Dissertations / Theses on the topic 'CRISPR, Gene editing, Parkinson, Gene therapy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 16 dissertations / theses for your research on the topic 'CRISPR, Gene editing, Parkinson, Gene therapy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Giada, Beligni. "Application of the CRISPR-Cas9 genome editing approach for the correction of the p.Gly2019Ser (c.6055G>A) LRRK2 variant in Parkinson Disease." Doctoral thesis, Università di Siena, 2022. https://hdl.handle.net/11365/1220257.
Full textPigini, Paolo <1991>. "Neuroblastoma targeted therapy: employment of CRISPR gene-editing to explore relevant markers and potential targets in aggressive tumours." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amsdottorato.unibo.it/8752/1/Pigini_Paolo_tesi.pdf.
Full textYang, Luhan. "Development of Human Genome Editing Tools for the Study of Genetic Variations and Gene Therapies." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11117.
Full textFine, Eli Jacob. "A toolkit for analysis of gene editing and off-target effects of engineered nucleases." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54875.
Full textAmaya, Colina Anais Karime. "Towards the Treatment of Human Genetic Liver Disease by AAV-Mediated Genome Editing and Selective Expansion of Repaired Hepatocytes." Thesis, The University of Sydney, 2019. https://hdl.handle.net/2123/21893.
Full textFoster, Robert Graham. "Development of a modular in vivo reporter system for CRISPR-mediated genome editing and its therapeutic applications for rare genetic respiratory diseases." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33040.
Full textHsu, Patrick David. "Development of the CRISPR nuclease Cas9 for high precision mammalian genome engineering." Thesis, Harvard University, 2014. http://nrs.harvard.edu/urn-3:HUL.InstRepos:13068392.
Full textMINGOIA, MAURA. "Terapia genica della β Talassemia mediante editing del DNA." Doctoral thesis, Università degli Studi di Cagliari, 2016. http://hdl.handle.net/11584/266632.
Full textKennedy, Zachary C. "Optimizing CRISPR/Cas9 for Gene Silencing of SOD1 in Mouse Models of ALS." eScholarship@UMMS, 2019. https://escholarship.umassmed.edu/gsbs_diss/1047.
Full textSchneider, Sara Jane. "Delivery of CRISPR/Cas9 RNAs into Blood Cells of Zebrafish: Potential for Genome Editing in Somatic Cells." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1011754/.
Full textIbraheim, Raed R. "Genome Engineering Goes Viral: Repurposing of Adeno-associated Viral Vectors for CRISPR-mediated in Vivo Genome Engineering." eScholarship@UMMS, 2020. https://escholarship.umassmed.edu/gsbs_diss/1114.
Full textHedberg, Rickard. "Preimplantation genetic diagnosis and therapy in humans- Opportunities and risks." Thesis, Örebro universitet, Institutionen för medicinska vetenskaper, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-81532.
Full textThakore, Pratiksha Ishwarsinh. "Targeted Gene Repression Technologies for Regenerative Medicine, Genomics, and Gene Therapy." Diss., 2016. http://hdl.handle.net/10161/12179.
Full textGene regulation is a complex and tightly controlled process that defines cell function in physiological and abnormal states. Programmable gene repression technologies enable loss-of-function studies for dissecting gene regulation mechanisms and represent an exciting avenue for gene therapy. Established and recently developed methods now exist to modulate gene sequence, epigenetic marks, transcriptional activity, and post-transcriptional processes, providing unprecedented genetic control over cell phenotype. Our objective was to apply and develop targeted repression technologies for regenerative medicine, genomics, and gene therapy applications. We used RNA interference to control cell cycle regulation in myogenic differentiation and enhance the proliferative capacity of tissue engineered cartilage constructs. These studies demonstrate how modulation of a single gene can be used to guide cell differentiation for regenerative medicine strategies. RNA-guided gene regulation with the CRISPR/Cas9 system has rapidly expanded the targeted repression repertoire from silencing single protein-coding genes to modulation of genes, promoters, and other distal regulatory elements. In order to facilitate its adaptation for basic research and translational applications, we demonstrated the high degree of specificity for gene targeting, gene silencing, and chromatin modification possible with Cas9 repressors. The specificity and effectiveness of RNA-guided transcriptional repressors for silencing endogenous genes are promising characteristics for mechanistic studies of gene regulation and cell phenotype. Furthermore, our results support the use of Cas9-based repressors as a platform for novel gene therapy strategies. We developed an in vivo AAV-based gene repression system for silencing endogenous genes in a mouse model. Together, these studies demonstrate the utility of gene repression tools for guiding cell phenotype and the potential of the RNA-guided CRISPR/Cas9 platform for applications such as causal studies of gene regulatory mechanisms and gene therapy.
Dissertation
Conceição, André Filipe Vieira da. "CRISPR-Cas9 as a tool for gene therapy in Machado-Joseph disease: silencing ATXN3 and CAG expansion correction." Master's thesis, 2019. http://hdl.handle.net/10316/87874.
Full textMachado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3, is a neurodegenerative disorder considered to be the most common form of autosomal dominantly-inherited ataxia in the world. It is a rare disorder, although it has a significative prevalence in some regions of Portugal, especially in the archipelago of Azores. MJD symptoms include a loss of motor coordination and other neurological signs, with the cerebellum being the most affected brain region. MJD arises from an abnormal CAG trinucleotide expansion within the exon 10 of the human ATXN3 gene, which encodes for a protein named ataxin-3 (atxn-3), that bears an aberrant polyglutamine (polyQ) tract in the disease context. The exact biological function of atxn-3 is not fully understood, but it has been described that, when expanded atxn-3 undergoes a toxic gain-of-function that deregulates normal cellular pathways leading to neuronal loss. Recently, it has been suggested that abnormal CAG tracts in mRNA transcripts might also be toxic. As with other polyglutamine diseases, greater numbers of CAG repeats are associated with earlier ages of onset and more severe symptoms.Currently, no therapies capable of delaying or treating the disease are available, and MJD remains a fatal disorder. Many of the therapeutic strategies that have been tested act at a post-transcriptional level, being unable to prevent the putative toxicity of CAG expanded mRNA transcripts. Therefore, new strategies that act at a pre-transcriptional level may be advantageous.However, disease studies can only be robust and feasible when the adequate disease model is used. Yet, the available mouse models used to study MJD either fail to properly mimic the actual genetic context of the disease or are of limited use due to slow and mild symptom progression.In the last decade, the field of gene editing has been thriving. The use of the CRISPR/Cas9 system as a tool for gene editing brought the possibility of performing low-cost, flexible and easy genomic manipulation virtually at any loci. Moreover, CRISPR/Cas9 variants, such as the catalytic inactivated Cas9 (dCas9) have shown promising results regarding gene transcription regulation. In the first part of this work, we planned to establish an in vitro strategy to refine the yeast artificial chromosome (YAC) MJD-Q84.2 mouse, which is the MJD model that best recapitulates the symptoms and the genetic context of the human condition. In this work we proposed to use gene editing tools to overexpand the ATXN3 CAG tract in the exon 10, from 84 to 141 CAG; applying this strategy to the model would be expected to generate a robust mouse model that displayed a more severe phenotype and an earlier disease onset, comparing to the YAC MJD-Q84.2 model. However, the in vitro results here presented, using HEK 293T cells, showed that the strategy used was inefficient at overexpanding the CAG repeats.At the same time, a CRISPR/Cas9-based strategy for correcting the pathogenic ATXN3 gene that could be used to generate isogenic MJD patient-derived cell lines was also tested. The study here presented, using HEK 293T cells, showed that it is possible to integrate a DNA fragment containing 14 CAG repeats plus a selection cassette in the exon 10 of the ATXN3 gene. However, this strategy was not completely infallible, and integration seemed to be independent from Cas9 activity. In the second part of this work, we assessed the effects of dCas9-KRAB as a strategy to pre-transcriptionally silence mutant ATXN3 in a MJD mouse model. In vivo results showed that this approach has a therapeutic potential to improve motor performance in a severely-impaired transgenic mouse model of MJD.
A doença de Machado-Joseph (DMJ), também conhecida por ataxia espinocerebelosa tipo 3, é uma doença neurodegenerativa e a forma mais comum de ataxia hereditária dominante no mundo. É uma doença rara, porém tem uma prevalência significativa em algumas regiões de Portugal, nomeadamente no arquipélago dos Açores. Os sintomas de DMJ incluem perda de coordenação motora bem como outros sinais neurológicos, sendo o cerebelo a região do cérebro mais afetada. A DMJ surge de uma expansão anormal de trinucleótidos CAG no exão 10 do gene ATXN3, que codifica para a proteína ataxina-3 (atxn-3). No contexto da doença, a atxn-3 contém uma sequência de glutaminas (poliQ) anormalmente longa. As funções biológicas da proteína atxn-3 não são totalmente conhecidas, contudo tem sido descrito que a atxn-3 expandida adquire uma função tóxica que desregula o normal funcionamento de diversos sistemas celulares, levando à morte neuronal. Recentemente, tem sido sugerido que tratos CAG anormais presentes em transcritos de mRNA podem também ser tóxicos. Tal como em outras doenças de poliglutaminas, um maior número repetições CAG tem sido associado a sintomas mais severos, com um aparecimento mais precoce.Atualmente, não há terapias capazes de tratar ou atrasar o curso da doença, e, portanto, a DMJ continua a ser fatal. Algumas estratégias terapêuticas que têm sido testadas atuam ao nível pós-transcricional e são por isso incapazes de prevenir os putativos efeitos tóxicos dos transcritos de mRNA que contêm uma cadeia de CAGs expandida. Assim sendo, novas estratégias que atuem a um nível pré-transcricional podem vir a ser vantajosas.O estudo de doenças humanas apenas consegue ser robusto quando é usado um modelo de doença adequado. Porém, os modelos de murganho presentemente usados para estudar a DMJ ou não reproduzem de forma fiel o contexto genético da doença ou apresentam sintomas pouco acentuados e uma progressão lenta que limitam a sua utilização.Na última década, a área da edição genética tem tido desenvolvimentos extraordinários. O uso da CRISPR/Cas9 como uma ferramenta para edição genética trouxe a possibilidade de manipular o genoma virtualmente em qualquer locus, de uma forma barata, fácil e flexível. Além do mais, variantes da CRISPR/Cas9, como é o caso da Cas9 cataliticamente inativa (dCas9), têm mostrado resultados promissores no que diz respeito à regulação da transcrição genética.Na primeira parte deste trabalho pretendemos estabelecer uma estratégia in vitro para aperfeiçoar um modelo de DMJ em murganho designado por yeast artificial chromosome (YAC) MJD-Q84.2, que é considerado como o modelo que melhor recapitula os sintomas e o contexto genético humano em condições de doença. Neste trabalho, utilizámos ferramentas de edição genética para sobreexpandir o trato CAG do exão 10 do gene ATXN3, de 84 para 141 CAGs; ao aplicar esta estratégia ao modelo de murganho seria expectável que se criasse um modelo robusto, com um fenótipo mais severo e em que os sintomas se manifestassem mais cedo em comparação com o já existente modelo YAC MJD-Q84.2. Contudo, os resultados in vitro descritos neste trabalho mostraram que a estratégia usada parece ser ineficiente na sobreexpansão das repetições CAG em células HEK 293T.Paralelamente, usando também a CRISPR/Cas9, foi testada uma estratégia para corrigir o gene ATXN3 mutante, que pudesse ser usada para criar linhas celulares isogénicas derivadas de pacientes de DMJ. O estudo aqui apresentado, usando células HEK 293T, mostrou ser possível integrar um fragmento de DNA contendo 14 repetições do trinucleótido CAG e uma cassete de seleção no exão 10 do gene ATXN3. Contudo, esta abordagem não se mostrou totalmente fiável e que foi detetada integração independente da atividade da Cas9.Na segunda parte deste trabalho foram avaliados os efeitos da dCas9-KRAB como estratégia de silenciamento a nível pré-transcricional do gene humano da ATXN3 num modelo animal de DMJ. Os resultados in vivos mostraram que esta abordagem tem potencial terapêutico, melhorando a performance motora num modelo DJM transgénico severamente afetado.
Outro - This work was funded by the ERDF through the Regional Operational Program Center 2020, Competitiveness Factors Operational Program (COMPETE 2020) and National Funds through FCT (Foundation for Science and Technology) - BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), ViraVector (CENTRO-01-0145-FEDER-022095), CortaCAGs (PTDC/NEU-NMC/0084/2014|POCI-01-0145-FEDER-016719), SpreadSilencing (POCI-01-0145-FEDER-029716, POCI-01-0145-FEDER-032309) as well as SynSpread, ESMI and ModelPolyQ under the EU Joint Program - Neurodegenerative Disease Research (JPND), the last two co-funded by the European Union H2020 program, GA No.643417; by the National Ataxia Foundation (USA), the American Portuguese Biomedical Research Fund (APBRF) and the Richard Chin and Lily Lock Machado-Joseph Disease Research Fund.
Fernandes, Ana Rita Lopes. "Relatórios de Estágio e Monografia intitulada "Sistema CRISPR/Cas9: Uma Abordagem Terapêutica Inovadora no Tratamento de Patologias Humanas"." Master's thesis, 2020. http://hdl.handle.net/10316/93062.
Full textThe discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), an adaptive defence system for bacteria against viral infections, allowed the creation of a technology called CRISPR/Cas9 system that came to revolutionize genome editing technologies. This system has stood out due to its versatility, simplicity and efficiency in genetic manipulation. Research carried out over the past few years has proven the usefulness and potential of this technology for therapeutic applications, particularly in gene therapy. The potential of the CRISPR/Cas9 system has been progressing thanks to the increasingly detailed knowledge of the mechanisms of this system and the genome editing strategies used. However, there are still many challenges that have to be overcome in order for this technology to be considered safe and effective in the treatment of many pathologies. The discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), an adaptive defence system for bacteria against viral infections, allowed the creation of a technology called CRISPR/Cas9 system that came to revolutionize genome editing technologies. This system has stood out due to its versatility, simplicity and efficiency in genetic manipulation. Research carried out over the past few years has proven the usefulness and potential of this technology for therapeutic applications, particularly in gene therapy. The potential of the CRISPR/Cas9 system has been progressing thanks to the increasingly detailed knowledge of the mechanisms of this system and the genome editing strategies used. However, there are still many challenges that have to be overcome in order for this technology to be considered safe and effective in the treatment of many pathologies.
A descoberta de Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), um sistema de defesa adaptativo de bactérias contra infeções virais, permitiu a criação de uma tecnologia denominada sistema CRISPR/Cas9 que veio revolucionar as tecnologias de edição do genoma. Este sistema tem-se destacado devido à sua versatilidade, simplicidade e eficiência na manipulação genética. As investigações realizadas ao longo dos últimos anos têm vindo a comprovar a utilidade e o potencial desta tecnologia para aplicações terapêuticas, particularmente na terapia génica. O potencial do sistema CRISPR/Cas9 tem vindo a progredir graças ao conhecimento cada vez mais pormenorizado dos mecanismos deste sistema e das estratégias de edição do genoma utilizadas. Existem, no entanto, ainda muitos desafios que têm de ser superados para que esta tecnologia possa ser considerada segura e eficaz no tratamento de muitas patologias. A descoberta de Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), um sistema de defesa adaptativo de bactérias contra infeções virais, permitiu a criação de uma tecnologia denominada sistema CRISPR/Cas9 que veio revolucionar as tecnologias de edição do genoma. Este sistema tem-se destacado devido à sua versatilidade, simplicidade e eficiência na manipulação genética. As investigações realizadas ao longo dos últimos anos têm vindo a comprovar a utilidade e o potencial desta tecnologia para aplicações terapêuticas, particularmente na terapia génica. O potencial do sistema CRISPR/Cas9 tem vindo a progredir graças ao conhecimento cada vez mais pormenorizado dos mecanismos deste sistema e das estratégias de edição do genoma utilizadas. Existem, no entanto, ainda muitos desafios que têm de ser superados para que esta tecnologia possa ser considerada segura e eficaz no tratamento de muitas patologias.
Botas, Bruna Patrícia Marques. "Edição Genética em Embriões Humanos - A Responsabilidade Civil Médica No Contexto da Terapia Génica Germinal." Master's thesis, 2021. http://hdl.handle.net/10316/97516.
Full textO mundo tem vindo a assistir grandes desenvolvimentos no domínio da genética e medicina reprodutiva, passando-se a falar da “Revolução GNR (Genética, Nanotecnologia e Robótica)”, capaz de promover a saúde e qualidade de vida humana, como nunca antes. O avanço que maior destaque tem tido na comunidade científica e que será aqui objeto de estudo, insere-se no contexto da Engenharia genética, com o surgimento da tecnologia CRISPR/Cas com potencialidade de corrigir, substituir e modificar o genoma humano, de forma rápida e precisa, visando o aprimoramento genético e/ou a prevenção e tratamento de doenças/malformações genéticas. Contudo, com ela surgem também riscos que colocam em dúvida a sua utilização no contexto da prática clínica, reclamando o debate público, a sua regulamentação e o estabelecimento de critérios a serem seguidos caso o seu uso venha a ser admitido. Não obstante, várias são as normas internacionais, supranacionais e nacionais, com princípios norteadores da investigação científica e prática clínica, no contexto da genética e da biomedicina, que iremos evidenciar. Com base nessa análise, passaremos para a consideração dos dilemas ético-jurídicos que surgem à volta da terapia génica germinal e que se prendem com direitos fundamentais do ser humano. E, sendo esta uma realidade cada vez mais próxima, importa a reflexão acerca da responsabilidade civil dos médicos, por danos que possam surgir no âmbito da terapia génica germinal, analisando os seus pressupostos, focando-nos no domínio privado, e na consequente propositura das wrong actions e surgimento das novas ações de wrongful genetic makeup. Neste caminho, refletimos ainda acerca do eventual surgimento de novos direitos e danos daí decorrentes, fazendo, por fim, breve reflexão sobre os prazos de prescrição, tendo em conta a incerteza e tardia manifestação desses danos. Concluímos defendendo a admissibilidade da terapia génica germinal, ainda que após debate público, reflexão sobre a responsabilidade civil dos profissionais de saúde pelas lesões que daí possam surgir, e regulamentação e fixação de critérios que garantam a segurança das técnicas.
The world has been witnessing great developments in the field of genetics and reproductive medicine, arising the “GNR (Genetics, Nanotechnology and Robotics) Revolution”, capable of promoting human health and quality of life like never before. The most prominent advance in the scientific community which will be the object of study here is part of the context of genetic engineering, which is the emergence of the CRISPR/Cas technology with the potential to correct, replace and modify the human genome, in a more precise and faster way, aiming at genetic enhancement and/or the prevention and treatment of genetic diseases/malformations. However, with it arises risks that cast doubt on its use in the context of clinical practice, demanding public debate, its regulation, and the establishment of criteria to be followed if its use is admitted. Nevertheless, there are several international, supranational and national norms, with guiding principles for scientific research and clinical practice, in the context of genetics and biomedicine, which will be highlighted.Based on this analysis, we will move on to the consideration of the ethical-juridical dilemmas that arise around germinal gene therapy and that relate to fundamental human rights. And, as this reality is ever closer, it is important to reflect on the civil liability of physicians, for damages that may arise in the context of germinal gene therapy, analyzing its assumptions, focusing on the private domain, and the consequent proposition of wrong actions and the emergence of new wrongful genetic makeup actions. On this path, we also reflect on the possible emergence of new rights and damages arising from these techniques, finally making a brief reflection on the limitation periods, considering the uncertainty and late manifestation of these damages. We conclude defending the admissibility of germinal gene therapy, only after a public debate, reflection on civil liability of health professionals for the damages that may arise from it, and fixation of criteria that guarantee the safety of the techniques.