Academic literature on the topic 'Crop protection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Crop protection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Crop protection"
Matthews, G. A. "Crop production and crop protection." Crop Protection 14, no. 8 (December 1995): 689–90. http://dx.doi.org/10.1016/0261-2194(95)90011-x.
Full textRacke, Ken, Pieter Spanoghe, Nathan De Geyter, and Bipul Saha. "Crop Protection Chemistry." Chemistry International 41, no. 4 (October 1, 2019): 53–55. http://dx.doi.org/10.1515/ci-2019-0429.
Full textJamison, Judy. "Crop fungal protection." Nature Biotechnology 18, no. 12 (December 2000): 1233. http://dx.doi.org/10.1038/82314.
Full textAeschlimann, J. P. "Integrated crop protection." Agriculture, Ecosystems & Environment 13, no. 1 (April 1985): 89–92. http://dx.doi.org/10.1016/0167-8809(85)90107-0.
Full textUmaerus, Vilhelm. "Crop rotation in relation to crop protection." Netherlands Journal of Plant Pathology 98, S2 (March 1992): 241–49. http://dx.doi.org/10.1007/bf01974491.
Full textShishatskiy, Oleg N. "Global Crop Protection Industry." Journal of Siberian Federal University. Biology 14, no. 4 (December 2021): 541–49. http://dx.doi.org/10.17516/1997-1389-0371.
Full textHernández-Soto, Alejandro, and Randall Chacón-Cerdas. "RNAi Crop Protection Advances." International Journal of Molecular Sciences 22, no. 22 (November 10, 2021): 12148. http://dx.doi.org/10.3390/ijms222212148.
Full textHicks, Brian. "Future of crop protection." Pesticide Outlook 13, no. 3 (July 5, 2002): 104. http://dx.doi.org/10.1039/b205182f.
Full textMatthews, Graham. "Crop protection in Turkmenistan." Pesticide Outlook 12, no. 4 (November 6, 2001): 149. http://dx.doi.org/10.1039/b106291n.
Full textAbelson, Philip H. "Uncertainties About Crop Protection." Weed Technology 11, no. 3 (September 1997): 629–32. http://dx.doi.org/10.1017/s0890037x00045553.
Full textDissertations / Theses on the topic "Crop protection"
Ashby, Alison Mary. "Agrobacterium tumefaciens : chemotaxis and crop protection." Thesis, Durham University, 1988. http://etheses.dur.ac.uk/6723/.
Full textShi, Xiaoqing. "Biotechnological production of antifungal proteins for crop protection." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671681.
Full textLos hongos patógenos de plantas causan importantes pérdidas en las cosechas, poniendo en peligro la seguridad y calidad alimentaria. Los péptidos antimicrobianos (AMPs) muestran una actividad lítica potente y duradera específicamente frente a microorganismos, por lo que tienen un gran potencial como nuevos fungicidas naturales para el control de los hongos patógenos. Su explotación requiere de sistemas de producción rápidos, eficaces, económicos y seguros. El principal objetivo de este trabajo era desarrollar sistemas de producción sostenibles de AMPs, y su caracterización en el control de infecciones fúngicas para avanzar en su aplicación en la agricultura. Las proteínas antifúngicas (AFPs) secretadas por hongos filamentosos son un grupo de AMPs ricos en cisteínas, muy estables, activos específicamente frente a hongos. En este estudio demostramos que las plantas de Nicotiana bentamiana son una excelente biofactoría de AFPs mediante expresión transitoria usando un nuevo vector derivado del virus de mosaico del tabaco. Utilizando este sistema de producción en plantas, hemos producido eficientemente dos AFPs muy activas frente a hongos fitopatógenos, la AfpA de Penicillium expansum y la AfpB de Penicillium digitatum. Hemos descubierto que el compartimento subcelular donde se acumulan las AFPs tiene un impacto importante en la producción obtenida, probablemente porque su compartimentalización evita la toxicidad hacia las células vegetales. Los valores más altos se obtuvieron cuando las proteínas se acumularon en las vacuolas, alcanzando hasta 0,170 mg/g de hoja en el caso de la proteína más activa AfpA y hasta ocho veces más para la AfpB (1,2 mg/g de hoja). También demostramos que los extractos crudos de plantas que contienen AFP son activos frente a hongos, sin necesidad de purificar las proteínas reduciendo considerablemente el procesamiento del material vegetal y los costes de producción. Por lo tanto, el sistema desarrollado es eficiente para la producción de AFPs, y también es económico y seguro ya que se basa en plantas. Además, hemos desarrollado un sistema alternativo para la producción del péptido antifúngico PAF102 que previament no había podido producirse biotecnológicamente. Este sistema se basa en acumular el péptido en las gotas lipídicas (LDs) mediante la fusión a una proteína oleosina de plantas. Mediante esta estrategia, hemos producido PAF102 en semillas de arroz en cantidades de 20 mg por gramo de semilla. Sin embargo, la producción en semillas es lenta y para acelerar el proceso hemos transferido la tecnología de la fusión a oleosinas de plantas al sistema de Pichia pastoris. Usando este nuevo sistema hemos obtenido rendimientos comercialmente relevantes con producciones de 180 mg/l de cultivo en sólo 4 días. La acumulación de PAF102 en las LDs de las semillas de arroz y de la levadura facilita enormemente su extracción por simple flotación en soluciones densas, permitiendo la recuperación de péptido activo frente a hongos patógenos. Finalmente, hemos demostrado que tanto AfpA y AfpB producidas en plantas, como los extractos de plantas enriquecidos estas proteinas, son eficaces en la prevención de infecciones fúngicas en cultivos económicamente relevantes, tales como la podredumbre gris causada por Botrytis cinerea en hojas y frutos de tomate, el quemado del arroz causado por Magnaporthe oryzae, o las infecciones de las semillas de arroz por Fusarium proliferatum. Nuestros resultados proporcionan un sistema de producción sostenible de AFPs y demuestran su eficacia en la protección de las plantas contra las infecciones fúngicas, apoyando firmemente su uso como "fungicidas verdes" eficaces y respetuosos con el medio ambiente en la protección de cultivos y postcosecha.
Plant diseases caused by pathogenic fungi are responsible of important crop losses endangering food security and safety. Antimicrobial peptides (AMPs), exhibiting potent and durable lytic activity specifically against microorganisms, have a great potential as novel natural fungicides for the control of pathogenic fungi. However, viable exploitation of AMPs requires fast, cost-efficient, and safe production systems. The main goal of this work was to develop a sustainable platform for the production of bioactive AMPs, and to characterize them in the control of fungal infections in plants to advance in their application in agriculture. Antifungal proteins (AFPs) secreted by filamentous fungi are a group of highly stable cysteine-rich AMPs that specifically target fungal cells. In this study, we demonstrate that Nicotiana benthamiana plants are an excellent biofactory for producing AFPs through transient expression using a new vector derived from the tobacco mosaic virus. Using this plant-based production system we efficiently produced two different bioactive AFPs, the Penicillium expansum AfpA and Penicillium digitatum AfpB. We found that the subcellular compartment where AFPs are accumulated has an important impact on protein yield, probably avoiding toxicity towards plant cells. The highest yields were achieved when targeting AFPs to vacuoles, reaching up to 0.170 mg/g of fresh leaves of the highly active AfpA and eight times more of AfpB (1.2 mg/g of leaf). We also show that plant crude extracts containing AFPs are fully active against plant pathogens without requiring further protein purification, thus reducing significantly downstream processing. Therefore, the developed system is efficient for the production of AFPs, and also it is economic and safe since it is based on plants. We also developed an alternative system for the production of the linear PAF102 antifungal peptide that was recalcitrant to be produced in biological systems. This system is based on targeting the peptide to lipid droplets (LDs) through the fusion to a plant oleosin protein. Using this oleosin fusion technology, we produced PAF102 in rice seed LDs, reaching moderate yields of about 20 mg of peptide per gram of grain. Production on rice seeds is long process in order to speed the process, we successfully transferred the plant oleosin fusion technology to the Pichia pastoris system. We produced commercially relevant yields of PAF102 in these yeast LDs, reaching values of 180 mg/l of culture in only 4 days. The accumulation of PAF102 in the LDs of rice seeds and yeast facilitated its downstream extraction and recovery by simple flotation on dense solutions, with the recovered PAF102 being biologically active against pathogenic fungi. Finally, we demonstrate that in planta produced AfpA and AfpB, either purified protein or protein extracts enriched with these two proteins, are efficient in controlling important fungal diseases on economically relevant crops, including Botrytis gray mold disease in tomato leaves and fruits, blast disease in rice plants and Fusarium proliferatum infection in rice seeds. Our results provide a sustainable production system of AFPs, and evidence their efficacy on protecting plants from fungal infection, strongly supporting the use of AFPs as environmental friendly and effective “green fungicides” in crop and postharvest protection.
Universitat Autònoma de Barcelona. Programa de Doctorat en Biologia i Biotecnologia Vegetal
Mahendra, Vidhura. "Selected wavelength spectral filters for horticultural crop protection." Thesis, University of Reading, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412177.
Full textKamaruddin, Rezuwan. "A naturally ventilated crop protection structure for tropical conditions." Thesis, Cranfield University, 1999. http://dspace.lib.cranfield.ac.uk/handle/1826/11975.
Full textSehsah, El-Sayed Mahmoud El-Beily. "Application techniques for biological crop protection in orchards and vineyards." Beuren Stuttgart Grauer, 2005. http://d-nb.info/98987236X/04.
Full textBhuiyan, Md Serajul Islam. "Tri-trophic-level interactions between herbivorous insects and their natural enemies." Thesis, University of Southampton, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295266.
Full textChiarolla, Claudio. "Intellectual property and environmental protection of crop biodiversity under international law." Thesis, Queen Mary, University of London, 2009. http://qmro.qmul.ac.uk/xmlui/handle/123456789/446.
Full textAyre, Kevin. "Evaluation of carabids as predators of slugs in arable land." Thesis, University of Newcastle Upon Tyne, 1995. http://hdl.handle.net/10443/946.
Full textAbukhashim, Nagia K. "Some effects of temperature on the biology of Tetranychus urticae (Koch)(Acarina)." Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295532.
Full textTodd, Catherine. "Investigations into 2,3-dihydroxy acid intermediates on the branched-chain amino acid biosynthetic pathway." Thesis, University of Warwick, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308022.
Full textBooks on the topic "Crop protection"
Deguine, Jean-Philippe, Caroline Gloanec, Philippe Laurent, Alain Ratnadass, and Jean-Noël Aubertot, eds. Agroecological Crop Protection. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1185-0.
Full textDorrance, Michael J. Practical crop protection. Edited by Alberta. Soil and Crop Management Branch. Edmonton, Alta: Alberta Agriculture, Food and Rural Development, 1994.
Find full textLever, Brian George. Crop protection chemicals. New York: Ellis Horwood, 1990.
Find full textSchirmer, Ulrich, and Wolfgang Krämer. Modern crop protection compounds. Weinheim: Wiley-VCH, 2007.
Find full textHedin, Paul A., Julius J. Menn, and Robert M. Hollingworth, eds. Biotechnology for Crop Protection. Washington, DC: American Chemical Society, 1988. http://dx.doi.org/10.1021/bk-1988-0379.
Full textOliver, R., and H. G. Hewitt, eds. Fungicides in crop protection. Wallingford: CABI, 2014. http://dx.doi.org/10.1079/9781780641669.0000.
Full textJeschke, Peter, Matthias Witschel, Wolfgang Krämer, and Ulrich Schirmer, eds. Modern Crop Protection Compounds. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527699261.
Full textKrämer, Wolfgang, Ulrich Schirmer, Peter Jeschke, and Matthias Witschel, eds. Modern Crop Protection Compounds. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527644179.
Full textJ, Attwood P., Davies D. H. K, and British Crop Protection Council, eds. Crop protection handbook: Cereals. Croydon, England: [British Crop Protection Council], 1985.
Find full textElaine, Warrell, ed. The crop protection directory. London: Elaine Warrell, 1988.
Find full textBook chapters on the topic "Crop protection"
Reddy, P. Parvatha. "Crop Protection." In Sustainable Crop Protection under Protected Cultivation, 23–46. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-952-3_3.
Full textPearce, R. Brent, and Dennis R. Keeney. "Crop Protection-Discussion." In International Crop Science I, 135–37. Madison, WI, USA: Crop Science Society of America, 2015. http://dx.doi.org/10.2135/1993.internationalcropscience.c23.
Full textSomasundaram, E., D. Udhaya Nandhini, and M. Meyyappan. "Organic Crop Protection." In Principles of Organic Farming, 165–238. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003260844-7.
Full textDeguine, Jean-Philippe, Toulassi Nurbel, Caroline Gloanec, and Philippe Laurent. "Application of Agroecological Crop Protection to Vegetable Crops: The GAMOUR Experience." In Agroecological Crop Protection, 47–75. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1185-0_2.
Full textGloanec, Caroline, Jean-Philippe Deguine, Didier Vincenot, Philippe Laurent, Maxime Jacquot, and Rachel Graindorge. "Application of Agroecological Crop Protection to Fruit Crops: The BIOPHYTO Experience." In Agroecological Crop Protection, 77–107. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1185-0_3.
Full textKate, Kerry ten. "Crop Protection." In The Commercial use of Biodiversity, 188–227. Routledge, 2019. http://dx.doi.org/10.4324/9780429341540-7.
Full text"Harmonising Control Methods: Mirage and Reality." In Crop Protection, 107–30. CRC Press, 2009. http://dx.doi.org/10.1201/b10767-10.
Full text"Ecological Bases of the Management of Populations." In Crop Protection, 131–52. CRC Press, 2009. http://dx.doi.org/10.1201/b10767-11.
Full text"Habitat Management: The Factor Uniting Agronomy and Ecology." In Crop Protection, 153–76. CRC Press, 2009. http://dx.doi.org/10.1201/b10767-12.
Full text"The New Issues in Crop Protection." In Crop Protection, 27–46. CRC Press, 2009. http://dx.doi.org/10.1201/b10767-6.
Full textConference papers on the topic "Crop protection"
Sarala, Lokireddy, Chinnapothula Swapna, Surapaka Alekhya, and Shaik Nausheen. "Smart Farming Farmguard: Crop Protection System." In 2024 10th International Conference on Advanced Computing and Communication Systems (ICACCS), 1613–16. IEEE, 2024. http://dx.doi.org/10.1109/icaccs60874.2024.10716995.
Full textS P, Smitha, Rakshitha D R, B. Charan Singh, C. H. Vamsi Krishna, Rahul M. Chavan, and M. D. Bhavana. "Integrated Crop Protection Management." In 2024 3rd International Conference for Innovation in Technology (INOCON). IEEE, 2024. http://dx.doi.org/10.1109/inocon60754.2024.10511445.
Full textBoincean, Boris. "Agricultura ecologică în contextul dezvoltării durabile a Republicii Moldova." In Scientific International Symposium "Plant Protection – Achievements and Perspectives". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2023. http://dx.doi.org/10.53040/ppap2023.63.
Full textKarthika, S., Kalyana Rangan V, Aditya K, Anand Anil Kumar, and D. Selvakumar. "IOT BASED CROP PROTECTION SYSTEM." In 2021 6th International Conference on Communication and Electronics Systems (ICCES). IEEE, 2021. http://dx.doi.org/10.1109/icces51350.2021.9489031.
Full textPachlatko, J. "Natural Products in Crop Protection." In The 2nd International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 1998. http://dx.doi.org/10.3390/ecsoc-2-01701.
Full textRyabcev, A. "SPRING RAPESEED UNDER THE PROTECTION OF THE "AUGUST" COMPANY IN THE KRASNOYARSK TERRITORY." In The state and problems of agricultural science in Yenisei Siberia, 173–81. Krasnoyarsk Scientific Research Institute of Agriculture is a separate division of the Federal Research Center KSC SB RAS, 2024. http://dx.doi.org/10.52686/9785605087908_173.
Full textGogul Dev, N. S., K. S. Sreenesh, and P. K. Binu. "IoT Based Automated Crop Protection System." In 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). IEEE, 2019. http://dx.doi.org/10.1109/icicict46008.2019.8993406.
Full textBERNER, Bogusława, and Jerzy CHOJNACKI. "Use of Drones in Crop Protection." In IX International ScientificSymposium "Farm Machinery and Processes Management in Sustainable Agriculture". Departament of Machinery Exploittation and Management of Production Processes, University of Life Sciences in Lublin, 2017. http://dx.doi.org/10.24326/fmpmsa.2017.9.
Full text"5.7 Application Techniques for Crop Protection." In CIGR Handbook of Agricultural Engineering Volume VI: Information Technology . St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2006. http://dx.doi.org/10.13031/2013.21682.
Full textCebanu, Dorin. "Greater soil water harvesting and crop yields with no-till and crop-residue retention." In Scientific International Symposium "Plant Protection – Achievements and Perspectives". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2023. http://dx.doi.org/10.53040/ppap2023.19.
Full textReports on the topic "Crop protection"
Focks, Andreas, Luuk Lageschaar, Peter Leendertse, Roel Helmes, and Johan Bremmer. Environmental Indicator Crop Protection (EICP) : documentation of calculation rules. Wageningen: Wageningen Economic Research, 2023. http://dx.doi.org/10.18174/586066.
Full textWise, Kiersten, Anna Freije, Carl Bradley, Martin Chilvers, Loren Giesler, Daren Mueller, Adam Sisson, Damon Smith, and Albert Tenuta. Crop Protection Network: An Infrastructure for Multi-state Extension Efforts. United States: Crop Protection Netework, March 2017. http://dx.doi.org/10.31274/cpn-20190620-045.
Full textPomeroy, Robert, and Ryan Simkovsky. Integrated Pest Management (IPM) for Early Detection Algal Crop Protection (Final Report). Office of Scientific and Technical Information (OSTI), April 2022. http://dx.doi.org/10.2172/1862344.
Full textNitchenko, L. B., and V. A. Plotnikov. THE SYSTEM OF CHEMICAL CROP PROTECTION AGAINST WEEDS, PATHOGENS AND INSECTSIN THE DATABASE OF RESOURCE SAVING TECHNOLOGIES OF CROP CULTIVATION. ФГБОУ ВО Курская ГСХА, 2018. http://dx.doi.org/10.18411/issn1997-0749.2018-07-07.
Full textTorok, Tamas. Novel enabling technologies of gene isolation and plant transformation for improved crop protection. Office of Scientific and Technical Information (OSTI), February 2013. http://dx.doi.org/10.2172/1149940.
Full textBuddendorf, Bas, Mechteld ter Horst, and Ivo Roessink. Investigating the need for environmental risk assessment of chemical crop protection practices in seaweed. Wageningen: Wageningen Environmental Research, 2021. http://dx.doi.org/10.18174/550814.
Full textEdelman, Meir, and Autar K. Mattoo. The Rapidly-Metabolized Herbicide Binding Protein of the Thylakoids: Relationship to Phytosynthesis and Crop Protection. United States Department of Agriculture, July 1986. http://dx.doi.org/10.32747/1986.7566753.bard.
Full textEdelman, Meir, and Autar Mattoo. The Rapidly-Metabolized Herbicide Binding Protein of the Thylacoids: Relationship to Photosynthesis and Crop Protection. United States Department of Agriculture, February 1993. http://dx.doi.org/10.32747/1993.7603813.bard.
Full textManshanden, Mark, Johan Bremmer, and Hilfred Huiting. Impact assessment of EC 2030 green deal targets for sustainable crop protection in potato production. Wageningen: Wageningen Economic Research, 2023. http://dx.doi.org/10.18174/639892.
Full textEvenhuis, A., and H. T. A. M. Schepers. Efficacy to control potato late blight by applying biological crop protection products : EuroBlight field experiment AGV7716. Wageningen: Stichting Wageningen Research, Wageningen Plant Research, Business Unit Field Crops, 2020. http://dx.doi.org/10.18174/541281.
Full text