Journal articles on the topic 'CRISPR, Gene editing, Parkinson, Gene therapy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CRISPR, Gene editing, Parkinson, Gene therapy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chung, Sun-Ku, and Seo-Young Lee. "Advances in Gene Therapy Techniques to Treat LRRK2 Gene Mutation." Biomolecules 12, no. 12 (2022): 1814. http://dx.doi.org/10.3390/biom12121814.
Full textRahman, Mujeeb ur, Muhammad Bilal, Junaid Ali Shah, Ajeet Kaushik, Pierre-Louis Teissedre, and Małgorzata Kujawska. "CRISPR-Cas9-Based Technology and Its Relevance to Gene Editing in Parkinson’s Disease." Pharmaceutics 14, no. 6 (2022): 1252. http://dx.doi.org/10.3390/pharmaceutics14061252.
Full textDe Plano, Laura M., Giovanna Calabrese, Sabrina Conoci, Salvatore P. P. Guglielmino, Salvatore Oddo, and Antonella Caccamo. "Applications of CRISPR-Cas9 in Alzheimer’s Disease and Related Disorders." International Journal of Molecular Sciences 23, no. 15 (2022): 8714. http://dx.doi.org/10.3390/ijms23158714.
Full textKatzmann, Julius L., Arjen J. Cupido, and Ulrich Laufs. "Gene Therapy Targeting PCSK9." Metabolites 12, no. 1 (2022): 70. http://dx.doi.org/10.3390/metabo12010070.
Full textTang, Xuanting. "CRISPR/Cas9-based genome engineering in HIV gene therapy." E3S Web of Conferences 233 (2021): 02004. http://dx.doi.org/10.1051/e3sconf/202123302004.
Full textS., Manasa M. "CRISPR-Cas9 gene editing technology in human gene therapy: the new realm of medicine." International Journal of Advances in Medicine 9, no. 4 (2022): 513. http://dx.doi.org/10.18203/2349-3933.ijam20220796.
Full textPreece, Roland, and Christos Georgiadis. "Emerging CRISPR/Cas9 applications for T-cell gene editing." Emerging Topics in Life Sciences 3, no. 3 (2019): 261–75. http://dx.doi.org/10.1042/etls20180144.
Full textLiu, Wenlou, Chunsheng Yang, Yanqun Liu, and Guan Jiang. "CRISPR/Cas9 System and its Research Progress in Gene Therapy." Anti-Cancer Agents in Medicinal Chemistry 19, no. 16 (2020): 1912–19. http://dx.doi.org/10.2174/1871520619666191014103711.
Full textSalsman, Jayme, and Graham Dellaire. "Precision genome editing in the CRISPR era." Biochemistry and Cell Biology 95, no. 2 (2017): 187–201. http://dx.doi.org/10.1139/bcb-2016-0137.
Full textKanu, Gayathri A., Javad B. M. Parambath, Raed O. Abu Odeh, and Ahmed A. Mohamed. "Gold Nanoparticle-Mediated Gene Therapy." Cancers 14, no. 21 (2022): 5366. http://dx.doi.org/10.3390/cancers14215366.
Full textKhan, Sikandar Hayat. "Type-2 Diabetes and Gene Therapy: The Promise of CRISPR Gene Therapy in type-2 Diabetes Mellitus." Journal Of Obesity Management 1, no. 3 (2019): 1–5. http://dx.doi.org/10.14302/issn.2574-450x.jom-19-3001.
Full textNaso, Gaetano, and Anastasia Petrova. "CRISPR/Cas9 gene editing for genodermatoses: progress and perspectives." Emerging Topics in Life Sciences 3, no. 3 (2019): 313–26. http://dx.doi.org/10.1042/etls20180148.
Full textKoniali, Lola, Carsten W. Lederer, and Marina Kleanthous. "Therapy Development by Genome Editing of Hematopoietic Stem Cells." Cells 10, no. 6 (2021): 1492. http://dx.doi.org/10.3390/cells10061492.
Full textBonillo, Mario, Julia Pfromm, and M. Dominik Fischer. "Challenges to Gene Editing Approaches in the Retina." Klinische Monatsblätter für Augenheilkunde 239, no. 03 (2022): 275–83. http://dx.doi.org/10.1055/a-1757-9810.
Full textRosenblum, Daniel, Anna Gutkin, Ranit Kedmi, et al. "CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy." Science Advances 6, no. 47 (2020): eabc9450. http://dx.doi.org/10.1126/sciadv.abc9450.
Full textGarcía-Fernández, Alba, Gema Vivo-Llorca, Mónica Sancho, et al. "Nanodevices for the Efficient Codelivery of CRISPR-Cas9 Editing Machinery and an Entrapped Cargo: A Proposal for Dual Anti-Inflammatory Therapy." Pharmaceutics 14, no. 7 (2022): 1495. http://dx.doi.org/10.3390/pharmaceutics14071495.
Full textFang, Ton, Goun Je, Peter Pacut, Kiandokht Keyhanian, Jeff Gao, and Mehdi Ghasemi. "Gene Therapy in Amyotrophic Lateral Sclerosis." Cells 11, no. 13 (2022): 2066. http://dx.doi.org/10.3390/cells11132066.
Full textRen, Duohao, Sylvain Fisson, Deniz Dalkara, and Divya Ail. "Immune Responses to Gene Editing by Viral and Non-Viral Delivery Vectors Used in Retinal Gene Therapy." Pharmaceutics 14, no. 9 (2022): 1973. http://dx.doi.org/10.3390/pharmaceutics14091973.
Full textPsatha, Nikoletta, Kiriaki Paschoudi, Anastasia Papadopoulou, and Evangelia Yannaki. "In Vivo Hematopoietic Stem Cell Genome Editing: Perspectives and Limitations." Genes 13, no. 12 (2022): 2222. http://dx.doi.org/10.3390/genes13122222.
Full textKesavan, Gokul. "Emerging Gene Editing Therapies for Blood Disorders." Biotechnology Kiosk 3, no. 7 (2021): 3–16. http://dx.doi.org/10.37756/bk.21.3.7.1.
Full textSun, Jinyu, Jianchu Wang, Donghui Zheng, and Xiaorong Hu. "Advances in therapeutic application of CRISPR-Cas9." Briefings in Functional Genomics 19, no. 3 (2019): 164–74. http://dx.doi.org/10.1093/bfgp/elz031.
Full textZhao, Lan, Jian Huang, Yunshan Fan, et al. "Exploration of CRISPR/Cas9-based gene editing as therapy for osteoarthritis." Annals of the Rheumatic Diseases 78, no. 5 (2019): 676–82. http://dx.doi.org/10.1136/annrheumdis-2018-214724.
Full textKochergin-Nikitsky, K. S., E. V. Zaklyazminskaya, A. V. Lavrov, and S. A. Smirnikhina. "Cardiomyopathies associated with the DES gene mutations: molecular pathogenesis and gene therapy approaches." Almanac of Clinical Medicine 47, no. 7 (2019): 603–13. http://dx.doi.org/10.18786/2072-0505-2019-47-025.
Full textMeiliana, Anna, Nurrani Mustika Dewi, and Andi Wijaya. "Genome Editing with Crispr-Cas9 Systems: Basic Research and Clinical Applications." Indonesian Biomedical Journal 9, no. 1 (2017): 1. http://dx.doi.org/10.18585/inabj.v9i1.272.
Full textTeng, Man, Yongxiu Yao, Venugopal Nair, and Jun Luo. "Latest Advances of Virology Research Using CRISPR/Cas9-Based Gene-Editing Technology and Its Application to Vaccine Development." Viruses 13, no. 5 (2021): 779. http://dx.doi.org/10.3390/v13050779.
Full textShaikh, Sadiya Bi, and Yashodhar Prabhakar Bhandary. "CRISPR/Cas9 Genome Editing Tool: A Promising Tool for Therapeutic Applications on Respiratory Diseases." Current Gene Therapy 20, no. 5 (2020): 333–46. http://dx.doi.org/10.2174/1566523220666201012145731.
Full textGamage, Udani, Kesari Warnakulasuriya, Sonali Hansika та Gayathri N. Silva. "CRISPR Gene Therapy: A Promising One-Time Therapeutic Approach for Transfusion-Dependent β-Thalassemia—CRISPR-Cas9 Gene Editing for β-Thalassemia". Thalassemia Reports 13, № 1 (2023): 51–69. http://dx.doi.org/10.3390/thalassrep13010006.
Full textZhang, Zhihao, Wei Hou, and Shuliang Chen. "Updates on CRISPR-based gene editing in HIV-1/AIDS therapy." Virologica Sinica 37, no. 1 (2022): 1–10. http://dx.doi.org/10.1016/j.virs.2022.01.017.
Full textNakamura, Watanabe, Ando, Ishihara, and Sato. "Transplacental Gene Delivery (TPGD) as a Noninvasive Tool for Fetal Gene Manipulation in Mice." International Journal of Molecular Sciences 20, no. 23 (2019): 5926. http://dx.doi.org/10.3390/ijms20235926.
Full textNie, Dengyun, Ting Guo, Miao Yue, et al. "Research Progress on Nanoparticles-Based CRISPR/Cas9 System for Targeted Therapy of Tumors." Biomolecules 12, no. 9 (2022): 1239. http://dx.doi.org/10.3390/biom12091239.
Full textYu, Jiaying, Xi Xiang, Jinrong Huang, et al. "Haplotyping by CRISPR-mediated DNA circularization (CRISPR-hapC) broadens allele-specific gene editing." Nucleic Acids Research 48, no. 5 (2020): e25-e25. http://dx.doi.org/10.1093/nar/gkz1233.
Full textGodbout, Kelly, and Jacques P. Tremblay. "Prime Editing for Human Gene Therapy: Where Are We Now?" Cells 12, no. 4 (2023): 536. http://dx.doi.org/10.3390/cells12040536.
Full textBalon, Katarzyna, Adam Sheriff, Joanna Jacków, and Łukasz Łaczmański. "Targeting Cancer with CRISPR/Cas9-Based Therapy." International Journal of Molecular Sciences 23, no. 1 (2022): 573. http://dx.doi.org/10.3390/ijms23010573.
Full textLebek, Simon, Francesco Chemello, Xurde M. Caravia та ін. "Ablation of CaMKIIδ oxidation by CRISPR-Cas9 base editing as a therapy for cardiac disease". Science 379, № 6628 (2023): 179–85. http://dx.doi.org/10.1126/science.ade1105.
Full textBenati, Daniela, Amy Leung, Pedro Perdigao, Vasileios Toulis, Jacqueline van der Spuy, and Alessandra Recchia. "Induced Pluripotent Stem Cells and Genome-Editing Tools in Determining Gene Function and Therapy for Inherited Retinal Disorders." International Journal of Molecular Sciences 23, no. 23 (2022): 15276. http://dx.doi.org/10.3390/ijms232315276.
Full textLyu, Pin, Luxi Wang, and Baisong Lu. "Virus-Like Particle Mediated CRISPR/Cas9 Delivery for Efficient and Safe Genome Editing." Life 10, no. 12 (2020): 366. http://dx.doi.org/10.3390/life10120366.
Full textZhou, Jun, Zhuoying Ren, Jie Xu, Jifeng Zhang, and Y. Eugene Chen. "Gene editing therapy ready for cardiovascular diseases: opportunities, challenges, and perspectives." Medical Review 1, no. 1 (2021): 6–9. http://dx.doi.org/10.1515/mr-2021-0010.
Full textSantos, Renato, and Olga Amaral. "Advances in Sphingolipidoses: CRISPR-Cas9 Editing as an Option for Modelling and Therapy." International Journal of Molecular Sciences 20, no. 23 (2019): 5897. http://dx.doi.org/10.3390/ijms20235897.
Full textXiu, Kemao, Laura Saunders, Luan Wen, et al. "Delivery of CRISPR/Cas9 Plasmid DNA by Hyperbranched Polymeric Nanoparticles Enables Efficient Gene Editing." Cells 12, no. 1 (2022): 156. http://dx.doi.org/10.3390/cells12010156.
Full textPadmaswari, Made Harumi, Shilpi Agrawal, Mary S. Jia, et al. "Delivery challenges for CRISPR—Cas9 genome editing for Duchenne muscular dystrophy." Biophysics Reviews 4, no. 1 (2023): 011307. http://dx.doi.org/10.1063/5.0131452.
Full textYan, Biying, and Yaxuan Liang. "New Therapeutics for Extracellular Vesicles: Delivering CRISPR for Cancer Treatment." International Journal of Molecular Sciences 23, no. 24 (2022): 15758. http://dx.doi.org/10.3390/ijms232415758.
Full textRabaan, Ali A., Hajir AlSaihati, Rehab Bukhamsin, et al. "Application of CRISPR/Cas9 Technology in Cancer Treatment: A Future Direction." Current Oncology 30, no. 2 (2023): 1954–76. http://dx.doi.org/10.3390/curroncol30020152.
Full textHou, Yujuan, Guillermo Ureña-Bailén, Tahereh Mohammadian Gol, et al. "Challenges in Gene Therapy for Somatic Reverted Mosaicism in X-Linked Combined Immunodeficiency by CRISPR/Cas9 and Prime Editing." Genes 13, no. 12 (2022): 2348. http://dx.doi.org/10.3390/genes13122348.
Full textChen, Guofang, Tingyi Wei, Hui Yang, Guoling Li, and Haisen Li. "CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives." Cells 11, no. 19 (2022): 2964. http://dx.doi.org/10.3390/cells11192964.
Full textBischoff, Nadja, Sandra Wimberger, Marcello Maresca, and Cord Brakebusch. "Improving Precise CRISPR Genome Editing by Small Molecules: Is there a Magic Potion?" Cells 9, no. 5 (2020): 1318. http://dx.doi.org/10.3390/cells9051318.
Full textHuang, Yong, Meiqi Shang, Tingting Liu, and Kejian Wang. "High-throughput methods for genome editing: the more the better." Plant Physiology 188, no. 4 (2022): 1731–45. http://dx.doi.org/10.1093/plphys/kiac017.
Full textHussein, Mouraya, Mariano A. Molina, Ben Berkhout, and Elena Herrera-Carrillo. "A CRISPR-Cas Cure for HIV/AIDS." International Journal of Molecular Sciences 24, no. 2 (2023): 1563. http://dx.doi.org/10.3390/ijms24021563.
Full textOmichi, Ryotaro, Seiji B. Shibata, Cynthia C. Morton, and Richard J. H. Smith. "Gene therapy for hearing loss." Human Molecular Genetics 28, R1 (2019): R65—R79. http://dx.doi.org/10.1093/hmg/ddz129.
Full textJiang, David J., Christine L. Xu, and Stephen H. Tsang. "Revolution in Gene Medicine Therapy and Genome Surgery." Genes 9, no. 12 (2018): 575. http://dx.doi.org/10.3390/genes9120575.
Full textNasrallah, Ali, Eric Sulpice, Farah Kobaisi, Xavier Gidrol, and Walid Rachidi. "CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements." Cells 11, no. 22 (2022): 3615. http://dx.doi.org/10.3390/cells11223615.
Full text