Academic literature on the topic 'Crop and pasture protection (incl. pests, diseases and weeds)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Crop and pasture protection (incl. pests, diseases and weeds).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Crop and pasture protection (incl. pests, diseases and weeds)"

1

Leathwick, D. M. "Applied ecology of the Tasmanian lacewing Micromus tasmaniae Walker (Neuroptera : Hemerodiidae)." Lincoln College, University of Canterbury, 1989. http://hdl.handle.net/10182/1044.

Full text
Abstract:
The Tasmanian lacewing (Micromus tasmaniae Walker) is one of the most common aphid predators occurring in lucerne crops in New Zealand. A comparison of sampling techniques, and the output from a simulation model, suggest that the abundance of this lacewing may have been significantly underestimated in the past. Although the occurrence of aphid predators was erratic M. tasmaniae occurred more often and in far greater numbers (up to 100 m⁻²) than any other predator species. A simulation model for lacewing development in the field indicated that the large adult populations which occurred could be accounted for on the basis of reproductive recruitment. Independent evidence that immigration was not involved in the occurrence of these large populations was gathered using directional flight traps around the field perimeter. The major factors influencing lacewing population dynamics were the availability of aphid prey and, in the autumn, parasitism. Otherwise, survival of all life-histoty stages was high with no evidence of egg or larval cannibalism. Several instances of high lacewing mortality were identified by the model and the lack of any obvious cause for these highlights inadequacies in the understanding of lacewing bionomics. The model, which used a linear relationship (day-degrees) between development and temperature, was incapable of accurately predicting lacewing emergence under field temperatures which fluctuated outside the linear region of the development rate curve. Temperature thresholds and thermal requirements estimated under fluctuating temperatures similar to those in the field produced almost identical model output to those estimated under constant temperatures in the laboratory. Prey species was capable of influencing the rate of lacewing development. M. tasmaniae has the attributes necessary to produce large populations in the short time available between lucerne harvests. The asymptote of the functional response curve is low but the efficiency at converting aphids to eggs is high. Therefore, the lacewing is able to attain maximun reproductive output at low prey densities. A low temperature threshold for development (4-5° C), rapid development and short preoviposition period results in a short generation time (49 days at 15° C). Long adult life, high fecundity and the absence of any form of estivation or diapause, results in complete overlap of generations and multiple generations per year. M. tasmaniae's role as an aphid predator is restricted by its low appetite for prey and by the lucerne management regime currently practiced in New Zealand. Because it consumes relatively few aphids per day the lacewing's ability to destroy large aphid populations is limited. However, this may be offset by its ability to attack aphids early in the aphid population growth phase, and by the large numbers of lacewings which may occur. Under the present lucerne management schemes the large lacewing populations which do occur are forced out of the fields, or die, following harvest. A number of management options for increasing the lacewings impact as an aphid predator are briefly discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Whelan, Helen G. "The effect of crop yield potential on disease yield loss relationships in barley (Hordeum vulgare L.)." Lincoln University, 1992. http://hdl.handle.net/10182/1980.

Full text
Abstract:
Proportional loss models commonly used in disease surveys are based on the assumption that per cent yield loss is the same in all crops, regardless of their yield potential. Estimates of regional crop loss may be inaccurate if the relationship between disease and yield loss is affected by crop yield potential. The importance of crop yield potential in disease: yield loss modelling was investigated and models for more accurate regional crop loss estimates were developed, taking crop yield potential into account. Two spring sown barley (cv. Triumph) experiments were conducted in 1987/88 and 1988/89 in Canterbury, New Zealand, to study the effect of crop yield potential on the relationship between disease and yield loss. Crop yield potentials of 323 to 806gDM/m² were generated in seven crops by varying nitrogen and water inputs, sowing date (mid-spring and early-summer) and season. Leaf rust (Puccinia hordei Otth) epidemics of different severity were generated by applying fungicides at different times, frequencies and rates to control the natural epidemics. Disease was measured as per cent disease severity (%DS), green leaf area, radiation interception and near-infrared radiation (NIR) reflectance from crop canopies. Yield was measured as total and grain dry weight. Epidemics were severe in the fully diseased plots from GS 34 and 46 to maturity in the late and early sown crops respectively. Disease reduced grain yield by 50 to 63% in 1987/88 and 24 to 38% in 1988/89 in the fully diseased plots. Disease: yield loss models were derived by regression analysis for each crop in 1987/88. Single point, multiple point and area under curve models were derived from %DS and GLAI variables, and proportional (%) and actual (gDM/m²) grain yield. The effect of yield potential was determined by comparing regression equation coefficients for each crop with crop yield potential. An area under green leaf area index curve (AUGLAIC): actual yield model was best suited to determining the effect of yield potential on yield loss. This model was selected because AUGLAIC summarised the effect of disease on plant growth over the season and actual yield represented the crop yield potential in the absence of disease and the response of actual yield to disease. Crop yield potential did not affect actual yield loss caused by leaf rust. Disease measured as AUGLAIC explained most of the variation in yield (R²adj=0.93) for all crops in both years. Assessment of GLAI is not suitable for estimation of regional crop loss because of the requirement for a rapid and low cost method. Reflectance of NIR from the crop canopy was investigated as an alternative to GLAI measurements. Reflectance was correlated significantly (P<0.001) with GLAI (r=0.66 to 0.89) and green area index (r=0.76 to 0.92). Reflectance measured at grain-filling (GS 85-87) explained most (R²adj=0.94) of the variation in yield for all crops in both years. The relationship between AUGLAIC and yield was validated with data from independent diseased and healthy barley crops. The AUGLAIC: yield model described the effects of disease on yield accurately but overestimated yield by 49 to 108% in the healthy crops. Models based on accumulated PAR (photosynthetically active radiation) intercepted by green leaves explained the observed deviations in yield of these crops from the AUGLAIC: yield model. Accumulated PAR models accounted for differences in incident radiation, canopy structure, radiation interception by green leaves, radiation use efficiency and harvest index which are important in determining dry matter production and grain yield. Accumulated PAR models described the effects of disease on crop growth which were not represented by GLAI alone. Variation in crop yield potential at the regional scale is important in disease: yield loss modelling and can be accounted for by using either separate equations for each yield potential crop or crop category, robust models, inclusion of a form function for yield potential or choice of disease and yield variables which integrate yield potential.
APA, Harvard, Vancouver, ISO, and other styles
3

Dickson, Ross L. "The effect of water stress, nitrogen and gibberellic acid on the phytotoxicity of post-emergent herbicides to Avena spp." Lincoln University, 1990. http://hdl.handle.net/10182/1283.

Full text
Abstract:
A series of experiments was carried out on cultivated oat (Avena sativa L. cv Amuri) to examine the efficacies of fluazifop-butyl and glyphosate against water stressed plants, plants grown in low and high nitrogen and plants treated with gibberellic acid (GA₃). Avena sativa L. was used as a test plant and on completion of the experiments, further studies were carried out on the weed species wild oat (Avena fatua L.). In the laboratory, plants maintained at wilting point for five days before and nine days after spraying and treated with fluazifop-butyl (0.5 kg a.i./ha) appeared healthy 32 days after herbicide application, while plants supplied with water throughout the experiment were completely chlorotic/necrotic and had main stem detachment from within the leaf sheaths. In the field, plants maintained unirrigated until 14 days after spraying with fluazifop-butyl (0.25 kg a.i./ha) or glyphosate (0.18 kg a.i./ha) showed greater tolerance to the herbicides than plants irrigated regularly. Values for seed head yield for water stressed and irrigated plants, 45 days after applying fluazifop-butyl, were 66 g and zero g dryweight/m² respectively. Comparable values for glyphosate treated plants were 65 g and 25 g dryweight/m². Radiolabel studies indicated that in comparision with well watered plants, water stressed plants absorbed 20% less applied ¹⁴C-glyphosate. In addition, the proportion of absorbed ¹⁴C-glyphosate translocated from the treated leaf was 15% less under water stress conditions. Uptake of ¹⁴C-fluazifop-butyl was similar under well watered and water stress conditions and was 30-40% of that applied. The proportion of absorbed ¹⁴C-activity which was transported was very low, but was greater under well watered conditions (7.6%) than under water stress conditions (4.4%). Under well watered conditions in the laboratory and field, fluazifop-butyl (0.25 kg a.i./ha) and glyphosate (0.18 kg a.i./ha) were less toxic at low nitrogen than high nitrogen. For example, 34 days after spraying with fluazifop-butyl under laboratory conditions total plant dry weight was 1.51 g and 0.56 g at 1.0 mol/m³ and 10 mol/m³ applied nitrate respectively. As with soil water content, soil nitrogen content had no effect on uptake of fluazifop-butyl. However, the proportion of absorbed fluazifop-butyl which was translocated out of the treated lamina was greater under high nitrogen conditions (26.1 %) than under low nitrogen conditions (9.3%). Under laboratory conditions, addition of 200 µg GA₃to the leaf sheaths two days prior to spraying with fluazifop-butyl or glyphosate increased the efficacy of both herbicides at low nitrogen. Similarly, under field conditions application of GA₃ (0.21 kg/ha) two days prior to spraying with glyphosate increased the performance of the herbicide against Avena sativa L. growing in a nitrogen depleted soil. At harvest, seed head yield for GA₃ treated and non-treated plants was zero and 7.4 g dry weight/m² respectively. Experiments with Avena latua L. showed that this species was tolerant of fluazifop-butyl and glyphosate when grown in low water or low nitrogen conditions. Under water stress conditions, pre-treatment with GA₃ increased the phytotoxicity of fluazifop-butyl to Avena latua L. Similarily, GA₃ enhanced the phytotoxicity of glyphosate to Avena latua L. grown under low nitrogen conditions. Reduced performance of fluazifop-butyl under stress conditions involves a reduction in translocation of herbicide to meristems, but other factors are likely to be involved. It was concluded that for glyphosate, reductions in uptake and translocation of the herbicide are important factors causing reduced performance of this herbicide under stress conditions. Possible reasons for GA₃ enhancement of fluazifop-butyl and glyphosate activity under stress conditions are discussed and the potential of growth regulators as adjuvants is considered.
APA, Harvard, Vancouver, ISO, and other styles
4

Morton, J. D. "The effect on protein synthesis in barley of infection with P. hordei." Lincoln College, University of Canterbury, 1989. http://hdl.handle.net/10182/1950.

Full text
Abstract:
Infection of barley (Hordeum vulgare) leaves with the rust fungus, Puccinia hordei, causes changes in the host protein synthesis. This thesis analyses these changes in the barley cultivar Triumph following inoculation of 7-day-old leaves with either a virulent or an avirulent race of P. hordei. The initial approach was to isolate membrane-bound polysomes from infected leaves, translate them in vitro and analyse the translation products. These products include the integral membrane proteins which were expected to be involved in the response of the host to the pathogen. A method based on differential centrifugation in the presence of a ribonuclease-inhibiting buffer was developed for separating membrane-bound polysomes from the rest of the cytoplasmic polysomes. Membrane-bound polysomes were found to comprise one fifth of the total polysomes in the leaves. Analysis of the translation products of membrane-bound polysomes by SDS-PAGE showed them to be of higher average molecular weight than those from free polysomes. Comparison of polypeptides produced by membrane-bound polysomes from healthy and inoculated plants showed some differences however the low yield of membrane-bound polysomes made it difficult to obtain conclusive results. Thus it was decided to isolate total polysomes by including 1% Triton X-100 in the extraction buffer. Polysomes were extracted from 12 to 72 h after inoculation. Infection caused a decline in yield of polysomes during this period when compared with healthy leaves of the same age. Polysomes isolated 16 h after inoculation with the virulent race were 20% less efficient at translation than polysomes from control leaves. In contrast polysome isolated from leaves inoculated with the avirulent race were 20% more efficient. Analysis of the labelled translation products by SDS-PAGE and fluorography showed relative increases in the synthesis of some proteins by 16 h after inoculation with either race when compared to products from healthy leaves. Protein synthesis in the infected plants was further analysed by in vivo labelling and one- and two-dimensional PAGE. The fluorographs revealed increased synthesis of a group of proteins from 58 to 116 kDa starting 12 h after inoculation with either race of P. hordei; confirming the results from the polysome translations. Two polypeptides with molecular weights of about 66 kDa were found to increase following infection only with the virulent race. By three days after inoculation with either fungal race the most obvious change in protein synthesis was a marked decrease in the synthesis of the two most prominent polypeptides with molecular weights of 15 and 51 kDa which were considered to be the subunits of ribulose bisphosphate carboxylase. The elicitor hypothesis, in attempting to explain cultivar-specific resistance in plants, postulates that resistance is controlled by the interaction of specific fungal elicitors and plant receptors and that this interaction which only occurs between resistant hosts and avirulent pathogens triggers specific gene expression leading to resistance. This hypothesis does not fit the situation in the barley-P. hordei interaction as protein synthesis showed similar changes following infection with either a virulent or an avirulent race.
APA, Harvard, Vancouver, ISO, and other styles
5

Bithell, S. L. "An evaluation of Solanum nigrum and S. physalifolium biology and management strategies to reduce nightshade fruit contamination of process pea crops." Lincoln University, 2004. http://hdl.handle.net/10182/1160.

Full text
Abstract:
The contamination of process pea (Pisum sativum L.) crops by the immature fruit of black nightshade (Solanum nigrum L.) and hairy nightshade (S. physalifolium Rusby var. nitidibaccatum (Bitter.) Edmonds) causes income losses to pea farmers in Canterbury, New Zealand. This thesis investigates the questions of whether seed dormancy, germination requirements, plant growth, reproductive phenology, or fruit growth of either nightshade species reveal specific management practices that could reduce the contamination of process peas by the fruit of these two weeds. The seed dormancy status of these weeds indicated that both species are capable of germinating to high levels (> 90%) throughout the pea sowing season when tested at an optimum germination temperature of 20/30 °C (16/8 h). However, light was required at this temperature regime to obtain maximum germination of S. nigrum. The levels of germination in the dark at 20/30 °C and at 5/20 °C, and in light at 5/20 °C, and day to 50 % germination analyses indicated that this species cycled from nondormancy to conditional dormancy throughout the period of investigation (July to December 2002). For S. physalifolium, light was not a germination requirement, and dormancy inhibited germination at 5/20 °C early in the pea sowing season (July and August). However, by October, 100% of the population was non-dormant at this test temperature. Two field trials showed that dark cultivation did not reduce the germination of either species. Growth trials with S. nigrum and S. physalifolium indicated that S. physalifolium, in a non-competitive environment, accumulated dry matter at a faster rate than S. nigrum. However, when the two species were grown with peas there was no difference in dry matter accumulation. Investigation of the flowering phenology and fruit growth of both species showed that S. physalifolium flowered (509 °Cd, base temperature (Tb) 6 °C) approximately 120 °Cd prior to S. nigrum (633 °Cd). The fruit growth rate of S. nigrum (0.62 mm/d) was significantly faster than the growth rate of S. physalifolium (0.36 mm/d). Because of the earlier flowering of S. physalifolium it was estimated that for seedlings of both species emerging on the same date that S. physalifolium could produce a fruit with a maximum diameter of 3 mm ~ 60 °Cd before S. nigrum. Overlaps in flowering between peas and nightshade were examined in four pea cultivars, of varying time to maturity, sown on six dates. Solanum physalifolium had the potential to contaminate more pea crops than S. nigrum. In particular, late sown peas were more prone to nightshade contamination, especially late sowings using mid to long duration pea cultivars (777-839 °Cd, Tb 4.5 °C). This comparison was supported by factory data, which indicated that contamination of crops sown in October and November was more common than in crops sown in August and September. Also, cultivars sown in the later two months had an ~ 100 °Cd greater maturity value than cultivars sown in August and September. Nightshade flowering and pea maturity comparisons indicated that the use of the thermal time values for the flowering of S. nigrum and S. physalifolium can be used to calculate the necessary weed free period required from pea sowing in order to prevent the flowering of these species. The earlier flowering of S. physalifolium indicates that this species is more likely to contaminate pea crops than is S. nigrum. Therefore, extra attention may be required where this species is present in process pea crops. The prevention of the flowering of both species, by the maintenance of the appropriate weed free period following pea sowing or crop emergence, was identified as potentially, the most useful means of reducing nightshade contamination in peas.
APA, Harvard, Vancouver, ISO, and other styles
6

Balasubramaniam, Rengasamy. "The effects of foliar diseases and irrigation on root development, yield and yield components of wheat (Triticum aestivum L.)." Lincoln College, University of Canterbury, 1985. http://hdl.handle.net/10182/1514.

Full text
Abstract:
Studies were conducted on three field trials of wheat cv. Kopara to investigate the lack of compensation by later determined components of yield because of early disease constraints. The investigation was based on the hypothesis that early disease reduces root development and thus causes the plants to be water constrained at later growth stages when soil water deficits usually occur. The reduced root development and soil water deficits may reduce the ability of the plant to compensate for reductions in early determined components. The hypothesis was tested by the application of irrigation to alleviate water stress. In a disease free crop, the possible phytotonic effects of the fungicides benomyl and triadimefon on wheat were investigated. These fungicides had no phytotonic effects on shoot, root growth, or yield under the prevailing conditions. The effect of disease on root development was analysed by root length measurements. Disease present in the crop at any stage of growth affected root development. Root development in the upper zones of the soil profile was reduced more by disease compared to those zones below 35 cm. A full disease epidemic reduced root development more than an early or late disease epidemic. The early and late disease epidemics had similar effects on root length. Alleviation of early disease constraints enabled greater development of roots to offset any earlier reductions. Soil water deficits increased root development in the lower zones of the nil disease plants. The presence of adequate soil water from irrigation reduced the requirement for further root growth in all treatments. In the 1981-1982 field trial a full disease epidemic reduced yield by 14% whereas an early disease epidemic reduced yield by 7%. The reduction in yield was attributed to a lower grain number. With irrigation the yield reduction in the full disease plants was 12% whereas in the early disease plants the reduction was only 2.4%. This indicated that plants affected by the early disease epidemic were water constrained. In this study, the results suggested that, for conditions prevailing in Canterbury, the supply of water at later growth stages increased grain weight in plants which were subject to early disease epidemics. This suggests that reduced root development caused by early disease and soil water deficits may prevent compensation by grain weight. Water use was similar in all disease treatments. After irrigation the irrigated plants of all treatments used more water. Disease affected water use in relation to yield production however, and was better expressed by water use efficiency. Water use efficiency was reduced in the full disease plants. A stepwise regression analysis suggested that water use efficiency was affected directly by disease at later growth stages, and indirectly via an effect on total green leaf area at early growth stages. This study partially proves the hypothesis that reductions in root development caused by an early disease epidemic may constrain the plants at later growth stages when water deficits usually occur. It was shown that the reduction in root development caused by disease could be counteracted by irrigation. In this respect, water served as a tool to study the effect of disease constraints on the yield of wheat. A knowledge of cereal crop physiology, root growth and function is used to explain and discuss the observations made in this research programme. The results are discussed in relation to the way in which disease affects yield through its effect on root development. The possible reasons for the continued effects of disease even after the control of disease at later growth stages are discussed. The economic use of fungicides and water in diseased crops are also outlined. Suggestions for future studies on disease-yield loss relationships are provided. The repetition of these experiments in different sites and climatic regions could provide information which may be incorporated in disease-yield loss simulation models. This could then be used to predict root development and water requirements of diseased plants, and provide a basis for economic use of fungicides and water, and for better disease management programmes.
APA, Harvard, Vancouver, ISO, and other styles
7

Merfield, C. N. "Predator interactions within a trophic level : Phalangium opilio L. (Arachnida: Opiliones) and mites (Arachnida: Acari)." Diss., Lincoln University, 2000. http://hdl.handle.net/10182/21.

Full text
Abstract:
This study investigated commensal feeding interactions between the European harvestman (P. opilio L.) and the predatory mites Balaustium spp. and Anystis baccarum L. It also investigated the feeding behaviour of P. opilio. Experiments were conducted in the laboratory using standardised temperature, humidity, photoperiod and experimental arenas, with eggs of the brown blowfly (Calliphora stygia F.) as prey facsimiles. Due to initial difficulties in obtaining enough predatory mites, mite feeding was manually simulated piercing blowfly eggs with a minuten pin. P. opilio consumed significantly more freeze-killed than live blowfly eggs, indicating that freezing induced chemical and/or physical changes to blowfly eggs that are detected by P. opilio. Significantly more manually pierced eggs were consumed by P. opilio compared with unpierced ones, demonstrating that piercing caused a chemical and/or physical to the egg and increased the feeding rates of P. opilio. Different densities of eggs had no effect on the numbers eaten by P. opilio and placing single pierced eggs next to groups of unpierced eggs also had no effect on the numbers of unpierced eggs eaten. These results suggest that P. opilio does not exhibit klinokinesis or orthokinesis to intensify its search for prey around the area where previous prey were located. P. opilio ate significantly more brown blowfly eggs that had previously been fed on by mites, demonstrating that a short term commensal interaction existed. However, further work is required to demonstrate if the relationship is commensal in the longer term. A comparison between hand-pierced and mite-pierced eggs showed that P. opilio ate significantly more of the former indicating that mite and hand piercing were quantitatively different. The potential for, and importance of, other commensal or mutual relationships between predators in agroecosystems is discussed. The lack of klinokinesis and orthokinesis in P. opilio is compared with other predators and parasitoids that do exhibit these behaviours. The means by which prey are detected by P. opilio are discussed in relation to interpreting behaviours such as prey inspection. Concerns about the effect of pre-treatment and handling of sentinel prey and the problems of using prey facsimiles are raised.
APA, Harvard, Vancouver, ISO, and other styles
8

Kean, J. M. "Metapopulation theory in practice." Lincoln University, 1999. http://hdl.handle.net/10182/1372.

Full text
Abstract:
A metapopulation is defined as a set of potential local populations among which dispersal may occur. Metapopulation theory has grown rapidly in recent years, but much has focused on the mathematical properties of metapopulations rather than their relevance to real systems. Indeed, barring some notable exceptions, metapopulation theory remains largely untested in the field. This thesis investigates the importance of metapopulation structure in the ‘real world’, firstly by building additional realism into metapopulation models, and secondly through a 3-year field study of a real metapopulation system. The modelling analyses include discrete-and continuous-time models, and cover single species, host-parasitoid, and disease-host systems, with and without stochasticity. In all cases, metapopulation structure enhanced species persistence in time, and often allowed long-term continuance of otherwise non-persistent interactions. Spatial heterogeneity and patterning was evident whenever local populations were stochastic or deterministically unstable in isolation. In metapopulations, the latter case often gave rise to self-organising spatial patterns. These were composed of spiral wave fronts (or ‘arcs of infection’ in disease models) of different sizes, and were related to the stability characteristics of local populations as well as the dispersal rates. There was no evidence for self-organising spatial patterns in the host-parasitoid system studied in the field (the weevil Sitona discoideus and its braconid parasitoid Microctonus aethiopoides), and a new model for the interaction suggested that this is probably due to the strong host density-dependence and stabilising parasitism acting on local populations. Dispersal may be important because of very high mortality in dispersing weevils, which may be related to the scarcity of their host plant in the landscape. If this is the case, the model suggested that local weevil density may be sensitive to the area of crop grown. Stochastic models showed that species in suitably large metapopulations may persist for very long times at relatively low overall density and with very low incidence of density-dependence. This suggests that metapopulation processes may explain a general inability to detect density-dependence in many real populations, and may also play an important part in the persistence of rare species. For host-parasitoid metapopulation models, persistence often depended on the way in which they were initialised. Initial conditions corresponding to a biological control release were the least likely to persist, and the maximum host suppression observed in this case was 84%, as compared with 60% for the corresponding non-spatial models and >90% often observed in the field. Metapopulation structure also allowed persistence of ‘boom-bust’ disease models, although the dynamics of these were particularly dependent on assumptions about what happens to disease classes at very low densities. Models assuming infinitely divisible units of density, models incorporating a non-zero extinction threshold, and individual-based models all gave differing results in terms of disease persistence and rate of spatial spread. Fitting models to overall metapopulation dynamics often gave misleading results in terms of underlying local dynamics, emphasising the need to sample real populations at an appropriate scale when seeking to understand their behaviour.
APA, Harvard, Vancouver, ISO, and other styles
9

Yamoah, Emmanuel. "A model system using insects to vector Fusarium tumidum for biological control of gorse (Ulex europaeus)." Phd thesis, Lincoln University. Bio-Protection and Ecology Division, 2007. http://theses.lincoln.ac.nz/public/adt-NZLIU20080131.114607/.

Full text
Abstract:
The overall objective of this study was to test the hypothesis that insects can vector F. tumidum conidia to infect gorse plants with the aim of developing an alternative approach to mycoherbicide delivery to control weeds. Four potential insect species (Apion ulicis, Cydia ulicetana, Epiphyas postvittana and Sericothrips staphylinus) were assessed for their ability to vector F. tumidum conidia. To achieve this, the external microflora (bacteria and fungi) and the size and location of fungal spores on the cuticle of these insect species were determined. In addition, the ability of the insects to pick up and deposit F. tumidum conidia on agar was studied. Based on the results from these experiments, E. postvittana was selected for more detailed experiments to determine transmission of F. tumidum to infect potted gorse plants. The factors promoting pathogenicity of F. tumidum against gorse and the pathogen loading required to infect and kill the weed were also determined. The external microflora of the four insect species were recovered by washing and plating techniques and identified by morphology and polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) and sequencing of internally transcribed spacer (ITS) and 16S rDNA. A culture-independent technique (direct PCR) was also used to assess fungal diversity by direct amplification of ITS sequences from the washings of the insects. All insect species carried Alternaria, Cladosporium, Nectria, Penicillium, Phoma, Pseudozyma spp. and entomopathogens. Ninety four per cent of the 178 cloned amplicons had ITS sequences similarity to Nectria mauritiicola. E. postvittana carried the largest fungal spores (mean surface area of 125.9 ìm2) and the most fungal CFU/insect. About 70% of the fungi isolated from the insects were also present on the host plant (gorse) and the understorey grass. The mean size of fungal spores recovered from the insect species correlated strongly with their body length (R² = 85%). Methylobacterium aquaticum and Pseudomonas lutea were common on all four insect species. Pseudomonas fluorescens was the most abundant bacterial species. In the pathogenicity trials, the effectiveness of F. tumidum in reducing root and shoot biomass of 16 and 8 wk old gorse plants was significantly increased with wounding of the plants. Older plants (32 wk old) which were wounded and inoculated were significantly shorter, more infected and developed more tip dieback (80%) than plants which were not wounded (32%). This indicates that damage caused by phytophagous insect species present on gorse through feeding and oviposition may enhance infection by F. tumidum. Wounding may release nutrients (e.g. Mg and Zn) essential for conidia germination and germ tube elongation and also provide easier access for germ tube penetration. Conidial germination and germ tube length were increased by 50 and 877%, respectively when incubated in 0.2% of gorse extract solution for 24 h compared with incubation in water. Inoculum suspensions amended with 0.2% of gorse extract caused more infection and significantly reduced biomass production of 24 wk old gorse plants than suspensions without gorse extract. A minimum number of about 900 viable conidia/infection site of F. tumidum were required to infect gorse leaves. However, incorporation of amendments (which can injure the leaf cuticle) or provision of nutrients (i.e. gorse extract or glucose) in the formulation might decrease the number of conidia required for lesion formation. Scanning electron micrographs showed that germ tube penetration of gorse tissue was limited to open stomata which partly explain the large number of conidia required for infection. The flowers and leaves were more susceptible to F. tumidum infection than the spines, stems and pods. An experiment to determine the number of infection sites required to cause plant mortality showed that the entire plant needs to be inoculated in order for the pathogen to kill 10 wk old plants as F. tumidum is a non systemic pathogen. The number of infection sites correlated strongly with disease severity (R² = 99.3%). At least 50% of the plant was required to be inoculated to cause a significant reduction in shoot dry weight. F. tumidum, applied as soil inoculant using inoculated wheat grains in three separate experiments, significantly suppressed gorse seedling emergence and biomass production. In experiments to determine the loading capacity of the insect species, E. postvittana, the largest insect species studied, carried significantly more (68) and deposited significantly more (29) F. tumidum conidia than the other species. Each E. postvittana, loaded with 5,000 conidia of F. tumidum, transmitted approximately 310 conidia onto gorse plants but this did not cause any infection or affect plant growth as determined by shoot fresh weight and shoot height. E. postvittana on its own did not cause any significant damage to gorse and did not enhance F. tumidum infection. It also failed to spread the pathogen from infected plants to the healthy ones. There was no evidence of synergism between the two agents and damage caused by the combination of both E. postvittana and F. tumidum was equivalent to that caused by F. tumidum alone. This study has shown that E. postvittana has the greatest capacity to vector F. tumidum since it naturally carried the largest and the most fungal spores (429 CFU/insect). Moreover, it naturally carried Fusarium spp. such as F. lateritium, F. tricinctum and Gibberella pulicaris (anamorph Fusarium sambucinum) and was capable of carrying and depositing most F. tumidum conidia on agar. Coupled with the availability of pheromone for attracting the male insects, E. postvittana may be a suitable insect vector for delivering F. tumidum conidia on gorse using this novel biocontrol strategy. Although it is a polyphagous insect, and may visit non-target plants, F. tumidum is a very specific pathogen of gorse, broom and a few closely related plant species. Hence, using this insect species to vector F. tumidum in a biological control programme, should not pose a significant threat to plants of economic importance. However, successful control of gorse using this "lure-load-infect" concept would depend, to a large extent on the virulence of the pathogen as insects, due to the large size of F. tumidum macroconidia, can carry only a small number of it.
APA, Harvard, Vancouver, ISO, and other styles
10

Chng, Soon Fang. "Microbial factors associated with the natural suppression of take-all in wheat in New Zealand : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Lincoln University, Canterbury, New Zealand /." Diss., Lincoln University, 2009. http://hdl.handle.net/10182/863.

Full text
Abstract:
Take-all, caused by the soilborne fungus, Gaeumannomyces graminis var. tritici (Ggt), is an important root disease of wheat that can be reduced by take-all decline (TAD) in successive wheat crops, due to general and/or specific suppression. A study of 112 New Zealand wheat soils in 2003 had shown that Ggt DNA concentrations (analysed using real-time PCR) increased with successive years of wheat crops (1-3 y) and generally reflected take-all severity in subsequent crops. However, some wheat soils with high Ggt DNA concentrations had low take-all, suggesting presence of TAD. This study investigated 26 such soils for presence of TAD and possible suppressive mechanisms, and characterised the microorganisms from wheat roots and rhizosphere using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE). A preliminary pot trial of 29 soils (including three from ryegrass fields) amended with 12.5% w/w Ggt inoculum, screened their suppressiveness against take-all in a growth chamber. Results indicated that the inoculum level was too high to detect the differences between soils and that the environmental conditions used were unsuitable. Comparison between the Ggt DNA concentrations of the same soils collected in 2003 and in 2004 (collected for the pot trial), showed that most soils cropped with 2, 3 and 4 y of successive wheat had reduced Ggt DNA concentrations (by 195-2911 pg g-1 soil), and their disease incidences revealed 11 of the 29 test soils with potential take-all suppressiveness. Further pot trials improved the protocols, such that they were able to differentiate the magnitudes of suppressiveness among the soils. The first of the subsequent trials, using 4% w/w Ggt inoculum level, controlled conditions at 16°C, 80% RH with alternate 12 h light/dark conditions, and watering the plants twice weekly to field capacity (FC), screened 13 soils for their suppressiveness against take-all. The 13 soils consisted of 11 from the preliminary trial, one wheat soil that had been cropped with 9 y of wheat (considered likely to be suppressive), and a conducive ryegrass soil. The results revealed that 10 of these soils were suppressive to take-all. However, in only four of them were the effects related to high levels of microbial/biological involvement in the suppression, which were assessed in an experiment that first sterilised the soils. In a repeat trial using five of the soils H1, H3, M2, P7 (previously cropped with 3, 3, 4 and 9 y successive wheat, respectively) and H15 (previously cropped with 5 y of ryegrass), three of them (H1, H3 and M2) had reduced Ggt DNA concentrations (>1000 pg g-1 soil reductions), and were confirmed to be suppressive to take-all. A pot trial, in which 1% of each soil was transferred into a γ-irradiated base soil amended with 0.1% Ggt inoculum, indicated that soils H1 and H3 (3 y wheat) were specific in their suppressiveness, and M2 (4 y wheat) was general in its suppressiveness. The microbial communities within the rhizosphere and roots of plants grown in the soils, which demonstrated conduciveness, specific or general suppressiveness to take-all, were characterised using PCR-DGGE, and identities of the distinguishing microorganisms (which differentiated the soils) identified by sequence analysis. Results showed similar clusters of microorganisms associated with conducive and suppressive soils, both for specific and general suppression. Further excision, re-amplification, cloning and sequencing of the distinguishing bands showed that some actinomycetes (Streptomyces bingchengensis, Terrabacter sp. and Nocardioides sp.), ascomycetes (Fusarium lateritium and Microdochium bolleyi) and an unidentified fungus, were associated with the suppressive soils (specific and general). Others, such as the proteobacteria (Pseudomonas putida and P. fluorescens), an actinomycete (Nocardioides oleivorans), ascomycete (Gibberella zeae), and basidiomycete (Penicillium allii), were unique in the specific suppressiveness. This indicated commonality of some microorganisms in the take-all suppressive soils, with a selected distinguishing group responsible for specific suppressiveness. General suppressiveness was considered to be due to no specific microorganisms, as seen in soil M2. An attempt to induce TAD by growing successive wheat crops in pots of Ggt-infested soils was unsuccessful with no TAD effects shown, possibly due to variable Ggt DNA concentrations in the soils and addition of nutrients during the experiment. Increasing numbers of Pseudomonas fluorescens CFU in the rhizosphere of plants, during successive wheat crops was independent of the Ggt DNA concentrations and disease incidence, suggesting that increases in P. fluorescens numbers were associated with wheat monoculture. This study has demonstrated that TAD in New Zealand was due to both specific and general suppressiveness, and has identified the distinguishing microorganisms associated with the suppression. Since most of these distinguishing microorganisms are known to show antagonistic activities against Ggt or other soilborne pathogens, they are likely to act as antagonists of Ggt in the field. Future work should focus on validating their effects either individually, or interactively, on Ggt in plate and pot assays and under field conditions.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography