (1994/95) was sown, followed by the second (1995/96) and third wheat crops (1996/97), in each of which residues of the previous wheat crop were removed and all plots were ploughed uniformly before sowing. Grain yields of the first sequential wheat crop followed the order: white clover > peas > ryegrass > wheat. The mulched treatment produced significantly lower grain yield than those of other treatments. In the first sequential wheat crop, leguminous and non-leguminous residues supplied between 29–57% and 6–10% of wheat N accumulated respectively and these decreased with successive sequential crops. Rotary hoed treatment reduced N benefits of white clover residue-N while no significant differences in N benefits occurred between residue management treatments in non-leguminous residues. On average, the first wheat crop recovered between 29–37% of leguminous and 11–13% of non-leguminous crop residues-N. Corresponding values for root plus residual fertilizer-N were between 5–19% and 2–3%, respectively. Management treatments produced similar effects to those of N benefits. On average, between 5 to 8% of crop residue-N plus root and residual fertilizer-N was recovered by each of the second and third sequential wheat crops from leguminous residues compared to 2 to 4% from non-leguminous residues. The N recoveries tended to be higher under mulched treatments especially under leguminous than non-leguminous residues for the second sequential wheat crop but were variable for the third sequential wheat crop. Relatively higher proportions of leguminous residue-N were unaccounted in ploughed and rotary hoed treatments compared with those of mulched and burned treatments. In non-leguminous residue-N, higher unaccounted residue-N occurred under burned (33–44%) compared with other treatments (20–27%).
APA, Harvard, Vancouver, ISO, and other styles
2

Riddle, Rachel N., John O'Sullivan, Clarence J. Swanton, and Rene C. Van Acker. "Crop Response to Carryover of Mesotrione Residues in the Field." Weed Technology 27, no. 1 (March 2013): 92–100. http://dx.doi.org/10.1614/wt-d-12-00071.1.

Full text
Abstract:
Two field residue studies were conducted from 2005 to 2007 in Simcoe, Ontario, Canada, to evaluate the effects of mesotrione soil residues on injury, plant dry weight, and yield of sugar beet, cucumber, pea, green bean, and soybean and to verify the potential of reducing a 2-yr field-residue study (conventional residue carryover) to a 1-yr field study (simulated residue-carryover study) by growing these crops in soil treated with reduced rates of mesotrione applied in the same year. There was a significant difference in mesotrione carryover between 2006 and 2007 and differences between years can be explained by differences in soil pH and soil moisture. The conventional and the simulated residue-carryover studies successfully measured mesotrione persistence and rotational crop sensitivity. Both studies showed that sugar beet was the most-sensitive crop with injury, plant dry weight reduction, and yield loss because of mesotrione residues as high as 100%. Green bean was the next most-sensitive crop to mesotrione residues followed by pea, cucumber, and soybean. The simulated residue-carryover study provided a more-rigorous test of rotational crop sensitivity to mesotrione residues than the conventional residue-carryover study, especially at higher rates for the more-sensitive crops. For the other crops, responses to mesotrione residues were similar between the conventional and simulated residue-carryover studies.
APA, Harvard, Vancouver, ISO, and other styles
3

Jiang, Yongzhong, Valerii Havrysh, Oleksandr Klymchuk, Vitalii Nitsenko, Tomas Balezentis, and Dalia Streimikiene. "Utilization of Crop Residue for Power Generation: The Case of Ukraine." Sustainability 11, no. 24 (December 8, 2019): 7004. http://dx.doi.org/10.3390/su11247004.

Full text
Abstract:
Renewable energy is expected to play a significant role in power generation. The European Union, the USA, China, and others, are striving to limit the use of energy crop for energy production and to increase the use of crop residue both on the field and for energy generation processes. Therefore, crop residue may become a major energy source, with Ukraine following this course. Currently in Ukraine, renewable power generation does not exceed 10% of total electricity production. Despite a highly developed agriculture sector, there are only a small number of biomass power plants which burn crop residues. To identify possibilities for renewable power generation, the quantity of crop residues, their energy potential, and potential electricity generation were appraised. Cluster analysis was used to identify regions with the highest electricity consumption and crop residue energy potential. The major crops (wheat, barley, rapeseed, sunflower, and soybean) were considered in this study. A national production of crop residue for energy production of 48.66 million tons was estimated for 2018. The availability of crop residues was analyzed taking into account the harvest, residue-to-crop ratio, and residue removal rate. The crop residue energy potential of Ukraine has been estimated at 774.46 PJ. Power generation technologies have been analyzed. This study clearly shows that crop residue may generate between 27 and 108 billion kWh of power. We have selected preferable regions for setting up crop residue power plants. The results may be useful for the development of energy policy and helpful for investors in considering power generation projects.
APA, Harvard, Vancouver, ISO, and other styles
4

Burgos, Nilda R., and Ronald E. Talbert. "Weed Control by Spring Cover Crops and Imazethapyr in No-till Southern Pea (Vigna unguiculata)." Weed Technology 10, no. 4 (December 1996): 893–99. http://dx.doi.org/10.1017/s0890037x00040987.

Full text
Abstract:
Studies were conducted at the Vegetable Substation in Kibler, AR, in 1992 and 1993, in the same plots, to evaluate weed suppression by spring-seeded cover crops and to determine the effects of cover crop and imazethapyr on no-till southern pea. A plot without cover, conventionally tilled before planting southern pea, served as control. Weed control treatments, applied as subplots in each cover crop, included a weedy check, handweeded check, and half and full rates of imazethapyr (0.035 and 0.07 kg/ha) followed by sethoxydim (0.22 kg/ha). Biomass of Palmer amaranth 6 WAR without herbicides, was less in Italian ryegrass and sorghum-sudangrass residues than in oat residue and no cover crop. Over the years, Palmer amaranth density increased 333% without cover crops and 28% with cover crops. Rice flatsedge density increased four to five times in oat and sorghum-sudangrass residues but remained the same in Italian ryegrass residue. In general, Italian ryegrass residue suppressed the most weeds. Oat residue was least suppressive. Italian ryegrass and sorghum-sudangrass also reduced southern pea stand. Regardless of cover crop and year, half and full rates of imazethapyr followed by sethoxydim equally reduced density of Palmer amaranth, goosegrass, large crabgrass, southwestern cupgrass, and rice flatsedge compared with the untreated check. Residual control of Palmer amaranth by imazethapyr was higher at the full rate than the reduced rate, regardless of cover crop. Half rate of imazethapyr followed by sethoxydim controlled 94 to 100% of Palmer amaranth, rice flatsedge, large crabgrass, and southwestern cupgrass late in the season, regardless of cover crop in 1992 and 1993. Southern pea yield in untilled plots with cover crops was two to three times lower than yield in plots with preplant tillage and no cover crops mostly because of reduction in crop stand in the presence of cover crops.
APA, Harvard, Vancouver, ISO, and other styles
5

Amgain, Lal, Ajit Sharma, Jagadish Timsina, and Pradeep Wagle. "Water, Nutrient, and Energy-use Efficiencies of No-till Rainfed Cropping Systems with or without Residue Retention in a Semi-Arid Dryland Area." Global Journal of Agricultural and Allied Sciences 1, no. 1 (December 3, 2019): 30–42. http://dx.doi.org/10.35251/gjaas.2019.004.

Full text
Abstract:
No-till rainfed cropping systems are being considered by farmers to make farming more profitable by reducing production costs, thereby enhancing resource-use efficiency. Field studies were conducted at the Indian Agricultural Research Institute (IARI), New Delhi during rainy and winter seasons of 2010-2011 and 2011-2012 to examine consumptive use of water (CW), water-use efficiency (WUE), nutrient uptake and balance, and energy-use efficiency (EUE) of nine diverse cropping systems based on three rainy season crops - pearl millet (Pennisetum glaucum (L.) R. Br.), cluster bean (Cyamopsis tetragonoloba L.), and green gram (Vigna radiata L. Wilczek) followed by three winter crops - wheat (Triticum aestivum L.), chickpea (Cicer arietinum L.), and mustard (Brassica juncea L.) in each of those three rainy season crop planted fields under no-till semi-arid rainfed conditions. Three residue treatments [i.e., no residue, crop residue, and Ipil-ipil {Leucaena leucocephala (Lam) twigs}] were examined for both rainy season and winter crops. Retention of crop residues significantly increased soil moisture, CW, and WUE in all cropping systems. Good growth of mustard, chickpea, and wheat after cluster bean, and a large amount of cluster bean green pods resulted in substantially higher CW and WUE of cluster bean-based systems compared to pearl millet- and green gram-based systems. Crop nutrient uptake increased substantially under crop residue and Leucaena twigs treatments compared to no-residue control plots due to enhanced crop growth and augmentation of nutrients. However, nutrient uptake and apparent nutrient balances varied greatly among cropping systems. Energy input requirement increased by approximately 10 times under crop residue and Leucaena twigs treatments. As a result, net energy balance and EUE were substantially higher for no-residue treatments. Leucaena twigs treatments had higher net energy balance and EUE than crop residue treatments, indicating the importance of leguminous residues in crop production. Results indicate the necessity of exercising optimal balance between retention of crop residues and energy inputs for the long-term soil health and sustainability of cropping systems.
APA, Harvard, Vancouver, ISO, and other styles
6

Hiel, Marie-Pierre, Sophie Barbieux, Jérôme Pierreux, Claire Olivier, Guillaume Lobet, Christian Roisin, Sarah Garré, Gilles Colinet, Bernard Bodson, and Benjamin Dumont. "Impact of crop residue management on crop production and soil chemistry after seven years of crop rotation in temperate climate, loamy soils." PeerJ 6 (May 23, 2018): e4836. http://dx.doi.org/10.7717/peerj.4836.

Full text
Abstract:
Society is increasingly demanding a more sustainable management of agro-ecosystems in a context of climate change and an ever growing global population. The fate of crop residues is one of the important management aspects under debate, since it represents an unneglectable quantity of organic matter which can be kept in or removed from the agro-ecosystem. The topic of residue management is not new, but the need for global conclusion on the impact of crop residue management on the agro-ecosystem linked to local pedo-climatic conditions has become apparent with an increasing amount of studies showing a diversity of conclusions. This study specifically focusses on temperate climate and loamy soil using a seven-year data set. Between 2008 and 2016, we compared four contrasting residue management strategies differing in the amount of crop residues returned to the soil (incorporation vs. exportation of residues) and in the type of tillage (reduced tillage (10 cm depth) vs. conventional tillage (ploughing at 25 cm depth)) in a field experiment. We assessed the impact of the crop residue management on crop production (three crops—winter wheat, faba bean and maize—cultivated over six cropping seasons), soil organic carbon content, nitrate (${\mathrm{NO}}_{3}^{-}$), phosphorus (P) and potassium (K) soil content and uptake by the crops. The main differences came primarily from the tillage practice and less from the restitution or removal of residues. All years and crops combined, conventional tillage resulted in a yield advantage of 3.4% as compared to reduced tillage, which can be partly explained by a lower germination rate observed under reduced tillage, especially during drier years. On average, only small differences were observed for total organic carbon (TOC) content of the soil, but reduced tillage resulted in a very clear stratification of TOC and also of P and K content as compared to conventional tillage. We observed no effect of residue management on the ${\mathrm{NO}}_{3}^{-}$ content, since the effect of fertilization dominated the effect of residue management. To confirm the results and enhance early tendencies, we believe that the experiment should be followed up in the future to observe whether more consistent changes in the whole agro-ecosystem functioning are present on the long term when managing residues with contrasted strategies.
APA, Harvard, Vancouver, ISO, and other styles
7

Oda, Masato. "Dispersion has a large effect (Cohen's d) on crop yield in crop residue application." F1000Research 7 (November 21, 2018): 1831. http://dx.doi.org/10.12688/f1000research.16748.1.

Full text
Abstract:
Background: Crop residue application can maintain soil fertility and sustain agriculture. However, the effects of residue application are unstable because of variable weather conditions and the residual effects of crop residue application. Residue application often reduces crop yields. I tried to clarify effective residue application factors in an environment which was has stable weather conditions and low residual effects. Methods: Majuro atoll, a coral sand atoll near the equator, was selected for the experiment site because of its stable weather and low residual effect of coral sand. A factorial design experiment using sweet corn was conducted based on the following four factors: fungi propagation before application, cutting residue into pieces, dispersion (or accumulation) of applied residue, and placement (on the surface or incorporation) with an equal amount of crop residue. The effects of each factors on the corn yields were evaluated using Cohen’s power analysis. Results: The dispersion showed the largest effect (p = 0.045, Cohen’s d = 1.2), which exceeded the effect of incorporation (p = 0.223, Cohen’s d = 0.7). The interaction of dispersion and incorporation showed a huge effect on corn yield (p = 0.005, Cohen’s d = 4.9). Discussion: The effect of dispersion was not positive but it avoided the negative effects of residue clustering. The toxicity of the plant residue and generation of toxic substances by anaerobic decomposition are widely known. Anaerobic decomposition occurs inside the residue clusters. However, dispersion reduced the toxicity by adsorption in soil and avoiding anaerobic decomposition. Furthermore, incorporation showed an interaction effect, but surface placement did not. Conclusion: The dispersion of crop residue enhanced the positive effect of crop residue incorporation by avoiding the toxicity from crop residue. This finding adds a new viewpoint for the controversy between conventional and conservation agriculture.
APA, Harvard, Vancouver, ISO, and other styles
8

Blackshaw, R. E., and C. W. Lindwall. "Species, herbicide and tillage effects on surface crop residue cover during fallow." Canadian Journal of Soil Science 75, no. 4 (November 1, 1995): 559–65. http://dx.doi.org/10.4141/cjss95-079.

Full text
Abstract:
Fallow continues to be a common agronomic practice on the Canadian prairies but it has been associated with increased soil erosion. Risk of fallow erosion can be reduced by maintaining adequate levels of crop residue on the soil surface. Field experiments were conducted at Lethbridge, Alberta from 1991 to 1993 to determine if commonly grown prairie crops differ in their rates of crop residue degradation during fallow and to assess the effect of herbicides and wide-blade tillage on loss of crop residues. The ranking of crop residue losses during fallow was lentil > canola > rye > barley > wheat > flax. High N content in residues usually increased the rate of biomass loss. Flax straw, perhaps because of its high lignin content, did not follow this pattern and was the most persistent of all crop residues. Up to three applications of the herbicides, glyphosate, paraquat, and 2,4-D, at recommended rates did not alter field degradation of any of these crops. These herbicides maintained greater amounts of anchored and total surface crop residues than wide-blade tillage during both fallow seasons. Results are discussed in terms of crops grown before fallow, weed control during fallow, and maintenance of sufficient surface plant residues to reduce the risk of soil erosion. Key words: Glyphosate, paraquat, 2,4-D, reduced tillage, soil erosion, stubble retention
APA, Harvard, Vancouver, ISO, and other styles
9

Lupwayi, Newton Z., and Yoong K. Soon. "Soil microbial properties during decomposition of pulse crop and legume green manure residues in three consecutive subsequent crops." Canadian Journal of Soil Science 96, no. 4 (December 1, 2016): 413–26. http://dx.doi.org/10.1139/cjss-2016-0039.

Full text
Abstract:
Crop residue decomposition not only is mainly driven by, but also affects, soil microorganisms. However, soil microbial responses to legume crops are usually studied only in one subsequent crop. We compared the soil microbial effects of pea (Pisum sativa L.) and faba bean (Vicia faba L.) pulse crops (grown for seed) with faba green manure (GM) and chickling vetch (Lathyrus sativus L.) GM crops in three subsequent crops. Soil microbial biomass C (MBC), β-glucosidase enzyme activity, and bacterial physiological (C substrate utilization) diversity were measured in the summer (rhizosphere and bulk soil) and fall (bulk soil) in all subsequent crops: wheat (Triticum aestivum L.), canola (Brassica napus L.), and barley (Hordeum vulgare L.). Residues of faba bean (grown for GM, herein called faba GM, or for seed, herein called faba bean) usually resulted in the most soil MBC and β-glucosidase activity relative to the other residues. Faba and vetch GM residues increased bulk soil MBC or β-glucosidase enzyme activity more than pulse crop residues in the first and (or) third subsequent crops. Soil MBC and β-glucosidase activities were often positively correlated with initial crop residue N concentrations and negatively correlated with initial C:N ratios or C concentrations. Bacterial physiological diversity was the least responsive to crop residues and was affected differently by sampling time. β-Glucosidase activity was always greater in the fall after crop harvest than in summer. Therefore, β-glucosidase activity was a more sensitive and consistent biological indicator of crop residue effects, and perhaps soil health, than MBC or bacterial physiological diversity.
APA, Harvard, Vancouver, ISO, and other styles
10

Babu, Subhash, D. S. Rana, G. S. Yadav, Raghavendra Singh, and S. K. Yadav. "A Review on Recycling of Sunflower Residue for Sustaining Soil Health." International Journal of Agronomy 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/601049.

Full text
Abstract:
Modern agriculture is now at the crossroads ecologically, economically, technologically, and socially due to soil degradation. Critical analysis of available information shows that problems of degradation of soil health are caused due to imbalanced, inadequate and promacronutrient fertilizer use, inadequate use or no use of organic manures and crop residues, and less use of good quality biofertilizers. Although sizeable amount of crop residues and manure is produced in farms, it is becoming increasingly complex to recycle nutrients, even within agricultural systems. Therefore, there is a need to use all available sources of nutrients to maintain the productivity and fertility at a required level. Among the available organic sources of plant nutrients, crop residue is one of the most important sources for supplying nutrients to the crop and for improving soil health. Sunflower is a nontraditional oil seed crop produced in huge amount of crop residue. This much amount of crop residues is neither used as feed for livestock nor suitable for fuel due to low energy value per unit mass. However, its residue contains major plant nutrients in the range from 0.45 to 0.60% N, 0.15 to 0.22% P, and 1.80 to 1.94% K along with secondary and micronutrients, so recycling of its residue in the soil may be one of the best alternative practices for replenishing the depleted soil fertility and improving the physical, chemical, and biological properties of the soil in the present era of production. However, some researchers have reported allelopathic effects of sunflower residue on different crops. So, selection of suitable crops and management practices may play an important role to manage the sunflower residue at field level.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Crop residue"

1

Collins, Shane. "Residue composition influences nutrient release from crop residues." University of Western Australia. School of Earth and Geographical Sciences, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0171.

Full text
Abstract:
[Truncated abstract] A greater adoption of stubble retention, minimum-till and no-till farming practices for the purposes of conserving soil, water and fertility requires a greater understanding of the complexity of physical and chemical interactions between the soil and crop residues. There is currently insufficient knowledge to allow reliable predictions of the effects of different residue types in different environments on soil fertility and crop growth, owing to the many residue characteristics and environmental interactions that have been shown to affect decomposition or nutrient release. The role of fibre and nutrient composition in nutrient release from crop residues, and implications for residue management techniques, were studied. Canola, lupin and field pea residues, obtained from farmland in Meckering and Northam, Western Australia, were separated into upper and basal stems, leaves, and siliques or pods. This was done to provide materials with a wide range of chemical and physical characteristics, and also allowed consideration of differential residue management of plant organs, such as comparing harvested canola siliques and retained canola stubble. Pre-treatment by chopping and/or humidification was applied to residues to provide some information about the processes of nutrient release. Residues were subjected to simulated rainfall to assess nutrient leaching from plant material, and placed on soil in pots in constant-temperature glasshouse conditions to assess decomposition. Amounts and rates of change of residue fibre and nutrients were determined throughout leaching and decomposition. Energy Dispersive X-ray (EDX) microanalysis was used to assess the location of diffusible ions in air-dried residues and the effects of humidification on nutrient positioning and release. ... However, the release of calcium and magnesium depended on the decomposition of the more recalcitrant components such as cellulose and lignin, as supported by microscopy results showing changes in nutrient distribution following humidification. The proportionality of amounts of calcium and magnesium leached and released during decomposition is likely to suggest a similarity of chemical form more than similarity of function or position of the two elements. Management of crop residues for maximising and optimising the timing of release of different nutrients will need to take into account the placement of different plant types and parts, particle sizes distribution and pre-treatment of material to efficiently manage short- and long-term soil fertility to sustain crops, particularly on degraded soils. Significant nutrient release of potassium, sulphur and magnesium from crop residues can be achieved from surface placement, with the release of potassium and sulphur managed by modifying residue particle size through appropriate harvesting, ploughing or sowing implement selection. High nutrient uptake crops and plant parts –where they can be economically viable to grow or separated by the harvesting technique – are particularly valuable as sources of nutrients and soil organic matter.
APA, Harvard, Vancouver, ISO, and other styles
2

Myers, Brian. "Variable crop residue management." Thesis, Kansas State University, 2015. http://hdl.handle.net/2097/35271.

Full text
Abstract:
Master of Agribusiness
Department of Agricultural Economics
Jeffery R. Williams
Production agriculture is constantly evolving to become more efficient and productive. Crop residue serves as a valuable source of nutrients for the soil, but it is increasingly abundant with today’s enhanced crop genetics. If new technology can effectively provide a way to micro-manage crop residue levels within a field, the benefits will go beyond soil health. Surplus crop residue can be collected for secondary income while leaving the optimum amounts in the field to maintain the environment and soil health as well as promote future crop growth. The main objective of this study is to create a budget model that will determine the economic impact of crop residue removal on a controlled basis. The goals are to determine crop residue removal practices that are sustainable for the long-term, while also enhancing soil quality and increasing grain yield in future years. A sub-objective is to build a business case for producers to invest in variable crop residue management. The hypothesis presented in this study is that the increased complexity and price of a variable rate system is offset by more supplemental profits, increased crop yields, and better management of soil health and nutrients. The negative perceptions of crop residue removal include the fear of soil erosion or loss of soil organic matter. By developing a budget model that is easy to use, takes advantage of existing field data for inputs, and allows producers the ability to look at their operations on a sub-field level, this study aims to provide the necessary motivation to invest in new technology that will increase their productivity. By entering their site-specific crop residue return rate data into a budget model, along with prices and costs related to combine and auxiliary equipment, corn and corn stover, transportation and logistics, and nutrient replacement, they will come up with a return per acre for both constant rate and variable rate collection. The budget model determines whether it is economically viable to harvest crop residue from a continuous corn rotation at a variable rate across a field, rather than at a constant rate, using a producer’s own specific field data. To validate the concept, data from a joint study between John Deere and Iowa State is entered into the model. Prescriptions for corn stover return rates are provided from the study for pre-defined grid areas. Prescriptions are derived from a combination of data including grain yield, soil loss due to wind and water erosion, climate, topography, and soil sample data at time of planting (Nelson, et al. 2004). The average corn stover removal percentage was less for variable rate collection than constant rate collection, 26.05% to 31.85%. However, the assumption that grain yield and corn stover yield are positively correlated did not prove to be true in this case study. The variable rate plots had a lower average grain yield of 158.84 bushel/acre, compared to 160.46 for the constant rate plots, but they had more total corn stover available and therefore a higher return rate of 3.70 tons/acre, compared to 3.05 for the constant rate plots. This case study illustrates that less corn stover can be returned to the field through constant or variable rate collection while sustaining higher grain yields than a conventional harvest that would return all of the corn stover to the field. This case study demonstrates that variable rate collection can be more expensive than constant rate, but not in every situation. Every unique field site will require a specific crop residue management recommendation that is determined by both economic and environmental factors.
APA, Harvard, Vancouver, ISO, and other styles
3

Ess, Daniel R. "Cover crop residue effects on machine-induced soil compaction." Diss., This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-06062008-164819/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

He, Yuxin. "Crop residue management and its impacts on soil properties." Diss., Kansas State University, 2015. http://hdl.handle.net/2097/19043.

Full text
Abstract:
Doctor of Philosophy
Agronomy
DeAnn R. Presley
Crop residue removal for livestock feeding and biofuel production at large scales must be evaluated to assess impacts on soil productivity and properties. Among all the potential negative impacts, wind erosion is a major concern in the central Great Plains. We conducted an on-farm study from 2011 to 2013 by removing crop residue at five levels (0, 25, 50, 75, and 100%) to determine the effects of crop residue removal on soil wind erosion parameters such as dry aggregate size distribution including soil wind erodible fraction (EF <0.84 mm aggregates), geometric mean diameter (GMD) and geometric standard deviation (GSD), dry aggregate stability, and soil surface roughness. The sub-model of Wind Erosion Prediction System (WEPS) developed by the USDA-ARS, Single-event Wind Erosion Evaluation Program (SWEEP) is a stand-alone companion software package that can be applied to simulate soil loss and dust emission from a single windstorm event. We applied measured data (i.e. EF, GMD, GSD, and roughness) to SWEEP for predicting wind velocity that can initiate wind erosion and soil loss under each crop residue removal condition with wind velocity at 13 m sˉ¹. The threshold wind velocity to initiate wind erosion generally decreased with increase in crop residue removal levels, particularly for residue removal >75%. The total amount of soil loss in 3 hours ranged from about 0.2 to 2.5 kg mˉ² and depends on soil condition and crop residue cover. On the other hand, high-yielding crops can produce abundant crop residue, which then raises the question that if a farmer wants to reduce residue, what could they do without removing it? The application of fertilizer on crop residue to stimulate microbial activity and subsequent decomposition of the residue is often debated. We conducted wheat straw decomposition field experiments under different fertilizer rates and combinations at three locations in western Kansas following wheat harvest in 2011 and 2012. A double shear box apparatus instrumented with a load cell measured the shear stress required to cut wheat straw and photomicrography was used to measure the cross-sectional area of wheat straw after shearing. Total C and N were also analyzed. The fertilizer rate and timing of application during summer 2012 and Fall 2013 at the Hays site had impacts on wheat straw shear stress at break point. Across site years, earlier (fall) fertilizer application generally resulted in lower remaining aboveground biomass as compared to a spring application. Multivariate and linear regressions suggested that N and C:N ratio partially explain the results observed with respect to treatment effects on winter wheat residue decomposition.
APA, Harvard, Vancouver, ISO, and other styles
5

Subedi-Chalise, Kopila. "Impacts of Crop Residue and Cover Crops on Soil Hydrological Properties, Soil Water Storage and Water Use Efficiency of Soybean Crop." Thesis, South Dakota State University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10265200.

Full text
Abstract:

Cover crops and crop residue play a multifunctional role in improving soil hydrological properties, soil water storage and water use efficiency (WUE). This study was conducted to better understand the role of crop residue and cover crop on soil properties and soil water dynamics. The study was conducted at the USDA-ARS North Central Agricultural Research Laboratory, located in Brookings, South Dakota. Two residue removal treatments that include low residue removal (LRR) and high residue removal (HRR) were established in 2000 with randomized complete block design under no-till corn (Zea mays L.) and soybean (Glycine max L.) rotation. In 2005, cover crop treatments which include cover crops (CC) and no cover crops (NCC) were integrated into the overall design. Soil samples were collected in 2014, 2015 and 2016. Data from this study showed that LRR treatment resulted in lower bulk density (BD) by 7 and 9% compared to HRR in 2015 and 2016, respectively, for 0-5 cm depth. Similarly, LRR treatment significantly reduced soil penetration resistance (SPR) by 25% in 0-5 cm depth compared with HRR treatment. In addition to this, LRR treatment significantly increased soil organic carbon (SOC) concentrations and total nitrogen (TN) by 22 and 17%, respectively, in 0-5 cm. Similarly, CC treatment resulted in lower BD and SPR by 7% and 23%, respectively, in 0-5 cm depth in 2015 compared with NCC treatment. The LRR significantly increased soil water infiltration by 66 and 22% compared to HRR in 2014 and 2015, respectively. Similarly, the CC treatment significantly increased infiltration by 82 and 22% compared to the NCC in 2014 and 2015, respectively. The significant impact of a crop residue was observed on soil water retention (SWR) in 2014 and 2015 for the 0-5 cm depth. The LRR and CC treatments increased the soil volumetric moisture content (VMC) and soil water storage (SWS) on the surface 0-5 cm depth. However, the trend was not always significant during the growing season. The CC treatment significantly impacted the soybean yield by 14% and WUE by 13% compared with NCC treatment. Some interaction of residue by cover crops was observed on BD, SPR, VMC, and SWS, which showed that the use of cover crops with LRR can be beneficial in improving the soil properties.

APA, Harvard, Vancouver, ISO, and other styles
6

Isaac, Gura. "Crop rotation and crop residue management effects under no till on the soil quality of two ecotopes in the Eastern Cape, South Africa." Thesis, University of Fort Hare, 2016. http://hdl.handle.net/10353/2934.

Full text
Abstract:
The degradation of soil quality due to undesirable farming practices has reached alarming scales in the Eastern Cape and this has had negative repercussions on soil productivity and the environment in general. There is growing evidence that conservation agriculture (CA) practices involving minimal mechanical disturbance, maintaining permanent surface cover and embracing diverse crop rotations increase soil organic carbon (SOC) and therefore has potential to mitigate soil quality deterioration. A study was carried out at two sites located in two ecotopes to investigate the effects of crop residue retention and crop rotations in a no till system on overall soil quality using the Soil Management Assessment Framework (SMAF) as the soil quality assessment tool. The CA study trials were laid out in 2012 at two different locations, one at the Phandulwazi Agricultural High school within the Phandulwazi Jozini ecotope and the other one at University of Fort Hare Research Farm within the Alice Jozini ecotope. The experiment was laid out as a split-split plot arrangement in a randomized complete block design with three replicates. Tillage treatments were applied on the main plots while crop rotation treatments were applied as subplots. Crop residue retention treatments were applied as sub-sub plots. The rotational treatments were maize-fallow-maize (MFM), maize-fallow-soybean (MFS), maize-wheat-maize (MWM) and maize-wheat-soybean (MWS). The initial assessment of the overall soil quality of the two ecotopes using the SMAF soil quality index (SQI) revealed that the soils at the Alice site were functioning at 80% while the soils at the Phandulwazi site were functioning at 79 percent of their optimum capacity. The slight difference in the soil quality of the two ecotopes could be attributed to their different soil organic C contents where the Alice Jozini ecotope had significantly higher soil organic C contents than the Phandulwazi Jozini ecotope. After 3 years of continuous treatment application, crop residue retention significantly improved most of the measured soil quality parameters. Generally across the sites, more soil organic C, microbial biomass C (MBC), ß-glucosidase (BG) activity, mineral N, extractable P and K, Cu, Zn, Mn, Fe, and macro-aggregates were recorded in treatments where crop residues were retained. Crop rotations alone did not have a significant impact on most of the measured soil quality indicators. The crop rotations influenced significantly the availability of mineral N across the two sites, highlighting the importance of using a legume in rotations on available N for the subsequent crops. Most of the measured soil attributes were not significantly influenced after 3 years of continuously applying combined treatment of CA components. Mineral N (NO3 + NH4), K, Zn and Fe were significantly impacted on by the interactions of CA components at the Phandulwazi site, while N, Cu, Zn and Mn were significantly increased at the Alice site. Low response of SOC to combined CA treatments in the short-term prompted the need to examine treatment effects on individual soil carbon fractions. The interaction of crop rotation and residue management techniques were significant on the fine particulate organic matter – C fractions and microbially respired C. These soil C fractions were more sensitive to short-term treatments of combined CA components than SOC and MBC, therefore they can be used as short-term indicators of CA effects on SOM. Soil organic carbon, MBC, extractable P and K, soil pH, EC, b, AGS (aggregate stability) and BG activity were measured and the Soil Management Assessment Framework (SMAF) used to calculate soil quality index (SQI) values for each treatment. The combination of the crop rotations with crop residue retention showed the potential to significantly improve SQI values in the long term. The highest soil quality improvement at both sites was achieved by the maize-wheat-soybean (MWS) rotation with crop residue retention.
APA, Harvard, Vancouver, ISO, and other styles
7

Battaglia, Martin. "Crop residue management effects on crop production, greenhouse gases emissions, and soil quality in the Mid-Atlantic USA." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/86483.

Full text
Abstract:
Cellulosic biomass-to-bioenergy systems can provide environmental and economic benefits to modern societies, reducing the dependence on fossil-fuels and greenhouse gas emissions while simultaneously improving rural economies. Corn (Zea mays L.) stover and wheat straw (Triticum aestivum L.) residues have particular promise given these crops are widely grown and their cellulosic fractions present a captured resource as a co-product of grain production. Annual systems also offer the ability to change crops rapidly in response to changing market demands. However, concerns exist about residue removal effects on soil health, greenhouse gases emissions and subsequent crop productivity. The carbon footprint and the crop yield productivity and soil health responses resulting from the removal of crop residues has been studied extensively over the last 20 years, but this research has been largely conducted in the Corn Belt. To investigate the impact of crop residue removal in the Mid-Atlantic USA, combinations of corn stover (0, 3.33, 6.66, 10 and 20 Mg ha-1) and wheat straw (0, 1.0, 2.0, and 3.0 Mgha-1) were soil applied in a corn-wheat/soybean (Glycine max L. Merr.) rotation in Virginia's Coastal Plain. Corn stover (0, 3.33, 6.66, 10 and 20 Mg ha-1) was applied in a continuous corn cropping system in the Ridge/Valley province. For each system, residues were applied following grain harvest over two production cycles. Each experiment was conducted as a randomized complete design with four replications. The highest rates of stover retention resulted in greater greenhouse gas emissions in year 1, but not year 2 of these studies and did not affect overall global warming potentials. Stover application also increased soil carbon but had little effect on other measures of soil quality. Stover K levels were greater with high rates of stover retention. Overall, these studies indicate little effect of residue removal or retention (above typical residue production rates) on subsequent crop production, greenhouse gas emissions, or soil health measures in the short term. This study is one of the first to assess residue removal in the Mid-Atlantic USA and is the first study to investigate the impacts that managing more than one crop residue in a multi-crop system. Longer-term research of this type may be warranted both to determine the consequences of residue management and to start building a regionally-specific body of knowledge about these practices.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
8

Burgess, Magdalena S. E. "Crop residue decomposition and nitrogen dynamics in corn under three tillage systems." Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=36879.

Full text
Abstract:
Decomposition and N dynamics of grain-corn residues were investigated in a field study in southwestern Quebec, with particular reference to the roles of different plant parts (stems, leaves etc.) in determining overall residue mass loss and N content. A litterbag study was conducted, with surface and buried placements in plots under three tillage systems (no-till, reduced tillage, and conventional tillage, established five years before litterbag placement). Residue mass loss and N content were monitored over a two-year period. Separate data were obtained for leaves, stems, husks, and cobs. Net values for all residues combined were calculated taking into account initial proportions of each plant part at harvest. Overall estimates were made based on residue depth-distribution typical of each tillage system. A spreadsheet-based model of surface residue mass loss was developed, incorporating litterbag mass and other surface-residue data, in order to determine how well litterbag results predicted surface residue mass loss in the field, and to test alternative assumptions regarding residue decomposition and/or burial. Buried residues lost mass more quickly than surface residues, as expected. Thus residue breakdown would be fastest in a conventional system, slowest under no-till, and intermediate with reduced tillage. Substantial decreases in mass and residue N content occurred between fall placement and first sampling in spring, despite low temperatures for much of this period. Mass loss in the first period was substantial for stems as we as husks and leaves. Cobs decomposed most slowly throughout. Nitrogen dynamics, including effects of depth on residue N content, differed greatly by residue type. All the lower-N residues (cobs, husks, stems) immobilized N at some point. However, during the two-year study, N immobilization by one or more residue types was always counterbalanced or exceeded by N release by other residue, at least for the sampling intervals included. Pa
APA, Harvard, Vancouver, ISO, and other styles
9

Alghamdi, Rashad Saeed. "Nitrogen Mineralization Dynamics of Post Harvest Crop Residue in No-Till Systems." Diss., North Dakota State University, 2020. https://hdl.handle.net/10365/31945.

Full text
Abstract:
In North Dakota, adoption of conservation tillage practices has resulted in an accumulation of crop residue remaining on the soil surface. North Dakota producers receive a nitrogen credit for long-term no-till but due to previous crop residue this credit may not be realistic for providing partial nutrient needs to subsequent crops in a cool environment with a short growing season. Our objectives were to evaluate the N mineralization potential of common crop residues to determine whether crop residue accumulation in no-till systems can provide sufficient nitrogen quantities needed for subsequent crops. Three lab incubation studies were conducted to provide N mineralization insights for individual crop residues, crop residues over several simulated growing seasons, and crop residue in diversified cropping systems. Differences in soil texture, surface application versus incorporation of residue, freeze and thaw cycles and combinations of residues were all factors examined. Results indicated that crop residue decomposition and N release from the residue treatments generally immobilized N but were not significantly different from the bare soil for nearly all studies. The only exception observed was for the forage radish cover crop which showed the potential to improve soil N mineralization in select three-year rotations. Findings of these studies show that most wide C:N ratio crop residues will immobilize soil N in a no-till system under ideal conditions (i.e. moisture, temperature, and residue particle size). These findings suggestion that a fertilizer N credits may require reevaluation and take into consideration soil moisture with validated data to support the fertilizer N credit.
APA, Harvard, Vancouver, ISO, and other styles
10

Adu-Tutu, K. O., W. B. McCloskey, S. H. Husman, P. A. Clay, M. J. Ottman, E. C. Martin, and T. Teegerstrom. "Reduced Tillage and Crop Residue Effects on Cotton Weed Control, Growth and Yield." College of Agriculture, University of Arizona (Tucson, AZ), 2004. http://hdl.handle.net/10150/198156.

Full text
Abstract:
The tillage operations conducted in a barley and cotton double-crop rotation were reduced by eliminating tillage prior to planting cotton, eliminating cultivations for weed control in cotton, and especially by eliminating tillage following cotton prior to planting barley. Data collected in 2002 and 2003 in Coolidge and Marana showed that a weed sensing, automatic spot-spray system reduced the amount of spray volume and herbicide used by 50 to 60%. Data from Maricopa in 2003 indicated that the savings can be much greater (e.g., in a treatment with thick Solum barley cover crop residues) or much less if volunteer grain germinates after grain harvest. Similar weed control was obtained with the weed sensing, automated spot-spray system compared to conventional continuous spray systems for most weed species. At Coolidge in 2002, the minimum tillage treatment with a barley cover crop produced 24% more lint than the conventional tillage system (1089 versus 880 lb/A) because more water was applied in that treatment. In 2003, the minimum tillage treatment yielded 24% less than the conventional tillage treatment (1178 versus 1539 lb/A) due to herbicide injury. There were no differences in cotton yields among the tillage systems at Goodyear in 2002 and 2003. In Marana (2002 and 2003) and Maricopa (2003), there were yield differences between treatments related to planting date, with late-planted cotton yielding less than early-planted cotton. At Marana, the cotton yields of the minimum-till and conventionally tilled treatments were not statistically different. At Maricopa, the early-planted minimum-till cotton yielded less than the early-planted conventionally tilled cotton (956 versus 1141 lb/A). The yield comparisons between conservation tillage and conventional tillage cotton production systems are not yet definitive and more research needs to be conducted. Economic comparisons between productions systems indicated an advantage for conservation/minimum tillage treatments if cotton yields were comparable.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Crop residue"

1

US DEPARTMENT OF AGRICULTURE. USDA crop residue management action plan. [United States]: USDA, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bull, Leonard. Crop residue management and tillage system trends. Washington, DC: U.S. Dept. of Agriculture, ERS, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Great, Plains Residue Management Conference (1994 Amarillo Tex ). A future using residue management: Proceedings : Great Plains Residue Management Conference, August 15-17, 1994, Amarillo, Texas. [United States]: The Council, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bull, Leonard. Residue and tillage systems for field crops. [Washington, DC]: U.S. Dept. of Agriculture, Economic Research Service, Resources and Technology Division, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Galinato, Gerry. Assessment of agricultural crop residue for energy recovery in Idaho. Boise, Idaho: Idaho Dept. of Water Resources, Bureau of Energy Resources, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chuang, Hsin. Determining crop residue type and class using satellite acquired data: A thesis. [West Lafayette, Ind.]: Purdue University, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Drewes, Norbert. Umsatz verschiedener Ernterückstände in einem Bodensäulenversuchssystem: Einfluss auf die organische Bodensubstanz und den Transport zweier Xenobiotika. [Jülich]: Forschungszentrum Jülich, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lamarca, Carlos Crovetto. Stubble over the soil: The vital role of plant residue in soil management to improve soil quality. Madison, WI: American Society of Agronomy, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Erenstein, Olaf C. A. The economics of soil conservation in developing countries: The case of crop residue mulching. Wageningen: Wageningen Universiteit, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hermanson, Ronald E. No-tillage drill design. [Pullman, Wash: Cooperative Extension, College of Agriculture & Home Economics, Washington State University, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Crop residue"

1

Gabrys, Beata, John L. Capinera, Jesusa C. Legaspi, Benjamin C. Legaspi, Lewis S. Long, John L. Capinera, Jamie Ellis, et al. "Crop Residue." In Encyclopedia of Entomology, 1111. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_10094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Reddy, P. Parvatha. "Crop Residue Management." In Sustainable Intensification of Crop Production, 83–92. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2702-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Prasad, Rajendra, and J. F. Power. "Crop Residue Management." In Advances in Soil Science, 205–51. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3030-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Reddy, P. Parvatha. "Crop Residue Management and Organic Amendments." In Agro-ecological Approaches to Pest Management for Sustainable Agriculture, 29–41. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4325-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mathur, Ritu, and V. K. Srivastava. "Crop Residue Burning: Effects on Environment." In Energy, Environment, and Sustainability, 127–40. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3272-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Steiner, Jean L. "Climatic Impacts on Crop Residue Decomposition." In A Spectrum of Achievements in Agronomy, 57–64. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 2015. http://dx.doi.org/10.2134/asaspecpub62.c7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kumar, Parmod, Surender Kumar, and Laxmi Joshi. "Alternative Uses of Crop Stubble." In Socioeconomic and Environmental Implications of Agricultural Residue Burning, 69–89. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2014-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Triplett, G. B., and J. V. Mannering. "Crop Residue Management in Crop Rotation and Multiple Cropping Systems." In ASA Special Publications, 187–206. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 2015. http://dx.doi.org/10.2134/asaspecpub31.c11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Molina, J. A. E., M. J. Shaffer, R. H. Dowdy, and J. F. Power. "Simulation of Tillage Residue and Nitrogen Management." In Soil Erosion and Crop Productivity, 413–30. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015. http://dx.doi.org/10.2134/1985.soilerosionandcrop.c22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blanco-Canqui, Humberto, and Rattan Lal. "Crop Residue Management and Soil Carbon Dynamics." In SSSA Special Publications, 291–309. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2015. http://dx.doi.org/10.2136/sssaspecpub57.2ed.c17.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Crop residue"

1

McMurtrey III, James E., Moon S. Kim, Craig S. T. Daughtry, Lawrence A. Corp, and Emmett W. Chappelle. "Fluorescence of crop residue: postmortem analysis of crop conditions." In AeroSense '97, edited by Ram M. Narayanan and James E. Kalshoven, Jr. SPIE, 1997. http://dx.doi.org/10.1117/12.277601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cai, Wenting, Shuhe Zhao, Zhaohua Zhang, Fanchen Peng, and Jinjie Xu. "Comparison of Different Crop Residue Indices for Estimating Crop Residue Cover Using Field Observation Data." In 2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics). IEEE, 2018. http://dx.doi.org/10.1109/agro-geoinformatics.2018.8476112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kaspar, Tom. "Residue and Compaction Management." In Proceedings of the 1992 Crop Production and Protection Conference. Iowa State University, Digital Press, 1993. http://dx.doi.org/10.31274/icm-180809-444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sadeghi, Hossein, and Mohammad Jafar Bahrani. "New Approach to Prevent Burning Crop Residue by Creating Residue Mulch." In 2009 Second International Conference on Environmental and Computer Science. IEEE, 2009. http://dx.doi.org/10.1109/icecs.2009.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Monty, J. G., M. Crawford, and C. S. T. Daughtry. "Assessing Crop Residue Cover Using Hyperion Data." In IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2008. http://dx.doi.org/10.1109/igarss.2008.4778988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hanna, Mark. "Tillage Equipment Adjustment for Surface Residue." In Proceedings of the 1992 Crop Production and Protection Conference. Iowa State University, Digital Press, 1992. http://dx.doi.org/10.31274/icm-180809-405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Juan Yang. "Crop residue based bioelectricity production prospect in China." In Environment (ICMREE). IEEE, 2011. http://dx.doi.org/10.1109/icmree.2011.5930811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Johnson, Richard. "Residue Management with Chisel-Type Implements." In Proceedings of the First Annual Crop Production and Protection Conference. Iowa State University, Digital Press, 1992. http://dx.doi.org/10.31274/icm-180809-383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hanna, Mark, Don Erbach, Tom Kaspar, Muhammed Iqbal, and Stephen Marley. "Corn Planter Attachment Effects on Soil and Residue." In Proceedings of the 1995 Integrated Crop Management Conference. Iowa State University, Digital Press, 1996. http://dx.doi.org/10.31274/icm-180809-542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hanna, H. Mark, Dwaine S. Bundy, Jeffery C. Lorimor, Steven K. Mickelson, and Stewart W. Melvin. "Manue Application Effects on Residue, Odor, and Placement." In Proceedings of the 1995 Integrated Crop Management Conference. Iowa State University, Digital Press, 1997. http://dx.doi.org/10.31274/icm-180809-569.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Crop residue"

1

Bannari, A., D. Haboudane, H. McNairn, and F. Bonn. Modified Soil Adjusted Crop Residue Index (MSACRI): A new index for mapping crop residue. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2000. http://dx.doi.org/10.4095/219698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Author, Not Given. Multicomponent Harvesting Equipment for Inexpensive Sugars from Crop Residue. Office of Scientific and Technical Information (OSTI), October 2006. http://dx.doi.org/10.2172/942154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

McNairn, H., D. Wood, Q. H. J. Gwyn, R. J. Brown, and F. Charbonneau. Mapping Tillage and Crop Residue Management Practices with RADARSAT. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1998. http://dx.doi.org/10.4095/219178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

McNairn, H., J. B. Boisvert, C. Duguay, E. Huffman, and R J Brown. Investigating the Relationship Between Crop Residue Cover and Radar Backscatter. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1997. http://dx.doi.org/10.4095/218972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

McNairn, H., C. Duguay, B. Brisco, and T. J. Pultz. The effect of soil and crop residue characteristics on polarimetric radar response. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/219791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Clark, Justin, James R. Russell, Douglas Karlen, Darrell Busby, L. James Secor, Brian Peterson, Larry Pellack, Carroll Olsen, and Shawn C. Shouse. Effects of Corn Crop Residue Grazing on Soil Physical Properties and Subsequent Soybean Production in a Corn-Soybean Crop Rotation (A Progress Report). Ames: Iowa State University, Digital Repository, 2001. http://dx.doi.org/10.31274/farmprogressreports-180814-2800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Clark, Justin, James R. Russell, Douglas Karlen, Darrell Busby, L. James Secor, Brian Peterson, Larry Pellack, Carroll Olsen, and Shawn C. Shouse. Effects of Corn Crop Residue Grazing on Soil Physical Properties and Subsequent Soybean Production in a Corn-Soybean Crop Rotation (A Progress Report). Ames: Iowa State University, Digital Repository, 2001. http://dx.doi.org/10.31274/farmprogressreports-180814-2594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ian Bonner and David Muth. Determine metrics and set targets for soil quality on agriculture residue and energy crop pathways. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1129107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

McNairn, H., C. Duguay, J. B. Boisvert, E. Huffman, and B. Brisco. Defining the Sensitivity of Multi-frequency and Multi-polarized Radar Backscatter to Post-Harvest Crop Residue. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2001. http://dx.doi.org/10.4095/219672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Turhollow Jr, Anthony F., Erin Webb, and Shahabaddine Sokhansanj. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues. Office of Scientific and Technical Information (OSTI), December 2009. http://dx.doi.org/10.2172/969956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography