Journal articles on the topic 'Crop and Pasture Production'

To see the other types of publications on this topic, follow the link: Crop and Pasture Production.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Crop and Pasture Production.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ward, P. R., R. A. Lawes, and D. Ferris. "Soil-water dynamics in a pasture-cropping system." Crop and Pasture Science 65, no. 10 (2014): 1016. http://dx.doi.org/10.1071/cp14046.

Full text
Abstract:
Pasture cropping is a farming system in which annual crops are sown into established perennial pastures. It may provide environmental benefits such as increased groundcover and reduced deep drainage, while allowing traditional crop production in the Mediterranean-style climate of south-western Australia. In this research, we investigated deep drainage and the temporal patterns of water use by a subtropical perennial grass, annual crops, and a pasture-cropping system over a 4-year period. Both the pasture and pasture-cropped treatments reduced deep drainage significantly, by ~50 mm compared with the crop treatment. Competition between the pasture and crop components altered patterns of average daily water use, the pasture-cropped treatment having the highest water use for July, August and September. Consequently, water-use efficiency for grain production was lower in the pasture-cropped plots. This was offset by pasture production, so that over a full 12-month period, water-use efficiency for biomass production was generally greater for the pasture-cropped plots than for either the pasture or crop monocultures. Pasture cropping may be a viable way of generating sustainable economic returns from both crop and pasture production on sandy soils of south-western Australia.
APA, Harvard, Vancouver, ISO, and other styles
2

Lawes, R. A., P. R. Ward, and D. Ferris. "Pasture cropping with C4 grasses in a barley–lupin rotation can increase production." Crop and Pasture Science 65, no. 10 (2014): 1002. http://dx.doi.org/10.1071/cp13442.

Full text
Abstract:
In southern Australia, intercropping, pasture cropping and overcropping have evolved as techniques to address environmental problems such as dryland salinity and wind erosion and to utilise soil water outside the conventional winter-dominant growing season. We paired three winter-dormant pastures, including two subtropical C4 perennial species (Rhodes grass, Chloris gayana; Gatton panic, Megathyrsus maximus) and the summer-active perennial C3 legume siratro (Macroptilium atropurpureum), with a conventional barley (Hordeum vulgare)–lupin (Lupinus angustifolius) rotation to explore the extent to which different summer-active species reduced crop yields. We also examined whether the competition for resources could be altered by supplying increased nitrogen to the crop and changing the row spacing of the pasture. Under high-input conditions, pasture reduced cereal crop yields by up to 26% and lupin yields by up to 29%. Under low-input conditions, pasture cropping did not significantly reduce crop yield, and frequently increased crop yields. With low inputs, barley yield increases in 2011 ranged from 23% to 31%. In lupins under low-input conditions, yield increases ranged from 91% to 106% in 2010 and from –6% to +39% in 2012. The impact of the crop on the pasture was less pronounced, where the timing of pasture growth was delayed by the crop, but absolute levels of production were not influenced by the crop. Row spacing altered the temporal dynamic of pasture production; initially, the pasture produced less than the narrow spaced equivalent, but after 2 years, production exceeded that in the narrow row. Across all pasture species in 2009 and 2012, winter pasture production reduced crop yield by 0.32 and 0.4 t grain/ha pasture biomass produced, implying that moderate yield losses occurred because pasture production was also moderate. In the other two years, winter pasture production did not affect crop yield, suggesting that the pasture was able to utilise resources surplus to crop requirements. In this environment, with this combination of crops and summer-active pastures, higher levels of inputs did not enhance crop yield in a pasture-cropping system. We suggest that grain yield losses are lower in the low-input system and this implies that, at some level, competition between the species was reduced in a nitrogen-limited environment and the extent of the competition depended on season.
APA, Harvard, Vancouver, ISO, and other styles
3

McGrath, Shawn R., Cesar S. Pinares-Patiño, Scott E. McDonald, John A. Kirkegaard, Richard J. Simpson, and Andrew D. Moore. "Utilising dual-purpose crops in an Australian high-rainfall livestock production system to increase meat and wool production. 1. Forage production and crop yields." Animal Production Science 61, no. 11 (2021): 1062. http://dx.doi.org/10.1071/an20432.

Full text
Abstract:
Context Growing of dual-purpose crops for grazing by livestock has increased in popularity in the high-rainfall zone of southern Australia, a livestock production zone traditionally based on permanent perennial grass species. Aims A systems experiment examined the impact on pasture forage availability, sheep grazing days and crop yields when one-third of a farmlet was sown to dual-purpose wheat (Triticum aestivum L.) and canola (Brassica napus L.) crops. Methods The experiment comprised nine experimental units (farmlets) divided into three treatments with three replicate farmlets per treatment: control farmlets sown to phalaris (Phalaris aquatica L.)-based pastures; and two treatments with grazing of crops prioritised for either ewes or their progeny. Control farmlets comprised four sub-paddocks (0.231 ha each) in 2013 and six sub-paddocks in 2014–2016. Farmlets in treatments that included dual-purpose crops comprised six sub-paddocks (0.231 ha), with two sub-paddocks sown to permanent pasture and the other four sub-paddocks supporting a pasture–pasture–canola–wheat rotation. Key results Crops were sown in February or early March and grazing commenced by mid-May in all years. Canola was grazed first in the sequence in 3 of 4 years. Treatments had similar total sheep grazing days per year, except for the progeny-prioritised treatment in 2014 when agistment wethers were introduced to utilise excess crop forage. Grazing did not affect wheat yields (3.9 vs 3.7 t/ha, P > 0.05) but did reduce canola yields (3.6 vs 3.0 t/ha, P = 0.007). Pasture availability (dry matter per ha in the pasture paddock at entry by sheep) was higher in the control during late summer and autumn when the crops were being established; however, resting of pastures during late autumn and winter while crops were grazed resulted in no difference in pasture availability among treatments during spring. Conclusion and implications The key feed-gap is in late summer and autumn when dual-purpose crops are included in the system. Early and timely sowing of crops increases the grazing opportunity from dual-purpose crops before lock-up. Growing wheat plus canola provided some hedge against poor establishment and/or slow growth rates in one of the crops.
APA, Harvard, Vancouver, ISO, and other styles
4

Dove, H., J. A. Kirkegaard, W. M. Kelman, S. J. Sprague, S. E. McDonald, and J. M. Graham. "Integrating dual-purpose wheat and canola into high-rainfall livestock systems in south-eastern Australia. 2. Pasture and livestock production." Crop and Pasture Science 66, no. 4 (2015): 377. http://dx.doi.org/10.1071/cp14201.

Full text
Abstract:
In south-eastern Australia, low winter temperatures often reduce pasture growth and thus winter herbage supply relative to livestock requirements. Grazing of vegetative grain crops in winter is one strategy that might overcome this feed gap. In a study with young sheep over two seasons near Canberra, ACT, we compared pasture-only grazing with three separate crop–livestock systems in which the sheep grazed long-season wheat, winter canola or a combination of these, for intervals over the period May–August. We measured forage biomass, sheep grazing days (SGD) and liveweight accumulated per ha. Crop-grazing treatments resulted in much more winter forage for grazing sheep (t DM ha–1): in 2010, one crop 2.5–3.0, two crops 3.5 v. pasture only 1; in 2011, one crop 2, two crops 3 v. pasture only 1.4. In the first season, grazing one crop resulted in ~2000 extra SGD ha–1 and the accumulation of more liveweight per ha than in the pasture-only treatment; grazing of two crops resulted in >3500 extra SGD ha–1. Equivalent values in the second, drier season were: one crop, ~1000 extra SGD ha–1; two crops, 2600 extra SGD ha–1. Spelling of pastures during crop grazing led to extra pasture growth, such that in each of the two seasons, 40% of the total benefit in extra SGD per ha came from the extra pasture. The results indicate that, like grazed wheat, grazed canola can provide valuable winter forage, especially when used together with wheat. The data also provide the first quantification of the effect of crop grazing on pasture spelling and subsequent pasture supply, and suggest value in the incorporation of grazing wheat and canola into grazing systems in the high-rainfall zone.
APA, Harvard, Vancouver, ISO, and other styles
5

Pereyra-Goday, Fabiana, Pablo Rovira, Walter Ayala, and M. Jordana Rivero. "Management and Productivity of Key Integrated Crop–Livestock Systems in Uruguay: The Palo a Pique Long-Term Experiment’s Third Phase." Agronomy 12, no. 12 (November 30, 2022): 3023. http://dx.doi.org/10.3390/agronomy12123023.

Full text
Abstract:
Integrated Crop Livestock Systems (ICLSs) use productive diversification as a strategy to improve productivity and land use efficiency. Pasture Crop Rotations are a part of ICLSs and imply a pasture phase included in the sequence of crops. The main reasons to include pastures in crop systems are low productivity of natural grasslands and increased crop yield after a pasture phase. Our objective was to analyze the productivity indicators and management of four ICLSs that combine crop and livestock production, with data collected over a 3 y period (2019–2022). The experimental site was The Palo a Pique (Treinta y Tres, Uruguay) long-term experiment installed in 1995, located in the subtropical climate zone and on Oxyaquic Argiudolls soils (3% average slope). Systems evaluated were CC (continuous cropping), SR (two years idem CC, two years of pastures), LR (two years idem CC, four years of pastures) and FR (continuous pasture with Tall Fescue). Liveweight (LW) production, grain production and dry matter (DM) production were evaluated. Liveweight production was higher in CC and SR (426 and 418 kg LW/ha) than in LR (369 kg LW/ha) and FR (310 kg LW/ha). DM production was higher in FR and SR (6867 and 5763 kg DM/ha/year) than in LR (5399 kg DM/ha/year) and CC (5206 kg DM/ha/year). Grain production was 10%, 16% and 9% lower in soybean, wheat and sorghum in CC.
APA, Harvard, Vancouver, ISO, and other styles
6

Thomas, Dean T., Andrew D. Moore, Hayley C. Norman, and Clinton K. Revell. "Small effects of deferment of annual pastures through grazing spring wheat crops in Western Australia can benefit livestock productivity." Crop and Pasture Science 66, no. 4 (2015): 410. http://dx.doi.org/10.1071/cp14090.

Full text
Abstract:
Grazing sheep on cereal crops in winter has become widely adopted in medium–high-rainfall zones of Australia. Interest in this practice has spread to the lower rainfall parts of the cereal–livestock zone where it is being applied to shorter season crop varieties. A farm-system modelling study was conducted to investigate the value of deferment of annual pastures by grazing spring wheat in their place. The biophysical simulation model, based on a representative wheat and sheep farming system in the wheatbelt of Western Australia, involved two grazing-management scenarios and used climate data for the period 1962–2011 for three locations in Western Australia representing low-, medium- and high-rainfall cropping regions: Merredin, Wickepin and Kojonup. The grazing-management policy of the main scenario, ‘crop grazing’, placed livestock on the crops only until the crop reached Zadoks growth stage 30, provided the green biomass of the farm’s annual pastures was <800 kg/ha. A second ‘shadow-grazing’ scenario was run in which a group of ewes identical to the main ewe flock was used to graze annual pastures simultaneously with the main ewe flock whenever the main flock grazed wheat crops. The difference between the two scenarios represented the pasture deferment value associated with grazing wheat crops. Pasture deferment had little effect on total pasture production during the period when crops were grazed. However, there was a small benefit to feed supply through the accumulation of pasture during the period of crop grazing. This feed was available at a time of year when feed is scarce. This was reflected in improved animal production, with the weight of lambs at weaning being higher in the crop-grazing scenario than the shadow-grazing scenario. These results suggest that although increases in pasture productivity and feed supply associated with spring crop grazing are only marginal, grazing of spring wheat crops can still lead to changes in lamb production because this enterprise is sensitive to the feed supply in winter.
APA, Harvard, Vancouver, ISO, and other styles
7

McCormick, Jeff I., Richard C. Hayes, Guangdi D. Li, and Mark R. Norton. "A review of pasture establishment by undersowing with special reference to the mixed farming zone of south-eastern Australia." Crop and Pasture Science 65, no. 10 (2014): 956. http://dx.doi.org/10.1071/cp14049.

Full text
Abstract:
Pastures continue to provide essential functions for the mixed-farming zone in south-eastern Australia, where crop and livestock production are integral parts of most farms. Establishment of pastures in this zone needs to be low-cost and preferably with minimal risk. Pastures are typically sown either directly or in combination with a cover-crop (also called undersowing; the practice of sowing pasture seed simultaneously with a crop that is intended for grain production in the first year), so that the establishment cost is offset by income from the sale of grain. The purposes of this review are to: (i) draw together the literature on undersowing pastures, including studies conducted since the previous review in 1965; (ii) understand why there is a discrepancy between research results that generally do not support the practice of undersowing pastures, whereas farmer preference appears to establish pastures under a cover-crop; and (iii) identify critical needs for further research to aid in making decisions about pasture establishment on-farm. Published and unpublished data from the Australian wheatbelt on establishing pastures by undersowing was examined from the 1920s to the present and included seven publications for perennial species from 26 different experiments. Eight publications addressing establishment of annual species were available from 30 experiments. Many trials appear to have been conducted without being analysed or published. A further 16 international publications were reviewed. Generally, cover-crops reduced annual pasture seedset and perennial density even though the pastures established under the cover-cropping were commonly deemed ‘satisfactory’ by the authors. Pasture establishment was improved by reducing the sowing rate of the cover-crop and/or sowing on alternate rows. Technological change during the past 25 years has led to different configurations of seeding machinery, increased use of herbicides and longer cropping phases. Conclusions previously reached may therefore need to be re-assessed. No data published quantified the risks associated with undersowing on a seasonal and regional basis to determine the probability of success, and there are insufficient data to model the complex physiological interactions between crop and pasture, with most experiments focused on basic agronomic parameters. Furthermore, long-term effects of establishment method on total pasture biomass production and subsequent effects on following crops have rarely been demonstrated, because of the short time-frames in which most experiments have been conducted. Farmers in the mixed-farming zone still prefer to establish pastures under a cover-crop because of perceived financial benefit of the practice. This review identifies substantial research gaps to be addressed to improve pasture-establishment decisions.
APA, Harvard, Vancouver, ISO, and other styles
8

Thomas, G. A., R. C. Dalal, E. J. Weston, K. J. Lehane, A. J. King, D. N. Orange, C. J. Holmes, and G. B. Wildermuth. "Pasture - crop rotations for sustainable production in a wheat and sheep-based farming system on a Vertosol in south-west Queensland, Australia." Animal Production Science 49, no. 8 (2009): 682. http://dx.doi.org/10.1071/ea07170.

Full text
Abstract:
Rainfed grain production, based on winter cereals, is marginal in south-west Queensland, Australia, because of low and variable rainfall and high evapotranspiration. Also, grain yield and grain quality have decreased as soil fertility, particularly soil nitrogen supply, has declined on older cropping lands. An option for improving soil N supply is to include legume-based pastures in rotation with winter cereals. The objective of this study was to determine the effects of short-term (18 months) legume pastures (annual medics and lucerne + annual medics), and longer term (3 years) mixed grass (Bambatsi panic) and legume (lucerne + annual medics) pasture phases on sheep production and on soil water and N supply and production of subsequent wheat crops on a grey Vertosol soil. Two separate phases of annual medics and lucerne + annual medics pastures produced mean total aboveground dry matter yield of 7.10 t/ha of annual medics and 5.80 t/ha of lucerne + annual medics over the 18-month periods. For two phases of the grass + legume pastures, mean total aboveground dry matter yield was 3.95 t/ha for grass and 8.19 t/ha for legume over 3 years. Over an 18-month period, sheep bodyweight gains and fleece weights were similar for the annual medics, lucerne + annual medics and grass + legume pastures and were approximately five times greater than those from native pasture as a result of the greater stocking rate possible on the sown pastures. Greater drying of the soil profile occurred following lucerne + annual medics and grass + legume pasture phases than continuous wheat, resulting in lower soil water content at sowing of wheat crops following these pasture phases on several occasions. Mean soil nitrate-N benefits before wheat sowing in the first year following termination of the 18-month annual medics, lucerne + annual medics, and the 3-year grass + legume pasture phases were 45, 44 and 42 kg N/ha, respectively. Grain N yields and gross margins of the first wheat crops following the 18-month annual medics, lucerne + annual medics, and the 3-year grass + legume pasture phases were similar in value to continuous wheat with ~60, 80, and 40–60 kg N/ha fertiliser applied at sowing, respectively. Improvements in grain N yield and gross margin were still evident in the fifth wheat crop following annual medics and lucerne + annual medics pastures and in the third wheat crop following grass + legume pasture, compared with continuous wheat without N fertiliser addition. Total gross margins from 1996 to 2005 were 1.6–2.5 times greater for the pasture–crop rotations than continuous wheat where no N fertiliser was applied to wheat. However, gross margins were greater in continuous wheat than in pasture–crop rotations where N fertiliser was applied to target prime hard grade grain protein in wheat. The 3-year grass + legume pasture phase showed potential to improve surface soil structure and water infiltration and to reduce decline in soil organic carbon concentration at 0–0.1 m depth, compared with continuous wheat cropping and shorter-term legume pasture phases.
APA, Harvard, Vancouver, ISO, and other styles
9

Brennan, R. F., B. Penrose, and R. W. Bell. "Micronutrients limiting pasture production in Australia." Crop and Pasture Science 70, no. 12 (2019): 1053. http://dx.doi.org/10.1071/cp19087.

Full text
Abstract:
Low levels of plant-available micronutrients were an inherent feature of many agricultural soils in Australia, mostly due to the prevalence of highly weathered soil parent materials. The diagnosis and correction of the widespread deficiencies of micronutrients, especially copper (Cu), molybdenum (Mo) and zinc (Zn), were prerequisites for the development of productive, legume-based pastures in southern Australia. In subtropical and tropical regions, Mo deficiency commonly limited pasture-legume production. Soil treatments involving micronutrient fertiliser incorporated in soils, or applied as additives to superphosphate, were generally effective in alleviating micronutrient deficiencies. In the low-output dryland pasture systems, the annual removal of micronutrients in wool and meat is small compared with rates added in fertiliser. Hence, in general, the residues of soil-applied micronutrient fertilisers remain effective for many years, for example, up to 30 years for Cu. By contrast, shorter residual values occur for manganese (Mn) fertiliser on highly calcareous soils, and for Zn in high-output pasture systems such as intensive dairy production. In the last two decades since the recommendations for micronutrient management of pastures were developed, there have been many changes to farming systems, with likely implications for micronutrient status in pastures. First, increased cropping intensity and low prices for wool and meat have meant lower nutrient inputs to pastures or to the pasture phase of rotations with crops. However, when pastures have been rotated with crops, ongoing small additions of Cu, Zn and Mo have been common. In cropping phases of farming systems, lime application and no-till may have altered the chemical and positional availability of micronutrients in soils to pastures. However, there has been little study of the impacts of these farming-systems changes on micronutrient status of pastures or profitability of the production system. The intensification of dairy production systems may also have altered the demand for, and removal rates of, micronutrients. Soil tests are not very reliable for Mn or Mo deficiencies, and well-calibrated soil tests for boron, Cu and Zn have been developed only for limited areas of pasture production and for a limited range of species. There is limited use of plant tests for nutrient management of pastures. In conclusion, there is limited knowledge of the current micronutrient status of pastures and their effects on animal health. Pasture production would benefit from targeted investigation of micronutrients status of pasture soils, pasture plants and micronutrient-linked animal-health issues.
APA, Harvard, Vancouver, ISO, and other styles
10

MacNish, GC, and DA Nicholas. "Some effects of field history on the relationship between grass production in subterranean clover pasture, grain yield and take-all (Gaeumannomyces graminis var. tritici) in a subsequent crop of wheat at Bannister, Western Australia." Australian Journal of Agricultural Research 38, no. 6 (1987): 1011. http://dx.doi.org/10.1071/ar9871011.

Full text
Abstract:
The relationship between grass production in subterranean clover pastures with two different rotation histories and take-all in a subsequent wheat crop following barley was studied. Grass production in the pastures ranged from 0 to 1700 kg ha-1. The incidence of take-all in the wheat crop ranged from 10 to l00%, while the take-all severity percentage ranged from 4 to 99.In one rotation series (pasture 9 years; barley, barley, pasture, wheat), each kilogram increase in grass production in the last pasture year caused a 0.087% increase in the take-all severity rating. In the second series (pasture 7 years; oats, pasture 3 years; barley, wheat), each kilogram increase in grass production caused a 0.040% increase in severity. These figures are significantly different (P < 0.05). Thus the field history ranging back at least four seasons influenced the effects that grass level in the last pasture year had on take-all severity. Reductions in wheat yields ranged from 8.6 to 10.5 kg ha-1 for each 1% increase in take-all severity rating.
APA, Harvard, Vancouver, ISO, and other styles
11

Thomson, C. J., C. K. Revell, N. C. Turner, M. A. Ewing, and I. F. Le Coultre. "Influence of rotation and time of germinating rains on the productivity and composition of annual pastures in Western Australia." Australian Journal of Agricultural Research 49, no. 2 (1998): 225. http://dx.doi.org/10.1071/a94082.

Full text
Abstract:
A long-term rotation experiment located in south-western Australia was used to measure the effect of rotation and time of germinating rains on the productivity and botanical composition of grazed annual pastures in 2 contrasting seasons in an environment with an average annual rainfall of 325 mm. The density of self-regenerating seedlings of subterranean clover (Trifolium subterraneum), capeweed (Arctotheca calendula), and grasses (Lolium rigidum, Hordeum leporinum, Bromus diandrus) was greatly increased (approx. 3 times the density) when there was a second year of pasture after crop compared with the first year after crop. The lower plant density resulted in first-year pastures having only about 33% of the autumn biomass accumulation of second-year pastures. This difference in early pasture growth had no effect on total pasture production in 1992, but in 1993 total pasture production was 30% greater in second-year pastures compared with first-year pastures. Botanical composition varied between and within seasons with the percentage of subterranean clover increasing throughout the season and the percentage of capeweed decreasing throughout the season. Grasses comprised <20% of the biomass in all seasons and treatments. Production of subterranean clover seed in 1993 was higher in a 1 : 2 crop-pasture rotation than in a 1 : 1 crop-pasture rotation and direct drilling in the cropping phase increased seed set compared with conventional tillage in both 1 : 1 and 1 : 2 crop-pasture rotations. Capeweed seedlings emerged in large numbers after rainfall between February and May and subsequently showed a relative growth rate twice that of subterranean clover and the grasses, but exclusion of rainfall until June resulted in a significant reduction in the emergence of capeweed seedlings. Additionally, capeweed had a lower rate of seedling survival compared with other pasture species, and this is contrary to observations by other researchers that capeweed is highly resistant to moisture stress during early growth.
APA, Harvard, Vancouver, ISO, and other styles
12

Tarawali, S. A., and M. Peters. "The potential contribution of selected forage legume pastures to cereal production in crop-livestock farming systems." Journal of Agricultural Science 127, no. 2 (September 1996): 175–82. http://dx.doi.org/10.1017/s0021859600077959.

Full text
Abstract:
SUMMARYThe potential of 3-year-old grazed pastures ofStylosanthes hamata, Chamaecrista rotundifoliaandCentrosema pascuorumto contribute to subsequent maize production was investigated in subhumid Nigeria in 1993. All three legume pastures had the ability to give better maize grain yields than native pasture but this was significant only forStylosanthes hamataandChamaecrista rotundifolia. For the legume species, maximum yield of maize per kg of N applied was attained at 60 kgN/ha. The subsequent yields of maize could be related to the legume species used, pasture management and the length of the fallow period.Centrosema pascuorumbehaved as an annual, and as such there was little legume present after 3 years; crop yield was therefore relatively low. Nevertheless, this species could be useful in 1-year fallow/pasture situations. Maize cropping was economically viable for legume plots only with 60 or 120 kgN/ha and not for native pasture. There were no significant differences in the time required to till or to weed legume pastures as compared with native pasture. Forage legume pastures could also have a positive effect on maize residue yields which represent a fodder resource in addition to the herbage understorey remaining after cropping, the quality of which could be enhanced by the presence of the forage legumes. The use of forage legumes for the promotion of both crop and livestock production in sustainable agricultural systems is discussed. The results of the study are used to highlight the importance of selecting the appropriate legume species, pasture management practices and duration of fallow period in relation to the prevailing farming system to maximize benefits from the legumes.
APA, Harvard, Vancouver, ISO, and other styles
13

CHEN, G., G. D. LI, M. K. CONYERS, and B. R. CULLIS. "LONG-TERM LIMING REGIME INCREASES PRIME LAMB PRODUCTION ON ACID SOILS." Experimental Agriculture 45, no. 2 (April 2009): 221–34. http://dx.doi.org/10.1017/s0014479708007497.

Full text
Abstract:
SUMMARYPrime lamb live weight response to lime application on pasture was measured in a grazing experiment in the high rainfall zone of the southwestern slopes of New South Wales, Australia. The pastures were limed every 6 years over 15 years. First cross South African Meat Merino lambs were used as test animals. Pre- and post-grazing pasture dry matter (DM) yield, botanical composition, feed quality and lamb live weight were monitored over 12 weeks in 2007. Results showed that liming significantly increased pasture DM yield of high quality species and improved overall pasture quality due to increased digestibility and metabolic energy content. As a result, the limed perennial and annual pastures carried 24.0% (3.6 lambs ha−1) and 29.0% (4.4 lambs ha−1) more stock than the unlimed perennial and annual pastures, respectively. Averaged across pasture types, the limed pastures produced 30.6% (131 kg ha−1) more lamb live weight gain than the unlimed pastures over 12 weeks. The live weight gain varied between grazing cycles depending on the availability of feed-on-offer and feed quality, which were closely related to the rainfall pattern. The perennial pastures did not show any advantage in animal production over annual pastures during the experimental period due to lack of moisture in the deep soil profile because of severe drought in the previous year. More seasons with normal or above average rainfall are needed to compare animal production on perennial pastures and annual pastures to investigate the advantage of perennial pastures in animal production.
APA, Harvard, Vancouver, ISO, and other styles
14

Hou, F. J., Z. B. Nan, Y. Z. Xie, X. L. Li, H. L. Lin, and J. Z. Ren. "Integrated crop-livestock production systems in China." Rangeland Journal 30, no. 2 (2008): 221. http://dx.doi.org/10.1071/rj08018.

Full text
Abstract:
The integrated crop-livestock production system provides most of the food needed by the people of China. Five types of integrated production systems are recognised; rangeland, grain crops, crop/pasture, agro-silvopastoral and ponds. Development of more sustainable and integrated crop-pasture-rangeland-livestock production systems has been recently achieved. Demonstrations of the integrated systems at household, village and regional levels are occurring for rain-fed agriculture on the Loess Plateau, the Hexi Corridor, north-western China and the Karst region of Guizhou Province, south-western China. These indicate that integration of crop, livestock and forage are effective means of improving agricultural productivity, environmental sustainability and farmers’ incomes. Widespread adoption of integrated farming systems should also reduce rangeland degradation.
APA, Harvard, Vancouver, ISO, and other styles
15

Li, G. D., K. R. Helyar, S. J. Welham, M. K. Conyers, L. J. C. Castleman, R. P. Fisher, C. M. Evans, B. R. Cullis, and P. D. Cregan. "Pasture and sheep responses to lime application in a grazing experiment in a high-rainfall area, south-eastern Australia. I. Pasture production." Australian Journal of Agricultural Research 57, no. 10 (2006): 1045. http://dx.doi.org/10.1071/ar05298.

Full text
Abstract:
‘Managing Acid Soils Through Efficient Rotations (MASTER)’ is a long-term pasture–crop rotation experiment commenced in 1992. One of the objectives was to demonstrate the extent of crop, pasture, and animal responses to lime on a typical acidic soil in the 500–800 mm rainfall zone in south-eastern Australia. Two types of pastures (perennial v. annual pastures) with or without lime application were established in 1992. This paper presents the results of the pasture dry matter (DM) responses to lime application over 6 years from 1992 to 1997. Results showed that both perennial and annual pastures responded positively to lime on a highly acidic soil on the south-west slopes of New South Wales. Averaged across pasture types and 5 growing seasons, the limed pastures produced 18% more pasture DM (520 kg/ha, P < 0.05) than the unlimed pastures. Significant responses to lime were detected on perennial pastures (610 kg DM/ha, P < 0.05), but not on annual pastures, although the limed annual pastures produced more DM (420 kg/ha, P = 0.20) than the unlimed annual pastures. There was a large seasonal variation in pasture growth rate with the significant lime responses in winter and spring on both perennial pastures (P < 0.05) and annual pastures (P < 0.10 in winter and P < 0.05 in spring), but no responses in autumn and summer on either perennial or annual pastures. The extra growth in winter is of importance as winter is the period when feed is normally inadequate and limits stocking rates. It is recommended that perennial-based pastures should be promoted for the purposes of productivity, in terms of increasing pasture production and improving feed quality, and for the environmental benefits in terms of alleviating the soil acidity problem and reducing the risk of dryland salinity in the high-rainfall zone in south-eastern Australia.
APA, Harvard, Vancouver, ISO, and other styles
16

Strong, W. M., R. C. Dalal, E. J. Weston, K. J. Lehane, J. E. Cooper, A. J. King, and C. J. Holmes. "Sustaining productivity of a Vertosol at Warra, Queensland, with fertilisers, no-tillage or legumes. 9. Production and nitrogen benefits from mixed grass and legume pastures in rotation with wheat." Australian Journal of Experimental Agriculture 46, no. 3 (2006): 375. http://dx.doi.org/10.1071/ea05007.

Full text
Abstract:
Reduced supplies of nitrogen (N) in many soils of southern Queensland that were cropped exhaustively with cereals over many decades have been the focus of much research to avoid declines in profitability and sustainability of farming systems. A 45-month period of mixed grass (purple pigeon grass, Setaria incrassata Stapf; Rhodes grass, Chloris gayana Kunth.) and legume (lucerne, Medicago sativa L.; annual medics, M. scutellata L. Mill. and M. truncatula Gaertn.) pasture was one of several options that were compared at a fertility-depleted Vertosol at Warra, southern Queensland, to improve grain yields or increase grain protein concentration of subsequent wheat crops. Objectives of the study were to measure the productivity of a mixed grass and legume pasture grown over 45 months (cut and removed over 36 months) and its effects on yield and protein concentrations of the following wheat crops. Pasture production (DM t/ha) and aboveground plant N yield (kg/ha) for grass, legume (including a small amount of weeds) and total components of pasture responded linearly to total rainfall over the duration of each of 3 pastures sown in 1986, 1987 and 1988. Averaged over the 3 pastures, each 100 mm of rainfall resulted in 0.52 t/ha of grass, 0.44 t/ha of legume and 0.97 t/ha of total pasture DM, there being little variation between the 3 pastures. Aboveground plant N yield of the 3 pastures ranged from 17.2 to 20.5 kg/ha per 100 mm rainfall. Aboveground legume N in response to total rainfall was similar (10.6–13.2 kg/ha per 100 mm rainfall) across the 3 pastures in spite of very different populations of legumes and grasses at establishment. Aboveground grass N yield was 5.2–7.0 kg/ha per 100 mm rainfall. In most wheat crops following pasture, wheat yields were similar to that of unfertilised wheat except in 1990 and 1994, when grain yields were significantly higher but similar to that for continuous wheat fertilised with 75 kg N/ha. In contrast, grain protein concentrations of most wheat crops following pasture responded positively, being substantially higher than unfertilised wheat but similar to that of wheat fertilised with 75 kg N/ha. Grain protein averaged over all years of assay was increased by 25–40% compared with that of unfertilised wheat. Stored water supplies after pasture were <134 mm (<55% of plant available water capacity); for most assay crops water storages were 67–110 mm, an equivalent wet soil depth of only 0.3–0.45 m. Thus, the crop assays of pasture benefits were limited by low water supply to wheat crops. Moreover, the severity of common root rot in wheat crop was not reduced by pasture–wheat rotation.
APA, Harvard, Vancouver, ISO, and other styles
17

Antoniel, Laísa S., Giuliani do Prado, Adriano C. Tinos, Gabriel A. Beltrame, João V. C. de Almeida, and Gustavo P. Cuco. "Pasture production under different irrigation depths." Revista Brasileira de Engenharia Agrícola e Ambiental 20, no. 6 (June 2016): 539–44. http://dx.doi.org/10.1590/1807-1929/agriambi.v20n6p539-544.

Full text
Abstract:
ABSTRACT This study aimed to evaluate the production of two pasture species, Brachiaria brizantha cv. BRS Piatã and Panicum maximum cv. Mombaça, under different irrigation depths. The experiment was carried out from May to December 2014, at the State University of Maringá, in the municipality of Cidade Gaúcha-PR, Brazil. The experiment was set out in a strip-plot design, with four replicates, six irrigation depths in the plot and two pasture species in the subplot. Irrigation depths were represented by a percentage of reference evapotranspiration (ET0), which was estimated by the Penman-Monteith equation. Four pasture cuts were performed during the studied period and there were no differences between the yields of both evaluated pasture species; however, irrigation depths caused a quadratic response on pasture yield. The maximum values of dry matter yield of the pastures under irrigated conditions were 52.1, 41.6, 26.2 and 25.1% higher than under non-irrigated conditions, for the 1st, 2nd, 3rd and 4th cuts, respectively. Irrigation depths that applied water volumes close to ET0 promoted considerable increases in pasture yield.
APA, Harvard, Vancouver, ISO, and other styles
18

Densley, R. J., I. D. Williams, J. J. Kleinmans, S. B. Mccarter, and R. Tsimba. "Use of maize silage to improve pasture persistence in dairy farm systems: a review." NZGA: Research and Practice Series 15 (January 1, 2011): 217–20. http://dx.doi.org/10.33584/rps.15.2011.3205.

Full text
Abstract:
Maize is a drought tolerant crop that produces high dry matter yields. Growing maize silage as part of a pasture renewal programme can help improve pasture persistence by reducing the level of weeds, insect pests and carryover ryegrass seed. Feeding maize silage to dairy cows results in pasture substitution. This decreases grazing pressure and can be used to manipulate farm pasture cover levels reducing overgrazing. The combination of maize silage and a well-designed stand-off pad with feeding bins allows farmers to keep cows off wet pastures reducing pugging damage and subsequent losses in pasture production without compromising milk production or animal welfare. Maize hybrid selection is critical to ensure timely regrassing. Crop simulation models such as CERES-maize may be useful to determine the best maize hybrid maturity x planting date combinations required to maximise silage yield and meet desired silage harvest and regrassing dates. Best-practice maize silage management including seed bed preparation, weed control and insecticide-treated maize seed will help farmers achieve high yields of silage and assist in the subsequent establishment of high yielding and persistent pastures. Keywords: pasture persistence, maize silage, feed pad
APA, Harvard, Vancouver, ISO, and other styles
19

Li, G. D., K. R. Helyar, M. K. Conyers, L. J. C. Castleman, R. P. Fisher, G. J. Poile, C. J. Lisle, B. R. Cullis, and P. D. Cregan. "Pasture and sheep responses to lime application in a grazing experiment in a high-rainfall area, south-eastern Australia. II. Liveweight gain and wool production." Australian Journal of Agricultural Research 57, no. 10 (2006): 1057. http://dx.doi.org/10.1071/ar05299.

Full text
Abstract:
‘Managing Acid Soils Through Efficient Rotations (MASTER)’ is a long-term pasture–crop rotation experiment commenced in 1992. One of the objectives was to demonstrate the extent of crop, pasture, and animal responses to lime application on a typical acidic soil in the 500–800 mm rainfall zone of south-eastern Australia. Two types of pastures (perennial v. annual pastures) with or without lime application were established in 1992. Fifteen- to eighteen-month-old Merino hoggets were used as test animals and were changed annually. This paper reports the results of sheep responses to liming from the 4 continuous pasture treatments over 6 years from 1992 to 1997. The stocking rate was the same on all plots within a treatment during each rotation period, but was varied between treatments based on the pasture availability and sheep body condition. The most important findings from this study are that the limed treatments carried 29% and 27% more stock (up to 4 DSE/ha) than the unlimed treatments for perennial and annual pastures, respectively. As a result, the limed perennial pastures produced 27% more liveweight gain (62 kg/ha.year) and 28% more greasy wool (13 kg/ha.year) than unlimed perennial pastures, whereas the limed annual pastures produced 34% more liveweight gain (77 kg/ha.year) and 24% more greasy wool (11 kg/ha.year) than unlimed annual pastures. The significant responses to lime in liveweight and wool production were detected from the second growing season after the pastures were established. The increased sheep productivity on the limed treatment was due to a combination of increased pasture production and improved pasture quality. Perennial pastures showed a slight advantage in wool production, but not in liveweight gain. However, the seasonal variation of liveweight was greater on annual pastures than on perennial pastures. The larger variation in liveweight change could lead to more adverse effects on wool quality especially at high grazing pressures. Grazing management can be used to manipulate pasture and animal productivity to increase profits from lime use.
APA, Harvard, Vancouver, ISO, and other styles
20

Unkovich, Murray, Paul Sanford, John Pate, and Mike Hyder. "Effects of grazing on plant and soil nitrogen relations of pasture-crop rotations." Australian Journal of Agricultural Research 49, no. 3 (1998): 475. http://dx.doi.org/10.1071/a97071.

Full text
Abstract:
Plant and soil nitrogen (N) fluxes were assessed in subterranean clover (Trifolium subterraneum L.) based pastures set-stocked at 8 sheep per hectare (light grazing) or grazed at a much higher, but variable, intensity to maintain 1400 kg standing dry matter per hectare (intensive grazing) through the addition or removal of sheep. Pasture composition and biomass production, herbage N concentration, plant nitrate (NO-3) utilisation, and N2 fixation by clover were assessed at 3-weekly intervals over the growing season. Soil ammonium (NH+4) and NO-3 availability were assessed at similar intervals using soil coring and in situ incubation cores. Seasonal pasture yield under light grazing was 11·5 t dry matter/ha compared with 7·9 t/ha under intensive grazing, the difference being mostly attributable to reduced grass growth under intensive grazing. However, there was essentially no difference between the pastures in total N accumulation (300 kg N/ha in the lightly grazed and 302 kg N/ha in the intensively grazed pastures). The lesser dry matter production under intensive grazing was compensated for by higher N concentration and increased clover content of the sward, and faster clover growth late in the growing season. N2 fixation by clover under intensive grazing (153 kg N/ha) was slightly greater than under light grazing (131 kg N/ha). Proportional dependence of clover on N2 fixation (%Ndfa) was similar under intensive grazing (78%) and light grazing (84%), despite higher continued availability of soil mineral N under intensive grazing. Uptake of soil N by the grass component amounted to 147 kg N/ha under light grazing v. 96 kg N/ha in the intensively grazed pasture, and for the clover was 18 and 40 kg N/ha, respectively. Capeweed (Arctotheca calendula L.), a common weed of south-west Australian pastures, was extraordinarily active in absorbing, storing, and reducing soil NO-3, especially when subjected to intensive grazing. After the 3 years of the grazing trial, the pastures were cultivated and cropped to oats, triticale, and canola and the biomass and N uptake of each crop assessed. Intensive grazing in the previous pasture resulted in increased availability of soil mineral N in the subsequent cropping phase and accordingly augmented crop N uptake and eventual grain protein levels relative to crops following lightly grazed pasture. The study indicated that intensive grazing before cropping may offer a useful management tool for improving N nutrition and yields of non-leguminous crops in pasture-crop rotations under the conditions prevailing in the south-west of Australia.
APA, Harvard, Vancouver, ISO, and other styles
21

Robbins, G. B., J. J. Bushell, and K. L. Butler. "Decline in plant and animal production from ageing pastures of green panic (Panicum maximum var. trichoglume)." Journal of Agricultural Science 108, no. 2 (April 1987): 407–17. http://dx.doi.org/10.1017/s0021859600079442.

Full text
Abstract:
SummaryThe impact of age on the productivity of sown pastures of green panic (Panicum maximum var. trichoglume cv. Petrie) growing on black earth soil in south-east Queensland was measured from 1976 to 1981. During winter and spring, weaner steers grazed at 2·4 animals/ha on summer-spelled pastures which, in each year, were 1, 2, 3, 4 and 5 years old. Pastures were given 58 kg N/ha as urea each year. Live-weight gain averaged 74 kg/head on 1-year-old pasture but only 35 kg/head on 5-year-old pasture, with most of the reduction in weight gain in winter (June to August) occurring up to age 3 years, and with most of the reduction in spring (September to November) occurring for pastures older than 3 years.The decline in animal production was not caused by changes in species composition of the pasture. Rather, weight gain on older pastures was restricted by pasture quality in winter and by reduced pasture growth in spring, but not by presentation dry-matter yield. The decrease in pasture productivity seemed to be primarily due to reductions in available soil mineral N with age, since the N concentration of plant shoots decreased as a pasture aged. Tt is postulated that the immobilization of N in decomposing grass litter is a primary cause of productivity decline in ageing pastures.
APA, Harvard, Vancouver, ISO, and other styles
22

Gardyne, Graeme. "Value and potential of white clover for sheep production." NZGA: Research and Practice Series 6 (January 1, 1996): 71–74. http://dx.doi.org/10.33584/rps.6.1995.3380.

Full text
Abstract:
The Gardyne Family farm a 710 hectare property at Chatton near Gore in Southland. The property is intensively farmed with 9,375 stock units, sheep and beef being carried at rates of 17.5 su/ha on the cropping property and 12.5 su/ha on the Pyramid Hill grazing property. White clover is the key to animal, crop and herbage production supplying nitrogen for highly productive pastures, building organic matter levels for the cropping rotation, and providing very high quality feed for finishing young stock. Management techniques to maximise clover production are essential and include: (i) use of adequate P, K and S fertiliser to ensure Olsen P levels above 20, (ii) set stocking the grazing block from lambing to weaning to generate maximum clover yields, (iii) returning older grass dominant pastures to cropping to harvest the fertility build up and restore a clover-dominant pasture, and (iv) maintaining adequate pasture cover to allow the pasture plants to express their potential. The Gardyne family use and experience the benefits of the regionally bred Grasslands Demand white clover on their property. Establishment of new cultivars is discussed, and suggestions made for further research. Keywords: beef, cropping, fertiliser, Grasslands Demand, pasture establishment, pasture management, sheep, Southland, stocking rates, white clover
APA, Harvard, Vancouver, ISO, and other styles
23

McGrath, Shawn R., Cesar S. Pinares-Patiño, Scott E. McDonald, Richard J. Simpson, and Andrew D. Moore. "Utilising dual-purpose crops in an Australian high-rainfall livestock production system to increase meat and wool production. 2. Production from breeding-ewe flocks." Animal Production Science 61, no. 11 (2021): 1074. http://dx.doi.org/10.1071/an20433.

Full text
Abstract:
Context The use of dual-purpose crops (for grazing and grain) has increased in the high-rainfall zone in southern Australia. Aim A systems experiment examined the impact on livestock production and supplementary feeding when dual-purpose crops were incorporated into a production system based on Merino ewes producing yearling lambs for sale. Methods The experimental site near Canberra, ACT, was subdivided into nine experimental units (‘farmlets’) with three replicate farmlets for each of three production-system treatments. Each farmlet was managed as a self-contained unit with six Merino ewes and their progeny during 2013–16 (4 years). Ewes were joined in February, lambed in July and shorn in spring; the original cohort of ewes (born 2009) was replaced by a new cohort (born 2012) at the midpoint of the experiment. Six weaners were retained after weaning in each farmlet and sold as yearlings. Control farmlets were sown to pasture based on phalaris (Phalaris aquatica L.) and subterranean clover (Trifolium subterraneum L.) and comprised sub-paddocks to allow rotational grazing. Farmlets in treatments that included dual-purpose crops comprised six sub-paddocks (0.231 ha), with two sown to permanent pasture, and four supporting a rotation of pasture–pasture–dual-purpose canola (Brassica napus L.)–dual-purpose wheat (Triticum aestivum L.). In one of the crop–pasture production system treatments, crop-grazing was prioritised for ewes (ECG treatment); in the other, crop-grazing was prioritised for their progeny weaners (WCG treatment). Key results Greasy fleece weight from ECG (5.3 kg) and WCG (5.1 kg) ewes was higher (P &lt; 0.001) than from control ewes (4.7 kg) averaged over the 4 years. The final sale weight of yearling weaners from the WCG system (44.3 kg) was higher (P &lt; 0.001) than from the control (39.2 kg) or ECG (39.1 kg) systems when averaged over the 4 years. The benefit was predominantly due to greater weight gain during the period when weaners grazed the crop during late autumn and winter. Sale weight of lamb per hectare was higher (P = 0.003) in the WCG treatment (216 kg) compared with the ECG treatment (186 kg) when averaged over the 4 years of the experiment but did not differ (P &gt; 0.05) to the control (201 kg). Meat production over the 4 years was higher (P &lt; 0.001) in the WCG system (226 kg/ha) than other treatments when weight gain from wethers in 2014 was included. The impact of including dual-purpose crops on supplementary feeding was variable and depended on seasonal conditions. Conclusions Incorporation of dual-purpose crops into the high-rainfall production system can increase meat and wool production, with the highest meat production being obtained when crop grazing was prioritised for young carry-over livestock. Implications Prioritising dual-purpose crops for young growing livestock can increase meat production from the system while allowing other livestock classes (wethers or ewes) to graze the crops in better seasons when there was excess forage that would otherwise have been under-utilised.
APA, Harvard, Vancouver, ISO, and other styles
24

Ward, G. N., S. G. Clark, G. A. Kearney, M. R. McCaskill, M. C. Raeside, A. R. Lawson, and R. Behrendt. "Summer-active perennials in pasture systems improve seasonal pasture distribution without compromising winter-spring production." Crop and Pasture Science 64, no. 7 (2013): 673. http://dx.doi.org/10.1071/cp13003.

Full text
Abstract:
Improved dryland pastures for sheep and beef cattle production in south-western Victoria are typically based on summer-dormant cultivars of perennial ryegrass (Lolium perenne L.) or phalaris (Phalaris aquatica L.). These are highly productive in spring but exhibit low accumulation rates over summer–autumn. Summer-active perennial pasture species could potentially alleviate this summer–autumn feed gap. Three pasture systems that used different pastures on each of the three landscape classes (crest, slope, and valley floor) were compared over 4 years. The perennial ryegrass system (henceforth Ryegrass) had a different ryegrass cultivar on each landscape class. The Triple system used lucerne (Medicago sativa L.) (crest), perennial ryegrass (slope), and summer-active tall fescue (Lolium arundinaceum (Schreb) Darbysh.) (valley floor). The Novel system used chicory (Cichorium intybus L.) (crest), Italian ryegrass (Lolium multiflorum Lam.) or hybrid ryegrass (L. × boucheanum Kunth.) (slope), and kikuyu (Pennisetum clandestinum Hochst. ex Chiov.) (valley floor). The pastures were grazed by either one (in the case of the Novel system) or three (in the case of the Ryegrass and Triple systems) animal systems that varied over the life of the experiment. Total annual herbage accumulation of the Ryegrass and Triple systems did not differ. The Novel system consistently had lower total annual dry matter accumulation than the other two systems. Lucerne pastures generally had the highest accumulation rates over summer, followed by the chicory pastures. The kikuyu pastures responded well to summer rainfall but otherwise had similar accumulation rates to the perennial ryegrass and tall fescue pastures over summer. Tall fescue pastures grew well in autumn following wet summers. In spring the perennial ryegrass pastures based on Fitzroy or Avalon were highly productive but seldom grew faster than other pastures. The results support the hypothesis that incorporating deep-rooted, summer-active perennial species will increase pasture production over summer–autumn compared with conventional pasture systems but not at the expense of winter–spring production.
APA, Harvard, Vancouver, ISO, and other styles
25

Li, G. D., K. R. Helyar, M. K. Conyers, B. R. Cullis, P. D. Cregan, R. P. Fisher, L. J. C. Castleman, G. J. Poile, C. M. Evans, and B. Braysher. "Crop responses to lime in long-term pasture-crop rotations in a high rainfall area in south-eastern Australia." Australian Journal of Agricultural Research 52, no. 3 (2001): 329. http://dx.doi.org/10.1071/ar00087.

Full text
Abstract:
A long-term trial, known as ‘managing acid soils through efficient rotations’ (MASTER), commenced in 1992 to develop and demonstrate a cropping system that is economically viable on the highly acid soils of the traditional permanent pasture region in south-eastern Australia, so that their fertility is sustained or improved. There were 2 permanent pasture systems and 2 pasture–crop rotations, each with and without lime. This paper reports the effect of lime on crop production over the first cycle (6 years). On annual pasture–crop rotations, lime significantly increased the dry matter production at anthesis and grain yields of wheat (cv. Dollarbird) compared with the unlimed treatments. Averaged across years from 1992 to 1997 (excluding the severe drought year 1994), wheat crops produced 1.6 t/ha more grain on the limed treatments than on the unlimed treatments (3.6 v. 2.0 t/ha). On perennial pasture–crop rotations, the lime effects varied with crops grown at each phase and year. For example, despite being tolerant of acidity, oats (cv. Yarran) responded to lime in 1996. Likewise, triticale (cv. Abacus) responded to lime in 1997. Wheat (cv. Dollarbird) that is moderately tolerant to acidity responded to lime in phase 6 from 1992 to 1997 excluding 1994 (3.5 v. 1.7 t/ha). Acid-tolerant wheat varieties, triticale, and narrow-leaf lupins are considered the most viable crops for the soil and climatic conditions encountered in this high rainfall (5000—800 mm per annum) area of south-eastern Australia.
APA, Harvard, Vancouver, ISO, and other styles
26

García, S. C., M. R. Islam, C. E. F. Clark, and P. M. Martin. "Kikuyu-based pasture for dairy production: a review." Crop and Pasture Science 65, no. 8 (2014): 787. http://dx.doi.org/10.1071/cp13414.

Full text
Abstract:
The amount of pasture grown and converted to animal product is closely linked with the profitability of pasture-based systems. Kikuyu (Pennisetum clandestinum Hochst. ex Chiov.) is the predominant C4 grass in coastal Australian beef and dairy systems. These kikuyu-based production systems face several key challenges to achieving high levels of productivity. In this review, we bring together the literature to highlight the opportunities for closing the gap between current and potential utilisation and for increasing dairy production from kikuyu-based pastures. More specifically, we highlight the significant gains that can be made on kikuyu-based commercial farms based on a conceptual model to show where the main losses originate, namely input and grazing management. The physical limitations associated with kikuyu for dairy systems are also presented, such as the relatively higher content of cell wall and lower content of water-soluble carbohydrates, together with nutrient imbalances relative to other grass species. Together, these limitations clearly indicate the need of supplying cows with supplements (particularly grain-based concentrates) to achieve moderate to high milk yield per cow. To achieve this without compromising pasture utilisation, dairy producers farming on kikuyu-based pastures need to use relatively greater stocking rates to generate enough demand of feed that can be used to align rate of pasture intake with rate of pasture growth, creating enough deficit of feed per cow to justify the addition of supplementary feed without impinging on pasture utilisation. The variability that exists between cows in kikuyu dry matter and neutral detergent fibre intake is also highlighted in this review, opening up new avenues of research that may allow significant productivity gains for kikuyu-based dairy farming in the future.
APA, Harvard, Vancouver, ISO, and other styles
27

Moore, Andrew D. "The case for and against perennial forages in the Australian sheep–wheat zone: modelling livestock production, business risk and environmental interactions." Animal Production Science 54, no. 12 (2014): 2029. http://dx.doi.org/10.1071/an14613.

Full text
Abstract:
Perennial forages have been proposed as a means of ameliorating both the summer–autumn feed gap and the risks posed by soil salinity and erosion in mixed farming areas of southern Australia. Whole-farm simulation analyses using the APSIM and GRAZPLAN models at nine locations across southern Australia have evaluated the likely trade-offs among expected profitability, financial risk, soil erosion risk, deep drainage and soil carbon change as annual pastures are converted to perennial pastures based on a C3 grass, a C4 grass or lucerne. Differences between perennial and annual feedbases in total pasture growth (median –11%, range –47% to +20%) and metabolisable energy supply from pasture (median +1%, range –48% to +52%) were diverse across locations and perennial species. At some locations, improvements in the pasture feedbase were counter-balanced by lower livestock intakes from crop stubbles. The modelled farming system with the highest profit included some perennial pasture at seven of the nine locations, but no one pasture species or land-use system predominated across all locations or producer risk attitudes. Local characteristics of the soils and farming systems are as important as broad climatic factors in determining how substituting perennial for annual pastures alters the trade-off between profitability and wind erosion risk. Further expanding permanent pastures into land currently used for crops only unequivocally reduced wind erosion risk at the four locations with Mediterranean climates. Lucerne grown in long rotations provided the best trade-off between mean gross margin and financial risk at Merriwagga and Temora. Permanent C3 or C4 perennial grass pastures separated from continuous cropping may simultaneously increase profits and reduce business and erosion risk at low-rainfall locations with Mediterranean climates, as long as they can be managed to persist. Managing pastures for greater nitrogen inputs could be considered as an erosion-abatement strategy.
APA, Harvard, Vancouver, ISO, and other styles
28

Karsten, H. D., P. H. Patterson, R. Stout, and G. Crews. "Vitamins A, E and fatty acid composition of the eggs of caged hens and pastured hens." Renewable Agriculture and Food Systems 25, no. 1 (January 12, 2010): 45–54. http://dx.doi.org/10.1017/s1742170509990214.

Full text
Abstract:
AbstractIn the US farmers often market pastured poultry eggs for a premium price, claiming animal and human health benefits. We examined how moving pastured hens to forage legumes or mixed grasses influenced hen (Gallus gallusL.) egg omega-3 fatty acids and concentrations of vitamins A and E. We also compared the eggs of the pastured hens to those of hens fed a commercial diet in cages. We used a cross-over design to compare pasture species: 75 sister hens were assigned to one of three pasture treatment groups: (1) alfalfa (Medicago sativaL.), (2) red and white clover (Trifolium pretenseL. andTrifolium repensL.) or (3) mixed cool season grasses. Groups were rotated to all three pasture treatments, each for 2 weeks and supplemented with 70 g commercial hen mash bird−1day−1. Pasture botanical composition, forage mass, leaf to total ratio and plant fatty acid composition were compared among pasture treatments. Eggs of the pastured hens were compared to eggs of 50 sister hens that were fed only commercial hen mash in cages for the entire 6 weeks. Forage parameters varied somewhat, but did not explain plant linolenic acid variation. Seventeen of the 18 quantified egg fatty acids, and vitamin A concentrations did not (P<0.05) differ among the three pasture treatment groups. Eggs of the hens that foraged grasses had 23% more (P<0.0001) vitamin E than eggs of hens that foraged clover. Compared to eggs of the caged hens, pastured hens' eggs had twice as much vitamin E and long-chain omega-3 fats, 2.5-fold more total omega-3 fatty acids, and less than half the ratio of omega-6:omega-3 fatty acids (P<0.0001). Vitamin A concentration was 38% higher (P<0.05) in the pastured hens' eggs than in the caged hens' eggs, but total vitamin A per egg did not differ. At the end of the experiment, pastured hens weighed 14% less and averaged 15% lower hen-day egg production than caged birds (P<0.0001). Results suggest that grass pastures may enhance vitamin E in eggs of pastured hens more than clover, and pastured hens supplemented with commercial mash will produce eggs with significantly more vitamin E and total omega-3 fatty acids compared to eggs from caged hens fed only commercial hen mash. Pastured hens may have lower body weight and egg production than caged hens, unless they are supplemented adequately to meet their dietary energy and crude protein needs.
APA, Harvard, Vancouver, ISO, and other styles
29

Whitbread, A. M., and R. L. Clem. "Graze to grain—measuring and modelling the effects of grazed pasture leys on soil nitrogen and sorghum yield on a Vertosol soil in the Australian subtropics." Australian Journal of Agricultural Research 57, no. 5 (2006): 489. http://dx.doi.org/10.1071/ar05189.

Full text
Abstract:
Highly productive sown pasture systems can result in high growth rates of beef cattle and lead to increases in soil nitrogen and the production of subsequent crops. The nitrogen dynamics and growth of grain sorghum following grazed annual legume leys or a grass pasture were investigated in a no-till system in the South Burnett district of Queensland. Two years of the tropical legumes Macrotyloma daltonii and Vigna trilobata (both self regenerating annual legumes) and Lablab purpureus (a resown annual legume) resulted in soil nitrate N (0–0.9 m depth), at sorghum sowing, ranging from 35 to 86 kg/ha compared with 4 kg/ha after pure grass pastures. Average grain sorghum production in the 4 cropping seasons following the grazed legume leys ranged from 2651 to 4012 kg/ha. Following the grass pasture, grain sorghum production in the first and second year was <1900 kg/ha and by the third year grain yield was comparable to the legume systems. Simulation studies utilising the farming systems model APSIM indicated that the soil N and water dynamics following 2-year ley phases could be closely represented over 4 years and the prediction of sorghum growth during this time was reasonable. In simulated unfertilised sorghum crops grown from 1954 to 2004, grain yield did not exceed 1500 kg/ha in 50% of seasons following a grass pasture, while following 2-year legume leys, grain exceeded 3000 kg/ha in 80% of seasons. It was concluded that mixed farming systems that utilise short term legume-based pastures for beef production in rotation with crop production enterprises can be highly productive.
APA, Harvard, Vancouver, ISO, and other styles
30

Snow, V. O., P. N. Smale, and M. B. Dodd. "Process-based modelling to understand the impact of ryegrass diversity on production and leaching from grazed grass-clover dairy pastures." Crop and Pasture Science 64, no. 10 (2013): 1020. http://dx.doi.org/10.1071/cp13263.

Full text
Abstract:
Ecological studies often suggest that natural grasslands with high species diversity will grow more biomass and leach less nitrogen (N). If this diversity effect also applies to fertilised and irrigated pastures with controlled removal of herbage, it might be exploited to design pastures that can assist the dairy industry to maintain production while reducing N leaching losses. The purpose of this study was to test whether pasture mixtures with a high functional diversity in ryegrass traits will confer on the system higher water- and N-use efficiency. The hypothesis was tested using a process-based model in which pasture mixtures were created with varying levels of diversity in ryegrass traits likely to affect pasture growth. Those traits were: the winter- or summer-dominance of growth, the ability of the plant to intercept radiation at low pasture mass, and rooting depth. Pasture production, leaching and water- and N-use efficiency were simulated for management typical of a dairy pasture. We found that the performance of the diverse ryegrass–clover mixtures was more strongly associated with the performance of the individual components than with the diversity across the components. Diverse pasture mixtures may confer other benefits, e.g. pest or disease resistance and pasture persistence. The testing here was within a selection of ryegrasses, and the greater possible diversity across species may produce different effects. However, these results suggest that highly performing pastures under fertilised and irrigated grazed conditions are best constructed by selecting components that perform well individually than by deliberately introducing diversity between components.
APA, Harvard, Vancouver, ISO, and other styles
31

Trukhan, Olga. "CREEPING CLOVER (Trifolium repens L.): BIOLOGICAL FEATURES, ECONOMIC SIGNIFICANCE, VARIETIES AND METHODS OF SEED PRODUCTION WHEN GROWN IN GRASS MIXTURES WITH A CEREAL COMPONENT." Adaptive Fodder Production 2021, no. 3 (December 3, 2021): 71–87. http://dx.doi.org/10.33814/afp-2222-5366-2021-3-71-87.

Full text
Abstract:
Creeping clover (Trifolium repens L.) is one of the best crops for creating meadow and pasture agrophytocenoses of long-term use. The biological features of this crop, such as durability, good yield, resistance to grazing, high leafiness, along with good feed quality indicators, its high protein nutritional value, make it indispensable when creating pastures not only in Russia, but also abroad. Creeping clover is one of the main components of grass mixtures for improving pastures and developing fallow lands; it is also an excellent phyto-meliorative crop that restores soil fertility. The most important problem of creeping clover seed production is harvesting due to the short stature of pasture varieties. Therefore, it is recommended to grow creeping clover for seeds in a mixture of grass together with cereal components such as perennial ryegrass, reed fescue, meadow fescue, etc. Due to the use of biological nitrogen of the legume component, energy consumption for the production of 1 kg of cereal grass seeds is reduced by 20–30% in comparison with uncoverless single-species crops. In addition to clover seeds, growing in grass mixtures allows you to get high yields of grass seeds in the second year of use without the use of nitrogen fertilizers.
APA, Harvard, Vancouver, ISO, and other styles
32

French, R. J., R. S. Malik, and M. Seymour. "Crop-sequence effects on productivity in a wheat-based cropping system at Wongan Hills, Western Australia." Crop and Pasture Science 66, no. 6 (2015): 580. http://dx.doi.org/10.1071/cp14262.

Full text
Abstract:
Western Australian grain production is dominated by wheat, but growing wheat continually in unbroken sequences leads to increasing problems with soil nutrient depletion, root and leaf disease build-up, high weed burdens, and possibly other less well-defined production constraints. These can adversely affect both production and grain quality. Including breaks in the crop sequence in the form of break crops, pasture, or fallow can reduce these problems, but these breaks can be expensive to implement, in terms of both direct cost and forgone revenue. It is therefore critical to predict the response of subsequent wheat crops to a break in order to choose crop sequences rationally. We conducted a 4-year experiment at Wongan Hills, Western Australia, evaluating how wheat productivity in a wheat-based cropping sequence is affected by including wheat, barley, lupins, triazine-tolerant and Roundup Ready® canola, oaten hay, volunteer pasture, serradella pasture, and chemical fallow. Wheat yield responded positively to fallow, lupins, oaten hay, volunteer pastures and serradella but not to barley or canola when compared with continuous wheat. Responses depended on seasonal conditions; in a dry year, a very large response occurred after fallow but not after lupin or serradella, whereas in a wetter year, there were large responses after these crops. Fallowing, cutting hay, crop-topping lupins, and spray-topping volunteer and serradella pasture all reduced seedset of annual ryegrass dramatically, and reduced weed competition was a major contributor to the observed break crop responses. Nitrogen fixation by lupins and serradella and water storage by fallow in a dry year were also important, but soilborne diseases did not contribute to wheat yield responses. Some yield responses persisted for at least 3 years, and the contribution of effects of weed competition to yield responses increased over this time. These results emphasise the importance of understanding which productivity constraints are present in a cropping system at a given time when deciding whether a break is necessary and which is the most appropriate break. The results also emphasise the importance of managing the wheat crop after a break to maximise the response and its longevity.
APA, Harvard, Vancouver, ISO, and other styles
33

Macedo, I., G. Cantou, and J. A. Terra. "Soil Use Intensity Effects on Soil Organic Carbon in No-till Crop-pasture Rotations Systems." Agrociencia 19, no. 3 (December 2015): 25. http://dx.doi.org/10.31285/agro.19.254.

Full text
Abstract:
Soil organic carbon (SOC) is a key soil quality indicator for cropping systems sustainability. We evaluated 20 yrs. soil use intensity effects on SOC (0-5 cm and 5-15 cm depth) in a 72 ha no-till crop-pasture rotation experiment (33°:15’36"S, 54°:29’26"W, 60-m elevation) in Treinta y Tres, Uruguay (Abruptic Argiaquolls and Oxiaquic Vertic Argiudolls). Treatments between 1995-2005 were: Continuous cropping (CC) of ryegrass (Lolium multiflorum Lam. or oat Avena sp. in winter and sorghum (Sorghum bicolor L.) or foxtail millet (Setaria italica) in summer; 2) Short Rotation (SR): two years idem CC and two years pasture of red clover (Trifolium pretense L.) and Holcus lanatus L.; 3) Long Rotation (LR) two years idem CC and four years pasture of tall fescue (Festuca arundinacea L.), white clover (Trifolium repens L.) and birdsfoot trefoil (Lotus corniculatus L.); 4) Permanent Pasture (PP): natural pasture overseeded with legumes used in RL. Since 2005 until now, grain crops substituted forage crops in the «cropping phase» of all rotations (CC, SR, LR), maintaining without modifications the pasture phase of them. Grain cropping sequence was: Oat (Avena sativa L.), Sorghum bicolor (L.), black oat (Avena sp., as a winter cover crop), soybean (Glycine max L.) and wheat (Triticum aestivum). After 20 years, significant SOC differences (0-5 cm) were found between rotations. Continuous cropping decreased SOC by 16%, 18%, 31% compared to SR (25.55 g kg-1), LR (26.17 g kg-1) and PP (31.32 g kg-1), respectively. Although no SOC differences were found between rotations that include perennial pastures (SR and LR), both had 18% lower SOC than PP. A trend of SOC decrease (12%) was observed also in PP compared to the original situation that existed at the beginning of the experiment (natural pasture 35.25 g kg-1). No SOC differences were found in the 5-15 cm depth between treatments that included pastures. However, there was an average SOC increase of 14% in these treatments (13.34 g kg-1) compared to CC. The aggregate of data suggest that, even under no-till, continuous cropping reduced SOC compared with cropping systems that include some proportion of pastures in the rotation. For undisturbed fragile soils incorporated to grain production, like those prevalent in 1 million ha in Eastern Uruguay, the inclusion of perennial pastures in the rotations is critical for soil conservation and mitigation of SOC losses in cropping systems.
APA, Harvard, Vancouver, ISO, and other styles
34

Robertson, S. M. "Crop stubbles are as important for sheep production as annual pastures in the Victorian Mallee." Australian Journal of Experimental Agriculture 46, no. 8 (2006): 993. http://dx.doi.org/10.1071/ea04033.

Full text
Abstract:
The impact of different management strategies on production and profit can be evaluated with knowledge of how sheep production responds to changes in the available feed base and sheep or pasture management. This study aimed to quantify on-farm pasture and sheep production in mixed sheep and cropping systems in the Victorian Mallee of south-eastern Australia (325 ± 50 mm annual rainfall) as a prelude to computer simulation modelling. During 2001 (average rainfall) and 2002 (extreme drought) pasture production, the feed base and sheep production were monitored in 15 paddocks on 5 properties located across the region. Crop stubbles were the major source of feed for 6 months of the year, enabling ewes to maintain liveweight. There was more variation in pasture parameters between paddocks at the 1 location than between locations. The botanical composition, plant density, soil fertility and management were key variables associated with between-paddock variation in pasture production. Variation in pasture production between years was larger than within-year differences. In contrast, stocking rates were not much lower in the drought year of 2002 than in 2001. This study suggests there is potential for management to improve pasture production, and demonstrates the importance of feed sources other than annual pasture for sheep production in environments where the annual pasture growing season is short.
APA, Harvard, Vancouver, ISO, and other styles
35

Tozer, K. N., E. Minneé, and C. A. Cameron. "Resistance of New Zealand dairy pastures to ingress of summer-active annual grass weeds." Crop and Pasture Science 63, no. 10 (2012): 1026. http://dx.doi.org/10.1071/cp12315.

Full text
Abstract:
Yellow bristle grass (Setaria pumila) and summer grass (Digitaria sanguinalis) are summer-active annual grass weeds which infest temperate dairy pastures. A study was undertaken over 2 years to compare hand-sown yellow bristle and summer grass establishment, survival, and seed production in pastures grazed by dairy cows and based on (i) tetraploid perennial ryegrass (Lolium perenne), (ii) tetraploid perennial ryegrass and white clover (Trifolium repens), and (iii) tall fescue (Festuca arundinacea) and white clover, to determine which pasture type offered the greatest resistance to these grass weeds. Ingress of grass weeds was similar in all three pasture types. Total dry matter production was similar for all pasture types for the first year and lower in tall fescue + clover than perennial ryegrass pasture in the second year. All pasture types had a similar distribution of microsite types (bare ground ± canopy, basal cover ± canopy) in both years. The annual grass weeds were most prevalent in bare ground + canopy microsites, which were also the most frequent of the four microsite types. In the first year, <5% of microsites were occupied within 2 months of sowing, whereas in the second year, microsite occupation remained >13% for all assessments. In the first year, panicle production of yellow bristle and summer grass was similar (averaging 4.1 panicles plant–1); in the second year, panicle production was greater for summer grass (0.80 v. 0.16 panicles plant–1, respectively). Where present, these annual grass weeds are likely to spread in dryland dairy pastures sown with either perennial ryegrass or tall fescue. Variability in their panicle production between years shows how their impact on pasture performance and consequent need for control measures will also vary from year to year.
APA, Harvard, Vancouver, ISO, and other styles
36

Hilimire, Kathleen, Stephen R. Gliessman, and Joji Muramoto. "Soil fertility and crop growth under poultry/crop integration." Renewable Agriculture and Food Systems 28, no. 2 (June 15, 2012): 173–82. http://dx.doi.org/10.1017/s174217051200021x.

Full text
Abstract:
AbstractInnovative sources of soil fertility are of utmost importance to growers in light of rising fertilizer costs and environmental concerns. Integrating livestock and crop production is one channel by which agricultural practitioners can enhance soil fertility. For this research, soil fertility was analyzed in pastured poultry/crop agroecosystems to determine whether free-ranging birds and pasture could be used to replace or supplement non-manure-based fertilizers. Soils from adjacent cropped areas were compared to plots with a recent history of pastured poultry use on two farms, and crop plants were grown in each type of soil in a replicated greenhouse experiment. Spatial variation in soil fertility was also assessed relative to location of poultry coops. Pastured poultry plots had elevated soil total C, total N, NH4+–N, NO3−–N, Olsen P, exchangeable K, organic matter, cation exchange capacity and electrical conductivity relative to the control of typically managed organic farm soils without pastured animal inputs. These soil fertility changes conferred greater biomass and height to sunflowers and beans grown in these soils relative to control soils for most treatments. Results suggest that pastured poultry can effectively fertilize soil for certain crops but that a need exists for more research into (1) phosphorus management and (2) ensuring a spatially uniform distribution of manure.
APA, Harvard, Vancouver, ISO, and other styles
37

Leech, Fiona J., Alan E. Richardson, Michael A. Kertesz, Beverley A. Orchard, Samiran Banerjee, and Phillip Graham. "Comparative effect of alternative fertilisers on pasture production, soil properties and soil microbial community structure." Crop and Pasture Science 70, no. 12 (2019): 1110. http://dx.doi.org/10.1071/cp19018.

Full text
Abstract:
Different fertiliser products are commonly promoted for use on pastures in order to improve pasture productivity and support a more ‘healthy’ soil microbial environment. However, minimal field research has been conducted to validate such claims. A 6-year study (2009–14) was conducted on phosphorus (P)-deficient soils at three sites near Yass, New South Wales, to investigate the effect of topdressing perennial native-based pastures with a range of alternative fertilisers compared with single superphosphate and an unfertilised control treatment. The alternative fertiliser products included manures, composts, crushed rock, rock-phosphate-derived products, concentrated ash and microbial products. Annual measurements were made of soil chemical properties, botanical composition and pasture yield during spring and/or winter + spring, as well as the relative effectiveness of products per unit of pasture grown. Soil microbial community structure under each fertiliser treatment was also analysed in the sixth year of the study. Fertiliser products with substantial quantities of P increased extractable soil P and resulted in significantly higher pasture growth and clover content compared with the unfertilised control. Superphosphate was found to be the most P-effective fertiliser for increasing pasture growth, along with a range of other products that showed differential responses. However, the cost and P-effectiveness of the products in relation to pasture growth varied considerably and was a function of rate and frequency of application as well as amount and solubility of the P applied. Despite large differences in pasture growth across the various fertiliser treatments, there was no significant effect of the alternative fertiliser products on microbial community structure compared with either the superphosphate or unfertilised control treatments. The observed variation in bacterial, fungal and archaeal community structures across all fertiliser treatments was best explained by soil pH or aluminium (Al) concentration, which was influenced differentially by the fertiliser products. Fungal community structure was also correlated with pasture-productivity parameters (i.e. spring pasture yield, clover content and soil-available P). Our findings reveal a highly resilient soil microbial community that was influenced minimally by use of the alternative fertiliser products, thus highlighting that on-farm management decisions regarding fertiliser product choice should primarily focus on pasture response and cost-effectiveness.
APA, Harvard, Vancouver, ISO, and other styles
38

Reed, Kinsey, and Ember M. Morrissey. "Bridging Ecology and Agronomy to Foster Diverse Pastures and Healthy Soils." Agronomy 12, no. 8 (August 12, 2022): 1893. http://dx.doi.org/10.3390/agronomy12081893.

Full text
Abstract:
Renovating pastures to increase forage species diversity is a burgeoning practice among producers. Over a century of grassland and small-plot research suggests that increasing plant diversity can lead to improved pasture productivity, resilience, and soil health. However, it remains hard to decipher how these benefits translate to grazed production systems given the limited experimentation in realistic grazing systems. There is a disconnect between ecological and agronomic research regarding what qualifies as a “diverse” grassland or pasture. This review aims to examine the current state of research regarding plant diversity and its potential benefits for soil health in pasture systems, and outlines how we can improve our understanding and implementation of this practice in production systems.
APA, Harvard, Vancouver, ISO, and other styles
39

Tanveer, A., A. Khaliq, M. M. Javaid, M. N. Chaudhry, and I. Awan. "Implications of weeds of genus euphorbia for crop production: a review." Planta Daninha 31, no. 3 (September 2013): 723–31. http://dx.doi.org/10.1590/s0100-83582013000300024.

Full text
Abstract:
The genus Euphorbia comprises about 2000 species ranging from annuals to trees, including C3, C4, and CAM species. Euphorbia species widely studied in agriculture includes E. antiquorum, E. carollata, E. dentata, E. dracunculoides, E. esula, E. geniculata, E. granulata, E. helioscopia, E. heterophylla, E. hierosolymitana, E. hirta, E. maculata, E. microphylla, E. nerifolia, E. piluifera, E. pulcherrima, E. royleana, E. supine, and E. thiamifolia. These species have been reported mainly in field crops/vegetables, orchards, pastures, and rangelands. Euphorbia plants may present allelopathic effect over desirable cereals, pulses, oilseeds, vegetables, forage plants, and nitrifying bacteria, posing a serious threat to livestock production on open range lands through the release of allelochemicals from roots, stems, leaves, and inflorescence in the rhizosphere. Leaves are reported to be more toxic than other plant parts. Competition of Euphorbia spp. against crop plants is the most important crop yield-limiting factor. The critical period for Euphorbia competition with crops is reported to take place between 17 to 70 days after emergence for most crops, depending on root development during the initial crop growth stage, crop height, tillering or branching capacity, whether weeds emerge at the same time as the crop or later after crop emergence; how quickly crop canopy develops and also on Euphorbia species. A yield reduction of 4-85% has been reported in field crops with different Euphorbia species and distinct occurrence densities. Euphorbia species decrease herbage production by 10 to 100% in pasture and rangelands, with many acting as natural insecticide, fungicide, nematidicide, immunopotentiator, or immunosuppressor.
APA, Harvard, Vancouver, ISO, and other styles
40

Dunbar, J. E., P. W. Hateley, R. J. Townsend, S. M. Zydenbos, and T. A. Jackson. "Assessing damage by manuka beetles (Pyronota spp) in flipped West Coast pastures." New Zealand Plant Protection 65 (January 8, 2012): 295. http://dx.doi.org/10.30843/nzpp.2012.65.5410.

Full text
Abstract:
Manuka beetles (Pyronota festiva and P setosa) have become a major problem in dairy pastures developed on flipped soils on the South Islands West Coast The beetles rapidly invaded these new pastures and signs of damage appeared within 13 seasons Damage is caused by beetle larvae feeding on the roots of grasses and clovers creating damage patches of dead and dying plants A visual damage scale has been prepared to assist farmers to grade damage and provide a basis to make control decisions Damage rankings were estimated by assessing both the proportion of the paddock with obvious damage patches and the overall vigour of the pasture Increasing damage severity was shown to be strongly correlated with numbers of beetle larvae in the soil Pastures invaded by manuka beetles had lower autumn production and if untreated overall pasture production declined to very low levels within 23 seasons due to poor pasture composition and low pasture covers It is estimated that milk yields on affected farms have been depressed by 30 where no controls have been implemented It is recommended that pastures with high damage gradings should either be treated with insecticide or renewed
APA, Harvard, Vancouver, ISO, and other styles
41

Ongaratto, Fernando, Marcia Helena Machado da Rocha Fernandes, Erick Escobar Dallantonia, Lais de Oliveira Lima, Guilherme Alves do Val, Abmael da Silva Cardoso, Izabela Larosa Rigobello, et al. "Intensive Production and Management of Marandu Palisadegrass (Urochloa brizantha ‘Marandu’) Accelerates Leaf Turnover but Does Not Change Herbage Mass." Agronomy 11, no. 9 (September 15, 2021): 1846. http://dx.doi.org/10.3390/agronomy11091846.

Full text
Abstract:
Pasture intensification through higher stocking rates, nitrogen fertilization and intensified grazing management in beef cattle production optimizes pasture use by increasing the forage harvested. We aimed to assess its effects on the morphogenesis and canopy structure of Urochloa brizantha ‘Marandu’ (marandu palisadegrass) pastures. The treatments consisted of marandu palisadegrass pastures managed under continuous stocking and a canopy height of 25 cm, with different levels of intensification: extensive, semi-intensive, and intensive systems N-fertilized with 0 kg, 75 kg, and 150 kg N ha−1 year−1, respectively, as ammonium nitrate (32% of N), with four replicates (paddocks) in a completely randomized design. Phyllochron (9.8 days) and leaf lifespan (34.7 days) were shorter in intensified pastures, whereas herbage mass was similar among treatments. Extensive pastures had a higher proportion of senescent material; thus, more intensive systems showed higher proportions of leaves and stems, although the leaves-to-stem ratio remained similar across production systems. The defoliation interval was lower in intensive (14.4 days) and higher in extensive (18.7 days) treatments. Thus, pasture intensification accelerates leaf appearance, decreases leaf lifespan, shortens the tiller defoliation interval and increased herbage accumulation rate but does not change herbage mass. The extensive system produces excessive forage losses due to dead material.
APA, Harvard, Vancouver, ISO, and other styles
42

Ferraz-Almeida, Risely, and Raquel Pinheiro da Mota. "Routes of Soil Uses and Conversions with the Main Crops in Brazilian Cerrado: A Scenario from 2000 to 2020." Land 10, no. 11 (October 26, 2021): 1135. http://dx.doi.org/10.3390/land10111135.

Full text
Abstract:
The Brazilian Savannah, also known as Cerrado Biome, is a hotspot for Brazilian biodiversity. The hypothesis tested in this study is that there are diverse routes of soil uses for agriculture production in Cerrado, derived mainly from areas with pasture (natural and planted) due to the decrease in Cerrado deforestation in the last 20 years (from 2000 to 2020). The aim of this study was (i) to determine the profile of crop production in Brazilian Cerrado; (ii) to demonstrate the routes of soil uses during the last 20 years; (iii) to demonstrate the increase of soybean and corn production in Cerrado. The design of the study was based on data of (i) the accumulation of biomass and carbon in Cerrado; (ii) production area and yield of corn, soybean, coffee, sugarcane, cotton, and pasture (natural and planted); (iii) Cerrado deforestation. Results showed that the vegetation of Cerrado promotes a higher accumulation of biomass and carbon on the subsurface, followed by accumulation in the surface, deadwood, and litter. In the last 20 years, there has been a reduction of 75% in deforestation and an increase of 66% in crop areas and 78% in crop yield. However, there was no clear reduction in deforestation specifically in the Matopiba region. In Minas Gerais/MG, Goiás/GO, and Mato Grosso/MT, there were higher productions of coffee/MG, soybean/MT, corn/MT, sugarcane/MG-GO, and cotton/MT. Planted pasture (and not natural pasture) covered the larger areas, representing 75% of the total area with pasture. The low routes of soil uses from deforestation to (i) planted pasture and (ii) crop production explained the decrease in deforestation. The increases in yield and crop areas are explained by the routes from pasture (planted and natural) to agriculture. Our results provided clear insights that programs of Cerrado preservation should continue the decrease of deforestation with the sustainable development in agriculture, mainly in the Matopiba region where there was no clear decrease in deforestation in the last 20 years.
APA, Harvard, Vancouver, ISO, and other styles
43

Evans, P. M., X. Z. Zhang, and P. A. Riffkin. "Annual pasture legumes for farming systems in cool-temperate areas with summer soil moisture deficits." NZGA: Research and Practice Series 11 (January 1, 2003): 149–54. http://dx.doi.org/10.33584/rps.11.2003.3014.

Full text
Abstract:
Seed softening rates of subterranean clover (Trifolium subterraneum) are lower in cool-temperate environments than in typical Mediterranean areas, allowing the accumulation of large seed banks. These large seed banks should enable a pasture to selfregenerate following a year of cropping in which the pasture has been removed. To test this hypothesis, a 1:1 pasture/crop rotation system was established at three sites in southern Victoria, Australia, with subterranean, balansa (T. michelianum), Persian (T. resupinatum) and arrowleaf (T. vesiculosum) clovers. At Hamilton, pure subterranean clover herbage yields of up to 10 t DM/ha were obtained under grazing. This was followed by wheat grain yields averaging 7 t/ha with 12.7% grain protein over three seasons. After a year of dryland cropping, the pastures selfregenerated with more than 3 000 clover seedlings/ m2. At Gnarwarre and Streatham, all four clover species were well adapted to the pasture/crop rotation in terms of their seed-seedling dynamics, with the highest regeneration after cropping at 8 000 seedlings/m2 in balansa clover and the highest seasonal herbage production of 12.8 t DM/ha in arrowleaf clover. No nitrogen fertiliser was applied in the system. Key words: annual legumes, cool-temperate climate, crops, seed softening rates
APA, Harvard, Vancouver, ISO, and other styles
44

Grekul, Chad W., and Edward W. Bork. "Herbage Yield Losses in Perennial Pasture Due to Canada Thistle (Cirsium arvense)." Weed Technology 18, no. 3 (September 2004): 784–94. http://dx.doi.org/10.1614/wt-03-196r.

Full text
Abstract:
Although the impact of Canada thistle (CT) on annual crop production is relatively well established, few investigations report on this weed's impact within perennial pastures. This field study assessed herbage yield losses within eight central Alberta pastures from 1999 to 2001. Each pasture was sampled in 1999 to quantify thistle and herbage biomass within 25 permanent plots. CT was controlled in 2000 and the response of vegetation measured in 2000 and 2001. Before removal, significant negative relationships (P < 0.05) between thistle abundance and herbage were noted at six sites. After thistle removal, herbage at several sites displayed positive responses. Both thistle density and biomass adequately predicted herbage yield loss. Yield losses due to CT can be substantial, peaking at 2 kg/ha for each kilogram of standing thistle biomass and 4.3 kg/ha with each additional thistle stem per square meter. Demonstrated yield losses were variable among sites however, likely due to factors such as heterogeneity in soils, available moisture, and variation in disturbance history or pasture vegetation composition. CT management in perennial pastures of western Canada may enhance pasture production, but further research is required to reliably predict the ability of pastures to respond.
APA, Harvard, Vancouver, ISO, and other styles
45

Solaiman, Zakaria. "Biochar and fertiliser interactions in crop and pasture production." Crop & Pasture Science 74, no. 2 (December 19, 2022): 1–5. http://dx.doi.org/10.1071/cp22310.

Full text
Abstract:
This foreword provides a summary of papers included in this special issue on biochar and fertiliser interactions for crop and pastures productivity. This special issue includes published papers on how biochar and fertiliser affect soil health and crop yields and overcome soil constraints such as acidity, salinity, low fertility and remediation of metal and pesticides contaminated soils.
APA, Harvard, Vancouver, ISO, and other styles
46

Rovira, Pablo, Walter Ayala, José Terra, Fernando García-Préchac, Paul Harris, Michael R. F. Lee, and M. Jordana Rivero. "The ‘Palo a Pique’ Long-Term Research Platform: First 25 Years of a Crop–Livestock Experiment in Uruguay." Agronomy 10, no. 3 (March 23, 2020): 441. http://dx.doi.org/10.3390/agronomy10030441.

Full text
Abstract:
Mixed crop–livestock long-term experiments (LTE) are critical to increase the understanding of sustainability in complex agroecosystems. One example is the ‘Palo a Pique’ LTE which has been running for 25 years in Uruguay (from 1995 to present), evaluating four pasture–crop rotations under livestock grazing with no-till technology in soils with severe limitations. The results demonstrate that cropping systems reduced soil organic carbon (SOC) compared with permanent pastures, and that perennial pastures rotating with crops were critical to mitigate SOC losses. Data from the ‘Palo a Pique’ LTE has contributed to the establishment of new national policies to secure the sustainability of agricultural-based systems. Although the original purpose of the LTE was oriented to crops and soils, a demand for sustainable livestock intensification has gathered momentum over recent years. As a result, the current approach of the ‘Palo a Pique’ LTE matches each pasture–crop rotation with the most suitable livestock strategy with the common goal of producing 400 kg liveweight/ha per year. General approaches to the pursuit of sustainable livestock intensification include shortening the cycle of production, diversifying animal categories, increasing liveweight gain and final animal liveweight, and strategic livestock supplementation. Prediction of trade-offs between environmental, economic, and production indicators can be addressed through monitoring and modeling, enabling the timely anticipation of adverse sustainability issues on commercial farms. The ‘Palo a Pique’ LTE serves as a framework to address contemporary and future questions dealing with the role of ruminants on climate change, competition for land, nutrient dynamics, and food security.
APA, Harvard, Vancouver, ISO, and other styles
47

Trivelin, Gustavo Antunes, Cristiana Andrighetto, Gustavo Pavan Mateus, Patrícia Aparecida da Luz, Elaine Mendonça Bernardes, Gelci Carlos Lupatini, Helena Sampaio Aranha, et al. "Animal production and economic viability of integrated crop livestock systems." International Journal for Innovation Education and Research 8, no. 8 (August 1, 2020): 530–40. http://dx.doi.org/10.31686/ijier.vol8.iss8.2559.

Full text
Abstract:
Integrated crop-livestock-forest system appears as strategy to reduce pasture recovery costs and diversify farmer’s income with the sale of the wood of eucalyptus trees. The objective of this work was to evaluate the animal performance and economic viability of systems without shade availability (ICL: Integrated Crop-Livestock) and with two tree densities (ICLF-1L: Integrated Crop-Livestock-Forest, 196 trees ha-1; ICLF-3L: Integrated Crop-Livestock-Forest, 448 trees ha-1). Sixty castrated Nellore cattle were used to evaluate performance during rearing and finishing. For economic analysis, the cash receipts, cash outflow, cash flow, net cash flow and internal rate of return (IRR) were evaluated between December 2012 and June 2016. The performance of the animals was lower in ICLF-3L system (P<0.05) due to the higher density of trees, and consequently, greater shading of the pasture. In ICL and ICLF-1L systems, the revenue from soybean and corn fully paid for the costs of implementing the systems, and ICLF-1L still covered the cost of forest deployment. In ICLF-3L, the costs were almost completely covered. The reduction in the productive indices also reduced the revenue from the slaughter of cattle in ICLF-3L, with the highest revenue in ICL and ICLF-1L, respectively. In addition, the IRR in ICL and ICLF-1L was higher. ICLFs contribute to the amortization of the recovery costs of the pastures and the implantation of eucalyptus. The ICL and ICLF-1L is more economically viable tham ICFL-3L until the fourth year of implementation.
APA, Harvard, Vancouver, ISO, and other styles
48

Li, Guangdi D., Richard C. Hayes, Jeff I. McCormick, Matthew J. Gardner, Graeme A. Sandral, and Brian S. Dear. "Time of sowing and the presence of a cover-crop determine the productivity and persistence of perennial pastures in mixed farming systems." Crop and Pasture Science 65, no. 10 (2014): 988. http://dx.doi.org/10.1071/cp13447.

Full text
Abstract:
Incorporation of perennial pastures into cropping rotations can improve whole-farm productivity, profitability and sustainability of mixed farming systems in southern Australia. However, success in establishing perennial pastures depends on choice of species, time of sowing, method of establishment, seasonal conditions, and whether sowing is under a cover-crop. Field experiments were sown from 2008 to 2010 to determine effects of sowing time and the presence of a cover-crop on the performance of four perennial pasture species, lucerne (Medicago sativa L.), chicory (Cichorium intybus L.), phalaris (Phalaris aquatica L.) and cocksfoot (Dactylis glomerata L.), at Yerong Creek, New South Wales (NSW). Results showed that lucerne was the most productive pasture, followed by chicory and phalaris, with cocksfoot being the poorest performer. Under favourable seasonal conditions, lucerne and chicory pastures produced 29.3 and 25.0 t ha–1 of total dry matter (DM), comprising 71% and 52%, respectively, of sown perennial species in the sward in their second growing season, when sown in autumn. Spring-sown pastures produced 24.6 and 18.3 t ha–1 of total DM in the second season, with 55% and 47% of sown species in the sward being lucerne and chicory, respectively. However, spring-sown pastures contained a very low proportion of subterranean clover (Trifolium subterraneum L.) in the sward in the first 2 years, despite efforts to broadcast seeds at the break of season in the following year. It is recommended that non-legume perennial species, such as chicory and phalaris, be sown in autumn with companion annual legumes until methods are developed and tested to establish annual legumes reliably in spring. However, lucerne can be established in autumn or spring because it can fix its own nitrogen and is not reliant on a companion legume. Cocksfoot cv. Kasbah, in general, appears less suitable than the other perennial species for this medium-rainfall environment in southern NSW. Our study showed that pastures sown without a cover-crop had the most reliable establishment, whereas pastures sown with a cover-crop in a dry year had poor establishment or total failure, as well as a significant reduction of grain yield from the cover-crop. In a wet year, pastures established satisfactorily under a cover-crop; however, growth of the cover-crop still suppressed pasture DM production in subsequent years. Research is under way to model our data to determine the likely financial implications of establishing perennial pastures under cover-crops.
APA, Harvard, Vancouver, ISO, and other styles
49

Bell, Matthew J., Richard J. Eckard, Matthew T. Harrison, James S. Neal, and Brendan R. Cullen. "Effect of warming on the productivity of perennial ryegrass and kikuyu pastures in south-eastern Australia." Crop and Pasture Science 64, no. 1 (2013): 61. http://dx.doi.org/10.1071/cp12358.

Full text
Abstract:
Grazed pastures in south-eastern Australia are typically based on temperate (C3) species, such as perennial ryegrass (Lolium perenne). With predictions of warming to occur in this region, there has been growing interest in the performance of more heat-tolerant and deep-rooted subtropical (C4) pasture grasses, such as kikuyu (Pennisetum clandestinum). This study used an existing pasture model to estimate the production of kikuyu compared with the commonly used perennial ryegrass at seven sites in south-eastern Australia, using an historical baseline climate scenario between 1971 and 2010, and the daily temperature of the baseline scenario adjusted by +1, +2, and +3°C to represent potential warming in the future. The seven sites were chosen to represent the range of climatic zones and soil types in the region. First, the model predictions of monthly kikuyu dry matter (DM) production were validated with measured data at Taree, Camden, and Bega, with results showing good agreement. Second, pasture production (t DM/ha), metabolisable energy (ME, MJ/kg DM) content, and ME yield (GJ/ha) were predicted using the baseline and warmer climate scenarios. The study was based on 56 simulations of the factorial arrangement of seven sites × four temperature scenarios × two pastures. The month and annual ME yield of a kikuyu–subterranean clover (Trifolium subterraneum) pasture and a perennial ryegrass–subterranean clover pasture were compared. This study showed that in summer-dominant rainfall locations, where the average maximum temperature is >23°C, kikuyu was a more productive pasture species than perennial ryegrass. In winter-dominant rainfall locations during the warmer months of December–March, kikuyu can provide a useful source of ME when perennial ryegrass is less productive. With warming of up to 3°C at the winter-dominant rainfall sites, the average ME yield per year of kikuyu was predicted to surpass that of perennial ryegrass, but inter-annual variation in kikuyu production was higher. The nutritive value, seasonal distribution of growth, total annual production, and its variability are all important considerations for producers when selecting pasture species.
APA, Harvard, Vancouver, ISO, and other styles
50

Robertson, S. M. "Predicting pasture and sheep production in the Victorian Mallee with the decision support tool, GrassGro." Australian Journal of Experimental Agriculture 46, no. 8 (2006): 1005. http://dx.doi.org/10.1071/ea04034.

Full text
Abstract:
The GrassGro decision support tool was designed to quantify sheep and pasture production in response to management and climate variability in temperate Australia, and has been tested in temperate but not low-rainfall Australian conditions. Data from field experiments and from on-farm monitoring was used to test GrassGro predictions of annual and perennial pasture production, and sheep production at 4 locations throughout the Victorian Mallee, which is a low-rainfall area (275–375 mm annually). Predictions of long-term pasture production were then made. Predictions of the herbage biomass of annual pastures closely matched observed data for both a sandy loam (1991–2002 data) and a whole paddock (combining sandy loam and loam and sand) (2001–2002 data) soil type, at several locations across the Victorian Mallee. Linear regression between observed and simulated (April to September) data produced coefficients, significance and root mean square error of r2 = 0.81, P<0.001, 217 kg DM/ha, respectively, for sandy loam soil types and r2 = 0.94, P<0.001, 72 kg DM/ha, respectively, for whole paddock soil types. A series of simulations for individual years from 1970 to 2002 quantified the large impact of climate variability and demonstrated that seedbank and location, but not soil fertility, had a large influence on annual pasture production. However, GrassGro underestimated the production of the perennial pasture, lucerne (r2 = 0.2). GrassGro was also unable to adequately predict sheep production because it failed to take into account the sparse, clumpy structure of the low biomass pastures typical of this region. Methods to improve GrassGro were identified and included: (i) the need to adjust sheep intake from low biomass, sparse pastures, (ii) the ability to predict summer growing and autumn growing plant species, (iii) the ability to graze crop stubbles and (iv) refinements to the coefficients of equations used to model lucerne growth.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography