Academic literature on the topic 'Crop irrigation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Crop irrigation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Crop irrigation"
Bajwa, M. S., and A. S. Josan. "Effects of Alternating Sodic and Non-sodic Irrigations on the Build-up of Sodium in the Soil and on Crop Yields in Northern India." Experimental Agriculture 25, no. 2 (April 1989): 199–205. http://dx.doi.org/10.1017/s0014479700016707.
Full textHanson, Blaine R., Donald M. May, and Larry J. Schwankl. "Effect of Irrigation Frequency on Subsurface Drip Irrigated Vegetables." HortTechnology 13, no. 1 (January 2003): 115–20. http://dx.doi.org/10.21273/horttech.13.1.0115.
Full textZhao, Q. L., J. N. Zhang, S. J. You, S. H. Wang, and L. N. Wang. "Effect of irrigation with reclaimed water on crops and health risk assessment." Water Supply 6, no. 6 (December 1, 2006): 99–109. http://dx.doi.org/10.2166/ws.2006.965.
Full textRajkanna, U., T. Karthickkumar, L. Jayaraman, and M. Mathankumar. "Senna Crop Irrigation." Research Journal of Pharmacy and Technology 11, no. 6 (2018): 2656. http://dx.doi.org/10.5958/0974-360x.2018.00492.4.
Full textBryla, David R., Thomas J. Trout, and James E. Ayars. "Weighing Lysimeters for Developing Crop Coefficients and Efficient Irrigation Practices for Vegetable Crops." HortScience 45, no. 11 (November 2010): 1597–604. http://dx.doi.org/10.21273/hortsci.45.11.1597.
Full textGOENAGA, R., and H. IRIZARRY. "YIELD OF BANANA GROWN WITH SUPPLEMENTAL DRIP-IRRIGATION ON AN ULTISOL." Experimental Agriculture 34, no. 4 (October 1998): 439–48. http://dx.doi.org/10.1017/s0014479798004062.
Full textSingh, O. P., and P. K. Singh. "Effects of drip and alternate furrow method of irrigation on cotton yield and physical water productivity: A case study from farmers’ field of Bhavnagar district of Gujarat, India." Journal of Applied and Natural Science 13, no. 2 (June 5, 2021): 677–85. http://dx.doi.org/10.31018/jans.v13i2.2696.
Full textWang, Xin Hua, Mei Hua Guo, and Hui Mei Liu. "Research Dry Crop and Irrigation Water Requirement in Environment Engineering." Applied Mechanics and Materials 340 (July 2013): 961–65. http://dx.doi.org/10.4028/www.scientific.net/amm.340.961.
Full textHarding, Keith J., Tracy E. Twine, and Yaqiong Lu. "Effects of Dynamic Crop Growth on the Simulated Precipitation Response to Irrigation*." Earth Interactions 19, no. 14 (November 1, 2015): 1–31. http://dx.doi.org/10.1175/ei-d-15-0030.1.
Full textKassaye, Kassu Tadesse, Wubengeda Admasu Yilma, Mehiret Hone Fisha, and Dawit Habte Haile. "Yield and Water Use Efficiency of Potato under Alternate Furrows and Deficit Irrigation." International Journal of Agronomy 2020 (November 24, 2020): 1–11. http://dx.doi.org/10.1155/2020/8869098.
Full textDissertations / Theses on the topic "Crop irrigation"
Kazemi, Hossein V. "Estimating crop water requirements in south-central Kansas." Thesis, Kansas State University, 1985. http://hdl.handle.net/2097/9859.
Full textRubeiz, I. G., N. F. Oebker, and J. L. Stroehlein. "Vegetable Crop Response to Subsurface Drip Irrigation." College of Agriculture, University of Arizona (Tucson, AZ), 1986. http://hdl.handle.net/10150/214134.
Full textSedibe, Moosa Mahmood. "Optimising water use efficiency for crop production." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53541.
Full textENGLISH ABSTRACT: Poor water management and poor water use efficiency (WUE) have been identified as one of the major problems experienced by vegetable growers in most of the developing countries, including South Africa. This poor management and poor utilization of water have led to a drastic decline in the quality and quantity of available water. In South Africa agriculture uses about 50% of available water. Increasing water demand for domestic, industrial and mining uses, may decrease agriculture's share to less than the current 50%, henceforth, better utilization of this resource is imperative. Selection of a good irrigation system can limit water loss considerably. Some irrigation systems have a potential to save more water than others do. Since irrigation systems affect the WUE of crops, care should be taken when selecting an irrigation system under conditions of limited water quantity. Ebb-and- Flood watering systems have been introduced for effective sub-irrigation and nutrient delivery within closed systems. Such a system was adapted in South Africa, to develop a vegetable production unit for use by families in rural communities, while saving substantial amounts of water. A need to further improve the WUE of this system was subsequently identified. Two studies were conducted at the experimental farm of the University of Stellenbosch (Department of Agronomy). The first trial was conducted under controlled conditions in a glasshouse, and the second under open field conditions. In the first trial, Beta vulgaris (Swiss chard) and Amaranthus spp. ('Imbuya') were grown in two root media; gravel and pumice. In addition, an 'Ebb-and-Flood' and a 'Constant level' system were used with nutrient solutions at two electrical (EC) conductivity levels 1.80 and 3.60 mS cm-I. The results of this (2x2x2x2) factorial experiment indicated that a combination of the 'Ebb-and-Flood' system with gravel as a root medium produced the best results at a low EC, when 'imbuya' was used. A high total WUE was found with 'imbuya', (7.35 g L-I) at EC 1.80 mS cmicompared to a relatively low WUE of 5. 90 g L-I when the 3.60 mS cm-I nutrient solution was used. In the second trial, 'Imbuya's' foliage dry mass, leaf area and WUE was evaluated under field conditions at the Stellenbosch University experimental farm, during the summer of2002. The experimental farm (33°55'S, 18°52'E) is situated in the cooler coastal wine grape-producing region of South Africa with a relatively high annual winter rainfall. This trial was conducted on an alluvial soil, with clay content of 25% and a pH of 5.9 (KC!). A closed 'Ebb-and-Flood' system was compared with two open field irrigation systems ('Drip' and 'Flood') using nutrient solutions at two electrical conductivity levels (1.80 and 3.60 mS cm-i) in all three cases. Foliage dry mass, leaf area as well as WUE was best with 'Drip' irrigation, when a nutrient solution with an electrical conductivity of 3.60 mS cm-i was used. In spite of the fact that additional ground water was available for the soil grown 'Drip' and 'Flood' treatments, the 'Ebb-and-Flood' system outperformed the 'Flood' treatment, especially when the nutrient solution with an EC of 3.6 mS cm-i was used. Insufficient root aeration in the flooded soil could have been a contributing factor. The fact that the 'Ebb-and-Flood' and 'Drip' systems gave the best results when the high EC solution was used to fertigate the plants, may indicate that the plants could have hardened due to the mild EC stress, better preparing them to adapt to the extreme heat that was experienced in the field.
AFRIKAANSE OPSOMMING: Swak: bestuur van water en 'n swak: water-gebruik-doeltreffendheid (WOD) is as een van die belangrikste probleme geïdentifiseer wat deur groente produsente in die meeste ontwikkelende lande, insluitend Suid-Afrika, ervaar word. Hierdie swak bestuur en benutting van water het daartoe bygedra dat 'n drastiese afname in die kwaliteit asook in die kwantiteit van beskikbare water ervaar word. In Suid-Afrika gebruik die landbou-sektor ongeveer 50% van die beskikbare water. Toenemende water behoeftes vir huisgebruik, industrieë en die mynbou mag hierdie 50% aandeel van die landbou sektor laat krimp. Beter benutting van hierdie skaars hulpbron is dus noodsaaklik. Die keuse van goeie besproeiingsisteme mag waterverliese merkbaar beperk aangesien sekere sisteme se water-besparingspotensiaal beter as ander is. Aangesien besproeiingstelsels die WOD van gewasse beïnvloed, is spesiale sorg nodig waar 'n besproeiingstelsel onder hierdie toestande van beperkte waterbronne gekies moet word. 'Ebb-en-Vloed' sisteme kan aangewend word om water en voedingselemente van onder in 'n wortelmedium te laat opstoot en in 'n geslote sisteem te laat terugdreineer. So 'n sisteem is in Suid-Afrika ontwikkel waarmee groente vir families in landelike gebiede geproduseer kan word terwyl water bespaar word. 'n Behoefte om die WOD van hierdie produksiesisteem verder te verbeter is egter geïdentifiseer. Twee ondersoeke is by die Universiteit van Stellenbosch se proefplaas (Departement Agronomie) gedoen. Die eerste proef is onder beheerde omgewingstoestande in 'n glashuis uitgevoer en die tweede onder veld toestande. In die eerste proef is Beta vulgaris (Snybeet) en Amaranthus spp. ('Imbuya') in twee tipes wortelmedia; gruis en puimsteen verbou. 'n 'Ebb-en-Vloed' asoook 'n 'Konstante vlak' besproeiingsisteem is gebruik terwyl voedingsoplossings ook by twee peile van elektriese geleiding (EC) teen 1.80 en 3.60 mS cm-I toegedien is. Die resultate van hierdie (2x2x2x2) fakroriaal eksperiment het aangetoon dat 'n kombinasie van die 'Ebb-en-Vloed' sisteem met gruis as 'n wortelmedium die beste resultate teen 'n lae EC lewer waar 'imbuya' gebruik is. Die WOD met 'imbuya' was hoog (7.35 g L-1) by 'n EC van 1.80 mS cm-I, vergeleke met 'n relatief lae WOD van 5. 90 g L-1 waar die 3.60 mS cm-I voedingsoplossing gebruik is. In die tweede proef is 'Imbuya' se droë blaarmassa, blaar oppervlakte en WOD onder veldtoestande op die Universiteit van Stellenbsoch se proefplaas in die somer van 2002 ge-evalueer. Die proefplaas (33°55'S, 18°52'E) is in die koeler kusstreke van die wyndruif produksiegebied in die winterreëngebied van Suid-Afrika geleë. Hierdie proef is op alluviale grond met 25% klei en 'n pH van 5.9 (KCi) uitgevoer. 'n Geslote 'Ebb-en-Vloed' sisteem is met twee veld-besproeiingsisteme vergelyk ('Drup' en 'Vloed') terwyl voedingsoplossings teen twee peile van elektriese geleiding (1.80 en 3.60 mS cm-I) in al drie gevalle gebruik is. Blaar droëmassa, blaaroppervlakte asook die WGD was die beste met 'Drup' besproeiing waar die EC van die voedingsoplossing 3.60 mS cm-I was. Ten spyte van die feit dat ekstra grondwater vir die 'Drup' and 'Vloed' behandelings beskikbaar was, het die 'Ebben- Vloed' stelsel beter as die 'Vloed' behandeling gedoen veral waar die voedingsoplossing se EC 3.6 mS cm-I was. Swak wortelbelugting was waarskynlik die rede waarom vloedbesproeiing swak produksie gelewer het. Die feit dat die 'Drup' en die 'Ebb-en-Vloed' behandelings in die veldproef die beste gedoen het waar die EC hoog was, mag moontlik met die gehardheid van die plante verband hou wat aan ekstreem warm en dor toestande blootgestel was.
Watson, J., and M. Sheedy. "Crop Water Use Estimates." College of Agriculture, University of Arizona (Tucson, AZ), 1995. http://hdl.handle.net/10150/210312.
Full textHusaker, Douglas, and Dale Bucks. "Crop Yield Variability in Irrigated Wheat." College of Agriculture, University of Arizona (Tucson, AZ), 1986. http://hdl.handle.net/10150/200484.
Full textIsmail, El-Sayed El-Shafei. "Computer simulation of crop response to irrigation accounting for salinity." Thesis, University of Newcastle Upon Tyne, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278807.
Full textKhandker, Md Humayun Kabir. "Crop growth and water-use from saline water tables." Thesis, University of Newcastle Upon Tyne, 1994. http://hdl.handle.net/10443/580.
Full textLena, Bruno Patias. "Crop evapotranspiration and crop coefficient of jatropha from first to fourth year." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/11/11152/tde-06012017-111443/.
Full textA determinação de coeficiente de cultivo (Kc) com metodologia adequada é essencial para quantificar o consumo hídrico de cultivos em diferentes regiões. Valores de Kc do pinhão-manso (Jatropha curcas L.) ainda não foram determinados e essa informação é muito importante para auxiliar o manejo de irrigação de maneira adequada. O objetivo desse estudo foi determinar a evapotranspiração (ETc) e Kc do 1º ao 4º ano de cultivo do pinhão-manso, e correlacionar Kc com o índice de área foliar (IAF) e a soma da unidade térmica (SUT). O experimento foi realizado de março de 2012 à agosto de 2015 na Escola Superior de Agricultura \"Luiz de Queiroz\" (ESALQ)/Universidade de São Paulo (USP), na cidade de Piracicaba, SP, Brasil. O experimento foi divido nos tratamentos irrigados por pivô central, gotejamento e sem irrigação. Foram utilizados dois lisímetros de pesagem (12 m2 de superfície em cada lisímetro) por tratamento para realizar a determinação de ETc (uma planta por lisímetros). A evapotranspiração de referência (ET0) foi determinado pelo método de Penman-Monteith a partir de dados meteorológicos coletados na estação meteorológica localizada ao lado do experimento. Valores diários de Kc foram determinados nos tratamentos irrigados pela razão entre ETc e ET0 (Kc=ETc/ET0). IAF foi determinado utilizando o equipamento LAI-2200 Plant Canopy Analyzer, que foi previamente calibrado para adequar as características do dossel do pinhão-manso. Em todos os anos avaliados, o IAF foi quase zero durante o início do período vegetativo, aumentando os valores conforme a planta começou a se desenvolver até atingir valores máximos durante o período produtivo, decrescendo os valores até zero no estádio de desenvolvimento de senescência foliar. A variação anual de ETc no 2º, 3º e 4º ano foi muito similar, explicado pelos diferentes períodos de desenvolvimento da cultura e a variação de IAF no ano. No 1º ano, Kc foi 0,47 para os dois tratamentos irrigados. No 2º, 3º e 4º ano, Kc variou de 0,15 a 1,38 no tratamento irrigado por pivô central e de 0,15 a 1,15 no tratamento irrigado por gotejamento. A média dos valores de Kc no 2º, 3º e 4º ano durante os períodos vegetativos e produtivos foi de 0,77, 0,93 e 0,82 no tratamento irrigado por pivô central, respectivamente, e 0,69, 0,79 e 0,74 no tratamento irrigado por gotejamento, respectivamente. A relação entre Kc e IAF mostrou, para o tratamento irrigado por pivô central, um ajuste logaritmo com coeficiente de determinação (R2) e somatória do erro médio ao quadrado (SEMQ) de 0,7643 e 0,334, respectivamente, e 0,8443 e 0,2079 para o tratamento irrigado por gotejamento, respectivamente. Nos três anos analisados, Kc correlacionado com SUT mostrou o melhor ajuste à equação polinomial de 2ª ordem para os dois tratamentos.
Upendram, Sreedhar. "Irrigation scheduling, crop choices and impact of an irrigation technology upgrade on the Kansas High Plains Aquifer." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1423.
Full textZeywar, Nadim Shukry. "Water use and crop coefficient determination for irrigated cotton in Arizona." Diss., The University of Arizona, 1992. http://hdl.handle.net/10150/185887.
Full textBooks on the topic "Crop irrigation"
Kirda, C., P. Moutonnet, C. Hera, and D. R. Nielsen, eds. Crop Yield Response to Deficit Irrigation. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4752-1.
Full textSomani, L. L. Crop production with saline water. Bikaner: Agro Botanical Publishers (India), 1991.
Find full textCuenca, Richard H. Oregon crop water use and irrigation requirements. Corvallis, Or: Water Resources Engineering Team, Oregon State University, 1992.
Find full textPongput, Kobkiat. Scheduling model for crop-based irrigation operations. Lahore: Pakistan National Program, International Irrigation Management Institute, 1998.
Find full textD, Rhoades J. The use of saline waters for crop production. Rome: Food and Agriculture Organization of the United Nations, 1992.
Find full textRayachaudhuri, Sachidulal. Impact of urban wastewater irrigation on soil and crop. Bhubaneswar: Directorate of Water Management, Indian Council of Agricultural Research, 2014.
Find full text"International Workshop on Crop and Forage Production Using Saline Waters in Dry Areas" (2006 University of Birjand). Crop and forage production using saline waters. Edited by Kafi M, Khan M. Ajmal, University of Birjand, and Centre for Science and Technology of the Non-Aligned and Other Developing Countries. Delhi: Daya Pub. House, 2008.
Find full textWestcot, D. W. Quality control of wastewater for irrigated crop production. Rome: Food and Agriculture Organization of the United Nations, 1997.
Find full textLearning, Alberta Alberta. Irrigated field crop production technician. Edmonton]: Alberta Learning, 2000.
Find full textPanabokke, C. R. Irrigation management for crop diversification in Sri Lanka: A synthesis of current research. Colombo, Sri Lanka: International Irrigation Management Institute, 1989.
Find full textBook chapters on the topic "Crop irrigation"
Plaut, Z., and A. Meiri. "Crop Irrigation." In Advanced Series in Agricultural Sciences, 47–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78562-7_3.
Full textWaller, Peter, and Muluneh Yitayew. "Crop Evapotranspiration." In Irrigation and Drainage Engineering, 89–104. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-05699-9_6.
Full textReddy, P. Parvatha. "Micro Irrigation." In Sustainable Intensification of Crop Production, 223–39. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2702-4_15.
Full textReddy, P. Parvatha. "Deficit Irrigation." In Sustainable Intensification of Crop Production, 241–52. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2702-4_16.
Full textReddy, P. Parvatha. "Supplemental Irrigation." In Sustainable Intensification of Crop Production, 253–65. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2702-4_17.
Full textFereres, Elías, and Margarita García-Vila. "Irrigation Management for Efficient Crop Production." In Crop Science, 345–60. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-8621-7_162.
Full textFereres, Elías, and Margarita García-Vila. "Irrigation Management irrigation management for Efficient Crop Production irrigation management for efficient crop production." In Encyclopedia of Sustainability Science and Technology, 5619–33. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_162.
Full textFereres, Elías, and Margarita García-Vila. "Irrigation Management irrigation management for Efficient Crop Production irrigation management for efficient crop production." In Sustainable Food Production, 1035–49. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5797-8_162.
Full textDunham, R. J. "Water use and irrigation." In The Sugar Beet Crop, 279–309. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-009-0373-9_8.
Full textBazza, M. "Improving irrigation management practices with water-deficit irrigation." In Crop Yield Response to Deficit Irrigation, 49–70. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4752-1_4.
Full textConference papers on the topic "Crop irrigation"
Sangster, Nadine, Aneil Ramkhalawan, Aatma Maharajh, Jorrel Bisnath, Edward Cumberbatch, Ronnie Bickramdass, David Edwards, and Prakash Persad. "SMART IRRIGATION ESTIMATOR." In International Conference on Emerging Trends in Engineering & Technology (IConETech-2020). Faculty of Engineering, The University of the West Indies, St. Augustine, 2020. http://dx.doi.org/10.47412/fsnx6661.
Full textBhaskar, Lala, Barkha Koli, Punit Kumar, and Vivek Gaur. "Automatic crop irrigation system." In 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions). IEEE, 2015. http://dx.doi.org/10.1109/icrito.2015.7359336.
Full textHazman, Maryam. "Crop irrigation schedule expert system." In 2015 13th International Conference on ICT and Knowledge Engineering (ICT & Knowledge Engineering 2015). IEEE, 2015. http://dx.doi.org/10.1109/ictke.2015.7368475.
Full textBellvert, J., P. J. Zarco-Tejada, J. Girona, V. González-Dugo, and E. Fereres. "A tool for detecting crop water status using airborne high-resolution thermal imagery." In SUSTAINABLE IRRIGATION 2014. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/si140031.
Full textHanson, B., and D. May. "Evapotranspiration, yield, crop coefficients, and water use efficiency of drip and furrow irrigated processing tomatoes." In SUSTAINABLE IRRIGATION 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/si060041.
Full textvan der Stoep, I., and N. Benadé. "Development of a crop water use module for the WAS program to determine scheme-level irrigation demand." In SUSTAINABLE IRRIGATION 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/si060171.
Full textThirrunavukkarasu, R. R., T. Meeradevi, S. Ganesh Prabhu, J. Arunachalam, P. Manoj kumar, and R. Prasath. "Smart Irrigation And Crop Protection Using Arduino." In 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE, 2021. http://dx.doi.org/10.1109/icaccs51430.2021.9441867.
Full textRamos, J. G., J. A. Kay, C. R. Cratchley, M. A. Casterad, J. Herrero, R. López, A. Martínez-Cob, and R. Domínguez. "Crop management in a district within the Ebro River Basin using remote sensing techniques to estimate and map irrigation volumes." In SUSTAINABLE IRRIGATION 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/si060351.
Full text"Review of Turfgrass Evapotranspiration and Crop Coefficients." In 2015 ASABE / IA Irrigation Symposium: Emerging Technologies for Sustainable Irrigation - A Tribute to the Career of Terry Howell, Sr. Conference Proceedings. American Society of Agricultural and Biological Engineers, 2015. http://dx.doi.org/10.13031/irrig.20152145395.
Full textSokol, Julia, Fiona Grant, Carolyn Sheline, and Amos Winter. "Development of a System Model for Low-Cost, Solar-Powered Drip Irrigation Systems in the MENA Region." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-86297.
Full textReports on the topic "Crop irrigation"
Knight, Lynn, and Suzy Hodgson. Irrigation Pays in Protecting Vegetable Crop Revenues in the Northeast U.S. USDA Northeast Climate Hub, September 2017. http://dx.doi.org/10.32747/2017.6956538.ch.
Full textSchattman, Rachel, and Joshua Faulkner. How much is enough? Dialing in irrigation on Northeast diversified vegetable farms. USDA Northeast Climate Hub, February 2019. http://dx.doi.org/10.32747/2019.6848335.ch.
Full textRagasa, Catherine, Kristi Mahrt, Zin Wai Aung, Isabel Lambrecht, and Jessica Scott. Gender, crop diversification, and nutrition in irrigation catchment areas in the central dry zones in Myanmar: Implications for agricultural development support. Washington, DC: International Food Policy Research Institute, 2020. http://dx.doi.org/10.2499/p15738coll2.133802.
Full textSalazar, Lina, Ana Claudia Palacios, Michael Selvaraj, and Frank Montenegro. Using Satellite Images to Measure Crop Productivity: Long-Term Impact Assessment of a Randomized Technology Adoption Program in the Dominican Republic. Inter-American Development Bank, September 2021. http://dx.doi.org/10.18235/0003604.
Full textAlemu, Dawit, and Tirhas Kinfe. Responses of Rice Farmers Engaged in Vegetable Production: Implications of the Collapse of Vegetable Prices in the Fogera Plain. Institute of Development Studies (IDS), July 2021. http://dx.doi.org/10.19088/apra.2021.017.
Full textTerry Brown, Jeffrey Morris, Patrick Richards, and Joel Mason. Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/1007996.
Full textShallow ground-water quality beneath row crops and orchards in the Columbia Basin Irrigation Project area, Washington. US Geological Survey, 1998. http://dx.doi.org/10.3133/wri974238.
Full text