To see the other types of publications on this topic, follow the link: CrMnFeCoNi.

Journal articles on the topic 'CrMnFeCoNi'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'CrMnFeCoNi.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gadelmeier, Christian, Sebastian Haas, Tim Lienig, Anna Manzoni, Michael Feuerbacher, and Uwe Glatzel. "Temperature Dependent Solid Solution Strengthening in the High Entropy Alloy CrMnFeCoNi in Single Crystalline State." Metals 10, no. 11 (October 23, 2020): 1412. http://dx.doi.org/10.3390/met10111412.

Full text
Abstract:
The main difference between high entropy alloys and conventional alloys is the solid solution strengthening effect, which shifts from a single element to a multi-element matrix. Little is known about the effectiveness of this effect at high temperatures. Face-centered cubic, equiatomic, and single crystalline high entropy alloy CrMnFeCoNi was pre-alloyed by arc-melting and cast as a single crystal using the Bridgman process. Mechanical characterization by creep testing were performed at temperatures of 700, 980, 1100, and 1200 °C at different loads under vacuum and compared to single-crystalline pure nickel. The results allow a direct assessment of the influence of the chemical composition without any disturbance by grain boundary sliding or diffusion. The results indicate different behaviors of single crystalline pure nickel and CrMnFeCoNi. At 700 °C CrMnFeCoNi is more creep-resistant than Ni, but at 980 °C both alloys show a nearly similar creep strength. Above 980 °C the creep behavior is identical and the solid solution strengthening effect of the CrMnFeCoNi alloy disappears.
APA, Harvard, Vancouver, ISO, and other styles
2

Kang, You Bin, Kap Ho Lee, and Sun Ig Hong. "Creep Behaviors of CrMnFeCoNi High Entropy Alloy at Intermediate Temperatures." Key Engineering Materials 737 (June 2017): 21–26. http://dx.doi.org/10.4028/www.scientific.net/kem.737.21.

Full text
Abstract:
In this study, creep properties and fracture behavior of CrMnFeCoNi high entropy alloy (HEA) were studied at intermediate temperatures. The invert-type transient primary creep behaviors were observed in CrMnFeCoNi high entropy alloy. Creep behaviors of HEA are similar to those of class I solid solution alloys. The transient creep curves upon increase of stress by 5MPa in the steady state creep region did not change much except the sudden strain increase. And, no decrease of creep rate was observed upon increase of stress. Instead, the slightly invert transient creep or almost straight creep curves were observed, supporting the high friction stress. CrMnFeCoNi high entropy alloy has a stress exponent of 3.75 and the creep activation energy was calculated to be 278KJ/mole. The fracture strain increased from 1.3 to 1.6 with the decrease of stress from 96 MPa to 48MPa. The lower stress exponent along with the invert type primary creep curves strongly suggest that the creep of CrMnFeCoNi high entropy alloy at 600°C~650°C occurs by a glide controlled process.
APA, Harvard, Vancouver, ISO, and other styles
3

Krapivka, M. O., Yu P. Mazur, M. P. Semen’ko, and S. O. Firstov. "Structure of the High-Entropy CrMnFeCoNi and CrMnFeCoNi$_{2}$Cu Alloys and Thermal Stability of Its Electrical Transport Properties." METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 37, no. 6 (August 17, 2016): 731–40. http://dx.doi.org/10.15407/mfint.37.06.0731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Semen’ko, М. P., Yu P. Mazur, and R. V. Ostapenko. "Features Thermomagnetic Behavior of CrMnFeCoNi High Entropy Alloy." Journal of Nano- and Electronic Physics 8, no. 3 (2016): 03029–1. http://dx.doi.org/10.21272/jnep.8(3).03029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Peng, Hailong, Yangcenzi Xie, Zicheng Xie, Yunfeng Wu, Wenkun Zhu, Shuquan Liang, and Liangbing Wang. "Large-scale and facile synthesis of a porous high-entropy alloy CrMnFeCoNi as an efficient catalyst." Journal of Materials Chemistry A 8, no. 35 (2020): 18318–26. http://dx.doi.org/10.1039/d0ta04940a.

Full text
Abstract:
Porous high entropy alloy CrMnFeCoNi exhibited remarkable catalytic activity and stability toward p-nitrophenol hydrogenation. The enhanced catalytic performance not only resulted from the high surface area, but also from exposed high-index facets with terraces.
APA, Harvard, Vancouver, ISO, and other styles
6

Xiao, L. L., Z. Q. Zheng, S. W. Guo, P. Huang, and F. Wang. "Ultra-strong nanostructured CrMnFeCoNi high entropy alloys." Materials & Design 194 (September 2020): 108895. http://dx.doi.org/10.1016/j.matdes.2020.108895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Z., S. A. David, Z. Feng, and H. Bei. "Weldability of a high entropy CrMnFeCoNi alloy." Scripta Materialia 124 (November 2016): 81–85. http://dx.doi.org/10.1016/j.scriptamat.2016.06.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fu, Wujing, Wei Zheng, Yongjiang Huang, Fangmin Guo, Songshan Jiang, Peng Xue, Yang Ren, Hongbo Fan, Zhiliang Ning, and Jianfei Sun. "Cryogenic mechanical behaviors of CrMnFeCoNi high-entropy alloy." Materials Science and Engineering: A 789 (July 2020): 139579. http://dx.doi.org/10.1016/j.msea.2020.139579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pickering, E. J., R. Muñoz-Moreno, H. J. Stone, and N. G. Jones. "Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi." Scripta Materialia 113 (March 2016): 106–9. http://dx.doi.org/10.1016/j.scriptamat.2015.10.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Laplanche, G., U. F. Volkert, G. Eggeler, and E. P. George. "Oxidation Behavior of the CrMnFeCoNi High-Entropy Alloy." Oxidation of Metals 85, no. 5-6 (March 4, 2016): 629–45. http://dx.doi.org/10.1007/s11085-016-9616-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Jang, Min Ji, Soo-Hyun Joo, Che-Wei Tsai, Jien-Wei Yeh, and Hyoung Seop Kim. "Compressive deformation behavior of CrMnFeCoNi high-entropy alloy." Metals and Materials International 22, no. 6 (October 30, 2016): 982–86. http://dx.doi.org/10.1007/s12540-016-6304-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Muniandy, Yokasundery, Mengwei He, Mehdi Eizadjou, Easo P. George, Jamie J. Kruzic, Simon P. Ringer, and Bernd Gludovatz. "Compositional variations in equiatomic CrMnFeCoNi high-entropy alloys." Materials Characterization 180 (October 2021): 111437. http://dx.doi.org/10.1016/j.matchar.2021.111437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Tanaka, Katsushi, Takeshi Teramoto, and Ryo Ito. "Monocrystalline elastic constants of fcc-CrMnFeCoNi high entropy alloy." MRS Advances 2, no. 27 (2017): 1429–34. http://dx.doi.org/10.1557/adv.2017.76.

Full text
Abstract:
ABSTRACTMono-crystalline elastic constants of equiatomic quinary Cr-Mn-Fe-Co-Ni high entropy alloy with the fcc structure have experimentally been determined by a resonance ultrasound spectroscopy at room temperature. The values of the bulk modulus of the high entropy alloy experimentally determined are similar to other conventional fcc metals when the values are normalized by the melting points. This indicates that the entropy change at melting is similar to that of conventional metals. The values of Pough’s index and the Cauchy pressure are determined as 1.79 and -11.6 GPa, respectively. When the ductility of the alloy is judged from the indices, the ductility of the high entropy alloy is limited. In order to explain the negative Cauchy pressure of the high entropy alloy, it is required to assume that relatively strong directional interatomic bondings like intermetallic compounds exist in the alloy though the crystal is disordered solid solution.
APA, Harvard, Vancouver, ISO, and other styles
14

Zhang, M., E. P. George, and J. C. Gibeling. "Tensile creep properties of a CrMnFeCoNi high-entropy alloy." Scripta Materialia 194 (March 2021): 113633. http://dx.doi.org/10.1016/j.scriptamat.2020.113633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zendejas Medina, L., L. Riekehr, and U. Jansson. "Phase formation in magnetron sputtered CrMnFeCoNi high entropy alloy." Surface and Coatings Technology 403 (December 2020): 126323. http://dx.doi.org/10.1016/j.surfcoat.2020.126323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Li, Zezhou, Shiteng Zhao, Senhat M. Alotaibi, Yong Liu, Bingfeng Wang, and Marc A. Meyers. "Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy." Acta Materialia 151 (June 2018): 424–31. http://dx.doi.org/10.1016/j.actamat.2018.03.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ikeda, Yuji, Fritz Körmann, Isao Tanaka, and Jörg Neugebauer. "Impact of Chemical Fluctuations on Stacking Fault Energies of CrCoNi and CrMnFeCoNi High Entropy Alloys from First Principles." Entropy 20, no. 9 (August 30, 2018): 655. http://dx.doi.org/10.3390/e20090655.

Full text
Abstract:
Medium and high entropy alloys (MEAs and HEAs) based on 3d transition metals, such as face-centered cubic (fcc) CrCoNi and CrMnFeCoNi alloys, reveal remarkable mechanical properties. The stacking fault energy (SFE) is one of the key ingredients that controls the underlying deformation mechanism and hence the mechanical performance of materials. Previous experiments and simulations have therefore been devoted to determining the SFEs of various MEAs and HEAs. The impact of local chemical environment in the vicinity of the stacking faults is, however, still not fully understood. In this work, we investigate the impact of the compositional fluctuations in the vicinity of stacking faults for two prototype fcc MEAs and HEAs, namely CrCoNi and CrMnFeCoNi by employing first-principles calculations. Depending on the chemical composition close to the stacking fault, the intrinsic SFEs vary in the range of more than 150 mJ/m 2 for both the alloys, which indicates the presence of a strong driving force to promote particular types of chemical segregations towards the intrinsic stacking faults in MEAs and HEAs. Furthermore, the dependence of the intrinsic SFEs on local chemical fluctuations reveals a highly non-linear behavior, resulting in a non-trivial interplay of local chemical fluctuations and SFEs. This sheds new light on the importance of controlling chemical fluctuations via tuning, e.g., the annealing condition to obtain the desired mechanical properties for MEAs and HEAs.
APA, Harvard, Vancouver, ISO, and other styles
18

Mazur, Yu P., R. V. Ostapenko, and M. P. Semen'ko. "Influence of a Cold Plastic Deformation on the Electrical Resistivity of CrMnFeCoNi High-Entropy Alloy." Ukrainian Journal of Physics 62, no. 5 (June 2017): 413–21. http://dx.doi.org/10.15407/ujpe62.05.0413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dong, Dingqian, Xin Xiang, Bo Huang, Huiwen Xiong, Li Zhang, Kaihua Shi, and Jun Liao. "Microstructure and properties of WC-Co/CrMnFeCoNi composite cemented carbides." Vacuum 179 (September 2020): 109571. http://dx.doi.org/10.1016/j.vacuum.2020.109571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Pang, Jingyu, Ting Xiong, Xinxin Wei, Zhengwang Zhu, Bo Zhang, Yangtao Zhou, Xiaohong Shao, Qianqian Jin, Shijian Zheng, and Xiuliang Ma. "Oxide MnCr2O4 induced pitting corrosion in high entropy alloy CrMnFeCoNi." Materialia 6 (June 2019): 100275. http://dx.doi.org/10.1016/j.mtla.2019.100275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jo, Min-Gu, Thi Anh Nguyet Nguyen, Siwook Park, Jin-Yoo Suh, Sung-Tae Hong, and Heung Nam Han. "Electrically Assisted Solid-State Joining of CrMnFeCoNi High-Entropy Alloy." Metallurgical and Materials Transactions A 51, no. 12 (October 10, 2020): 6142–48. http://dx.doi.org/10.1007/s11661-020-06035-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ye, Qingfeng, Kai Feng, Zhuguo Li, Fenggui Lu, Ruifeng Li, Jian Huang, and Yixiong Wu. "Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating." Applied Surface Science 396 (February 2017): 1420–26. http://dx.doi.org/10.1016/j.apsusc.2016.11.176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Gao, N., D. H. Lu, Y. Y. Zhao, X. W. Liu, G. H. Liu, Y. Wu, G. Liu, Z. T. Fan, Z. P. Lu, and E. P. George. "Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation." Journal of Alloys and Compounds 792 (July 2019): 1028–35. http://dx.doi.org/10.1016/j.jallcom.2019.04.121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Qiao, Yu, Yan Chen, Fu-Hua Cao, Hai-Ying Wang, and Lan-Hong Dai. "Dynamic behavior of CrMnFeCoNi high-entropy alloy in impact tension." International Journal of Impact Engineering 158 (December 2021): 104008. http://dx.doi.org/10.1016/j.ijimpeng.2021.104008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zhang, M., E. P. George, and J. C. Gibeling. "Elevated-temperature Deformation Mechanisms in a CrMnFeCoNi High-Entropy Alloy." Acta Materialia 218 (October 2021): 117181. http://dx.doi.org/10.1016/j.actamat.2021.117181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sun, Xun, Hualei Zhang, Wei Li, Xiangdong Ding, Yunzhi Wang, and Levente Vitos. "Generalized Stacking Fault Energy of Al-Doped CrMnFeCoNi High-Entropy Alloy." Nanomaterials 10, no. 1 (December 26, 2019): 59. http://dx.doi.org/10.3390/nano10010059.

Full text
Abstract:
Using first-principles methods, we investigate the effect of Al on the generalized stacking fault energy of face-centered cubic (fcc) CrMnFeCoNi high-entropy alloy as a function of temperature. Upon Al addition or temperature increase, the intrinsic and extrinsic stacking fault energies increase, whereas the unstable stacking fault and unstable twinning fault energies decrease monotonously. The thermodynamic expression for the intrinsic stacking fault energy in combination with the theoretical Gibbs energy difference between the hexagonal close packed (hcp) and fcc lattices allows one to determine the so-called hcp-fcc interfacial energy. The results show that the interfacial energy is small and only weakly dependent on temperature and Al content. Two parameters are adopted to measure the nano-twinning ability of the present high-entropy alloys (HEAs). Both measures indicate that the twinability decreases with increasing temperature or Al content. The present study provides systematic theoretical plasticity parameters for modeling and designing high entropy alloys with specific mechanical properties.
APA, Harvard, Vancouver, ISO, and other styles
27

Oliveira, J. P., T. M. Curado, Z. Zeng, J. G. Lopes, Emma Rossinyol, Jeong Min Park, N. Schell, F. M. Braz Fernandes, and Hyoung Seop Kim. "Gas tungsten arc welding of as-rolled CrMnFeCoNi high entropy alloy." Materials & Design 189 (April 2020): 108505. http://dx.doi.org/10.1016/j.matdes.2020.108505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Litwa, Przemyslaw, Everth Hernandez-Nava, Dikai Guan, Russell Goodall, and Krystian K. Wika. "The additive manufacture processing and machinability of CrMnFeCoNi high entropy alloy." Materials & Design 198 (January 2021): 109380. http://dx.doi.org/10.1016/j.matdes.2020.109380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Firstov, S. A., T. G. Rogul’, N. A. Krapivka, S. S. Ponomarev, V. V. Kovylyaev, N. I. Danilenko, N. D. Bega, V. I. Danilenko, and S. I. Chugunova. "Structural Features and Solid-Solution Hardening of High-Entropy CrMnFeCoNi Alloy." Powder Metallurgy and Metal Ceramics 55, no. 3-4 (July 2016): 225–35. http://dx.doi.org/10.1007/s11106-016-9797-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Laurent-Brocq, Mathilde, Alfiya Akhatova, Loïc Perrière, Siham Chebini, Xavier Sauvage, Eric Leroy, and Yannick Champion. "Insights into the phase diagram of the CrMnFeCoNi high entropy alloy." Acta Materialia 88 (April 2015): 355–65. http://dx.doi.org/10.1016/j.actamat.2015.01.068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Gludovatz, Bernd, Easo P. George, and Robert O. Ritchie. "Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy." JOM 67, no. 10 (August 19, 2015): 2262–70. http://dx.doi.org/10.1007/s11837-015-1589-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Laurent-Brocq, Mathilde, Xavier Sauvage, Alfiya Akhatova, Loïc Perrière, Eric Leroy, and Yannick Champion. "Precipitation and Hardness of Carbonitrides in a CrMnFeCoNi High Entropy Alloy." Advanced Engineering Materials 19, no. 5 (February 13, 2017): 1600715. http://dx.doi.org/10.1002/adem.201600715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

FUJITA, Keisuke, Hiroshi FUJIWARA, and Shoichi KIKUCHI. "Bimodal Microstructure Design of CrMnFeCoNi High-Entropy Alloy Using Powder Metallurgy." Journal of the Society of Materials Science, Japan 70, no. 8 (August 15, 2021): 648–55. http://dx.doi.org/10.2472/jsms.70.648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sathiaraj, G. Dan, Rajib Kalsar, Satyam Suwas, and Werner Skrotzki. "Effect of Stacking Fault Energy on Microstructure and Texture Evolution during the Rolling of Non-Equiatomic CrMnFeCoNi High-Entropy Alloys." Crystals 10, no. 7 (July 13, 2020): 607. http://dx.doi.org/10.3390/cryst10070607.

Full text
Abstract:
The evolution of microstructure and texture in three non-equiatomic CrMnFeCoNi high-entropy alloys (HEAs) with varying stacking fault energy (SFE) has been studied in up to 90% rolling reductions at both room and cryogenic temperature. All the HEAs deform by dislocation slip and additional mechanical twinning at intermediate and shear banding at high rolling strains. The microstructure is quite heterogeneous and, with strain, becomes highly fragmented. During rolling, a characteristic brass-type texture develops. Its strength increases with a decreasing SFE and the lowering of the rolling temperature. The texture evolution is discussed with regard to planar slip, mechanical twinning, and shear banding.
APA, Harvard, Vancouver, ISO, and other styles
35

Kamarád, J., M. Friák, J. Kaštil, O. Schneeweiss, M. Šob, and A. Dlouhý. "Effect of high pressure on magnetic properties of CrMnFeCoNi high entropy alloy." Journal of Magnetism and Magnetic Materials 487 (October 2019): 165333. http://dx.doi.org/10.1016/j.jmmm.2019.165333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Gu, Ji, and Min Song. "Annealing-induced abnormal hardening in a cold rolled CrMnFeCoNi high entropy alloy." Scripta Materialia 162 (March 2019): 345–49. http://dx.doi.org/10.1016/j.scriptamat.2018.11.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

XU, Jun, Cheng-ming CAO, Ping GU, and Liang-ming PENG. "Microstructures, tensile properties and serrated flow of Al CrMnFeCoNi high entropy alloys." Transactions of Nonferrous Metals Society of China 30, no. 3 (March 2020): 746–55. http://dx.doi.org/10.1016/s1003-6326(20)65250-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Owen, L. R., E. J. Pickering, H. Y. Playford, H. J. Stone, M. G. Tucker, and N. G. Jones. "An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy." Acta Materialia 122 (January 2017): 11–18. http://dx.doi.org/10.1016/j.actamat.2016.09.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Jang, Min Ji, S. Praveen, Hyun Je Sung, Jae Wung Bae, Jongun Moon, and Hyoung Seop Kim. "High-temperature tensile deformation behavior of hot rolled CrMnFeCoNi high-entropy alloy." Journal of Alloys and Compounds 730 (January 2018): 242–48. http://dx.doi.org/10.1016/j.jallcom.2017.09.293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Li, Y. J., A. Kostka, A. Savan, and A. Ludwig. "Atomic-scale investigation of fast oxidation kinetics of nanocrystalline CrMnFeCoNi thin films." Journal of Alloys and Compounds 766 (October 2018): 1080–85. http://dx.doi.org/10.1016/j.jallcom.2018.07.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Fu, Wujing, Kefu Gan, Yongjiang Huang, Zhiliang Ning, Jianfei Sun, and Fuyang Cao. "Elucidating the transition of cryogenic deformation mechanism of CrMnFeCoNi high entropy alloy." Journal of Alloys and Compounds 872 (August 2021): 159606. http://dx.doi.org/10.1016/j.jallcom.2021.159606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Yang, Jianyan, Weijun Ren, Xinguo Zhao, Tatsuya Kikuchi, Ping Miao, Kenji Nakajima, Bing Li, and Zhidong Zhang. "Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi." Journal of Materials Science & Technology 99 (February 2022): 55–60. http://dx.doi.org/10.1016/j.jmst.2021.04.077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Wang, Hao, Dengke Chen, Xianghai An, Yin Zhang, Shijie Sun, Yanzhong Tian, Zhefeng Zhang, et al. "Deformation-induced crystalline-to-amorphous phase transformation in a CrMnFeCoNi high-entropy alloy." Science Advances 7, no. 14 (March 2021): eabe3105. http://dx.doi.org/10.1126/sciadv.abe3105.

Full text
Abstract:
The Cantor high-entropy alloy (HEA) of CrMnFeCoNi is a solid solution with a face-centered cubic structure. While plastic deformation in this alloy is usually dominated by dislocation slip and deformation twinning, our in situ straining transmission electron microscopy (TEM) experiments reveal a crystalline-to-amorphous phase transformation in an ultrafine-grained Cantor alloy. We find that the crack-tip structural evolution involves a sequence of formation of the crystalline, lamellar, spotted, and amorphous patterns, which represent different proportions and organizations of the crystalline and amorphous phases. Such solid-state amorphization stems from both the high lattice friction and high grain boundary resistance to dislocation glide in ultrafine-grained microstructures. The resulting increase of crack-tip dislocation densities promotes the buildup of high stresses for triggering the crystalline-to-amorphous transformation. We also observe the formation of amorphous nanobridges in the crack wake. These amorphization processes dissipate strain energies, thereby providing effective toughening mechanisms for HEAs.
APA, Harvard, Vancouver, ISO, and other styles
44

Ghomsheh, M. Zare, G. Khatibi, B. Weiss, M. Lederer, S. Schwarz, A. Steiger-Thirsfeld, M. A. Tikhonovsky, E. D. Tabachnikova, and E. Schafler. "High cycle fatigue deformation mechanisms of a single phase CrMnFeCoNi high entropy alloy." Materials Science and Engineering: A 777 (March 2020): 139034. http://dx.doi.org/10.1016/j.msea.2020.139034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Li, Jinfeng, Hengwei Luan, Linsen Zhou, Abdukadir Amar, Rui Li, Liufei Huang, Xue Liu, et al. "Phase transformation - induced strengthening of an additively manufactured multi- principal element CrMnFeCoNi alloy." Materials & Design 195 (October 2020): 108999. http://dx.doi.org/10.1016/j.matdes.2020.108999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Guan, S., D. Wan, K. Solberg, F. Berto, T. Welo, T. M. Yue, and K. C. Chan. "Additively manufactured CrMnFeCoNi/AlCoCrFeNiTi0.5 laminated high-entropy alloy with enhanced strength-plasticity synergy." Scripta Materialia 183 (July 2020): 133–38. http://dx.doi.org/10.1016/j.scriptamat.2020.03.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Laplanche, G., A. Kostka, O. M. Horst, G. Eggeler, and E. P. George. "Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy." Acta Materialia 118 (October 2016): 152–63. http://dx.doi.org/10.1016/j.actamat.2016.07.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sun, Xun, Hualei Zhang, Song Lu, Xiangdong Ding, Yunzhi Wang, and Levente Vitos. "Phase selection rule for Al-doped CrMnFeCoNi high-entropy alloys from first-principles." Acta Materialia 140 (November 2017): 366–74. http://dx.doi.org/10.1016/j.actamat.2017.08.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Skrotzki, W., A. Pukenas, B. Joni, E. Odor, T. Ungar, A. Hohenwarter, R. Pippan, and E. P. George. "Microstructure and texture evolution during severe plastic deformation of CrMnFeCoNi high-entropy alloy." IOP Conference Series: Materials Science and Engineering 194 (May 2017): 012028. http://dx.doi.org/10.1088/1757-899x/194/1/012028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Koppoju, Suresh, Satya Prasad Konduri, Prashanthi Chalavadi, Srinivasa Rao Bonta, and Ramakrishna Mantripragada. "Effect of Ni on Microstructure and Mechanical Properties of CrMnFeCoNi High Entropy Alloy." Transactions of the Indian Institute of Metals 73, no. 4 (November 7, 2019): 853–62. http://dx.doi.org/10.1007/s12666-019-01838-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography