Journal articles on the topic 'Creep mechanism'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Creep mechanism.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Shinya, Norio. "Creep fracture mechanism map." Bulletin of the Japan Institute of Metals 26, no. 8 (1987): 801–8. http://dx.doi.org/10.2320/materia1962.26.801.
Full textLi, J., and A. Dasgupta. "Failure-mechanism models for creep and creep rupture." IEEE Transactions on Reliability 42, no. 3 (1993): 339–53. http://dx.doi.org/10.1109/24.257816.
Full textHou, Qing Yu, and Jing Tao Wang. "Deformation Mechanism in the Mg-Gd-Y Alloys Predicted by Deformation Mechanism Maps." Advanced Materials Research 146-147 (October 2010): 225–32. http://dx.doi.org/10.4028/www.scientific.net/amr.146-147.225.
Full textSun, Zhihui, Baoshu Liu, Chenwei He, Lu Xie, and Qing Peng. "Shift of Creep Mechanism in Nanocrystalline NiAl Alloy." Materials 12, no. 16 (August 7, 2019): 2508. http://dx.doi.org/10.3390/ma12162508.
Full textLiu, Guo Jun. "Research on Mechanism of Concrete Creep." Applied Mechanics and Materials 670-671 (October 2014): 441–44. http://dx.doi.org/10.4028/www.scientific.net/amm.670-671.441.
Full textSun, Qiang, Hong Fei Duan, Lei Xue, and Li Qin. "The Micro-Mechanism Analysis on Rock Creep Damage." Advanced Materials Research 194-196 (February 2011): 2031–34. http://dx.doi.org/10.4028/www.scientific.net/amr.194-196.2031.
Full textZhao, Fei, Jie Zhang, Chenwei He, Yong Zhang, Xiaolei Gao, and Lu Xie. "Molecular Dynamics Simulation on Creep Behavior of Nanocrystalline TiAl Alloy." Nanomaterials 10, no. 9 (August 28, 2020): 1693. http://dx.doi.org/10.3390/nano10091693.
Full textKasum, Kasum, Fajar Mulyana, Mohamad Zaenudin, Adhes Gamayel, and M. N. Mohammed. "Molecular Dynamics Simulation on Creep Mechanism of Nanocrystalline Cu-Ni Alloy." Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat 18, no. 1 (February 26, 2021): 67. http://dx.doi.org/10.20527/flux.v18i1.8548.
Full textOsborne, J. W. "Creep as a Mechanism for Sealing Amalgams." Operative Dentistry 31, no. 2 (February 1, 2006): 161–64. http://dx.doi.org/10.2341/05-18.
Full textNabarro, F. R. N. "The mechanism of Harper-Dorn creep." Acta Metallurgica 37, no. 8 (August 1989): 2217–22. http://dx.doi.org/10.1016/0001-6160(89)90147-8.
Full textТукмакова, А. С., Н. И. Хахилев, Д. Б. Щеглова, В. Д. Насонов, А. П. Новицкий, И. А. Сергиенко, and А. В. Новотельнова. "Анализ механизмов уплотнения термоэлектрических порошков скуттерудитов и сплавов Гейслера в процессе активированного полем спекания." Физика и техника полупроводников 55, no. 12 (2021): 1132. http://dx.doi.org/10.21883/ftp.2021.12.51695.10.
Full textCamin, Bettina, and Lennart Hansen. "In Situ 3D-µ-Tomography on Particle-Reinforced Light Metal Matrix Composite Materials under Creep Conditions." Metals 10, no. 8 (August 1, 2020): 1034. http://dx.doi.org/10.3390/met10081034.
Full textKawasaki, Megumi, and Terence G. Langdon. "Characteristics of High Temperature Creep in Pure Aluminum Processed by Equal-Channel Angular Pressing." Materials Science Forum 638-642 (January 2010): 1965–70. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.1965.
Full textAsada, Yasuhide, and Masatsugu Yaguchi. "Mechanistic Approach for Creep-Fatigue Evaluation of 9Cr-1Mo-V-Nb Steel." Journal of Engineering Materials and Technology 117, no. 4 (October 1, 1995): 356–60. http://dx.doi.org/10.1115/1.2804725.
Full textYamamoto, Masato, and Takashi Ogata. "Microscopic Damage Mechanism of Nickel-Based Superalloy Inconel 738LC Under Creep-Fatigue Conditions." Journal of Engineering Materials and Technology 122, no. 3 (March 1, 2000): 315–20. http://dx.doi.org/10.1115/1.482803.
Full textTian, Su Gui, Xin Wang, Chen Liu, and Wen Ru Sun. "Influence of Phosphorus and Boron on Creep Behavior and Fracture Mechanism of GH4169 Superalloy." Materials Science Forum 747-748 (February 2013): 672–77. http://dx.doi.org/10.4028/www.scientific.net/msf.747-748.672.
Full textShibutani, Tadahiro, Qiang Yu, and Masaki Shiratori. "A Study of Deformation Mechanism During Nanoindentation Creep in Tin-Based Solder Balls." Journal of Electronic Packaging 129, no. 1 (May 12, 2006): 71–75. http://dx.doi.org/10.1115/1.2429712.
Full textChiu, Huai Yi, Chen Ming Kuo, and Huei Sen Wang. "Creep Behavior of 409L and 436 Ferritic Stainless Steels Applied for Automotive Exhaust System." Applied Mechanics and Materials 302 (February 2013): 252–57. http://dx.doi.org/10.4028/www.scientific.net/amm.302.252.
Full textXu, Xiang, Peter Binkele, Wolfgang Verestek, and Siegfried Schmauder. "Molecular Dynamics Simulation of High-Temperature Creep Behavior of Nickel Polycrystalline Nanopillars." Molecules 26, no. 9 (April 29, 2021): 2606. http://dx.doi.org/10.3390/molecules26092606.
Full textDragatogiannis, Dimitrios A., Elias P. Koumoulos, Ioannis A. Kartsonakis, and Costas A. Charitidis. "Deformation mechanism during nanoindentation creep and corrosion resistance of Zn." International Journal of Structural Integrity 7, no. 1 (February 1, 2016): 47–69. http://dx.doi.org/10.1108/ijsi-07-2014-0034.
Full textNanko, Makoto, Manabu Sato, Koji Matsumaru, and Kozo Ishizaki. "Densification Mechanism of Fine Ni-20Cr Powder during Pulsed Electric Current Sintering." Materials Science Forum 510-511 (March 2006): 818–21. http://dx.doi.org/10.4028/www.scientific.net/msf.510-511.818.
Full textKvapilová, Marie, Květa Kuchařová, Karel Hrbáček, and Vàclav Sklenička. "Creep Processes in MAR-M247 Nickel-Base Superalloy." Solid State Phenomena 258 (December 2016): 603–6. http://dx.doi.org/10.4028/www.scientific.net/ssp.258.603.
Full textLiu, Dezheng, Yan Li, Xiangdong Xie, Guijie Liang, and Jing Zhao. "Estimating the Influences of Prior Residual Stress on the Creep Rupture Mechanism for P92 Steel." Metals 9, no. 6 (June 2, 2019): 639. http://dx.doi.org/10.3390/met9060639.
Full textMeng, Dejian, Lijun Zhang, Xiaotian Xu, Yousef Sardahi, and Gang S. Chen. "Sensing and Quantifying a New Mechanism for Vehicle Brake Creep Groan." Shock and Vibration 2019 (February 26, 2019): 1–10. http://dx.doi.org/10.1155/2019/1843205.
Full textYAN, Ming. "Mechanical Mechanism of Creep-thermal Fatigue Interaction." Chinese Journal of Mechanical Engineering 45, no. 01 (2009): 111. http://dx.doi.org/10.3901/jme.2009.01.111.
Full textWatanabe, Hiroshi, and Tadashi Inoue. "Creep Behavior for Combined Rouse-Reptation Mechanism." Nihon Reoroji Gakkaishi 32, no. 3 (2004): 113–16. http://dx.doi.org/10.1678/rheology.32.113.
Full textZhou, Q., G. Itoh, and T. Yamashita. "Creep mechanism of aluminum alloy thin foils." Thin Solid Films 375, no. 1-2 (October 2000): 104–8. http://dx.doi.org/10.1016/s0040-6090(00)01234-7.
Full textParthasarathy, Triplicane A., Tai-Il Mah, and Kristen Keller. "Creep Mechanism of Polycrystalline Yttrium Aluminum Garnet." Journal of the American Ceramic Society 75, no. 7 (July 1992): 1756–59. http://dx.doi.org/10.1111/j.1151-2916.1992.tb07193.x.
Full textIrfan, T. Y. "Mechanism of creep in a volcanic saprolite." Quarterly Journal of Engineering Geology and Hydrogeology 27, no. 3 (August 1994): 211–30. http://dx.doi.org/10.1144/gsl.qjegh.1994.027.p3.03.
Full textYan, Jingli, Yangshan Sun, Feng Xue, Jing Bai, Shan Xue, and Weijian Tao. "Creep deformation mechanism of magnesium-based alloys." Journal of Materials Science 43, no. 21 (November 2008): 6952–59. http://dx.doi.org/10.1007/s10853-008-2968-4.
Full textEkaputra, I. M. W., and Gunawan Dwi Haryadi. "Karakteristik Laju Regangan Melar pada Baja Tahan Karat Austenitic 316L." ROTASI 19, no. 4 (October 3, 2017): 201. http://dx.doi.org/10.14710/rotasi.19.4.201-205.
Full textLin, Sheng, Xian Fen Xu, Cheng Wang, and Jian Xin Ye. "Analysis of Creep and Shrinkage Mechanism of Bridge Considering the Effect of Shrinkage on Creep Stress Reduction." Advanced Materials Research 255-260 (May 2011): 781–85. http://dx.doi.org/10.4028/www.scientific.net/amr.255-260.781.
Full textLi, Jiachun, Ning Tian, Ping Zhang, Fang Yu, Guoqi Zhao, and Ping Zhang. "Creep Damage and Deformation Mechanism of a Directionally Solidified Alloy during Moderate-Temperature Creep." Crystals 11, no. 6 (June 7, 2021): 646. http://dx.doi.org/10.3390/cryst11060646.
Full textShi, X. Q., Z. P. Wang, Q. J. Yang, and H. L. J. Pang. "Creep Behavior and Deformation Mechanism Map of Sn-Pb Eutectic Solder Alloy." Journal of Engineering Materials and Technology 125, no. 1 (December 31, 2002): 81–88. http://dx.doi.org/10.1115/1.1525254.
Full textJiang, Li Wu, Shu Suo Li, and Mei Ling Wu. "Investigation on Creep Mechanism of a Ni3Al-Based Single Crystal Superalloy IC6SX under 760°C/540MPa." Materials Science Forum 747-748 (February 2013): 804–9. http://dx.doi.org/10.4028/www.scientific.net/msf.747-748.804.
Full textNaveena, P. Parameswaran, K. Laha, and M. D. Mathew. "Study on creep deformation mechanism of 316LN stainless steel from impression creep tests." Materials at High Temperatures 31, no. 2 (May 2014): 180–84. http://dx.doi.org/10.1179/1878641314y.0000000012.
Full textLI, Han, Wen-bo DU, Jian-hui LI, Shu-bo LI, and Zhao-hui WANG. "Creep properties and controlled creep mechanism of as-cast Mg-5Zn-2.5Er alloy." Transactions of Nonferrous Metals Society of China 20, no. 7 (July 2010): 1212–16. http://dx.doi.org/10.1016/s1003-6326(09)60280-6.
Full textSHINYA, Norio, Junro KYONO, and Hideaki KUSHIMA. "Creep Fracture Mechanism Map and Creep Damage of Cr-Mo-V Rotor Steel." Tetsu-to-Hagane 92, no. 5 (2006): 327–33. http://dx.doi.org/10.2355/tetsutohagane1955.92.5_327.
Full textCieśla, M., F. Binczyk, M. Mańka, and R. Findziński. "The Influence of Macrostructure of Nickelbased Superalloys IN713C and MAR 247 on the Characteristics of High-temperature Creep." Archives of Foundry Engineering 14, no. 4 (December 1, 2014): 11–16. http://dx.doi.org/10.2478/afe-2014-0077.
Full textChatzidakis, Stylianos, Miltiadis Alamaniotis, and Lefteri H. Tsoukalas. "Creep Rupture Forecasting." International Journal of Monitoring and Surveillance Technologies Research 2, no. 2 (April 2014): 1–25. http://dx.doi.org/10.4018/ijmstr.2014040101.
Full textXiao, Lai Rong, Xi Min Zhang, Yan Wang, Wei Li, Quan Sheng Sun, and Zhan Ji Geng. "High Temperature Creep Behavior of Zn-1.0Cu-0.2Ti Alloy." Advanced Materials Research 287-290 (July 2011): 769–76. http://dx.doi.org/10.4028/www.scientific.net/amr.287-290.769.
Full textIshikawa, H. "Relation Between Cyclic Creep and Pure Creep on Copper." Journal of Engineering Materials and Technology 109, no. 3 (July 1, 1987): 221–25. http://dx.doi.org/10.1115/1.3225967.
Full textRobles-Arellano, Karen D., and Lukas Bichler. "Creep Deformation of 10 mol% La2O3 + YSZ Ceramic Composite Prepared by Spark Plasma Sintering." Materials Science Forum 783-786 (May 2014): 1087–92. http://dx.doi.org/10.4028/www.scientific.net/msf.783-786.1087.
Full textKvapilová, Marie, Vaclav Sklenička, Jiří Dvořák, and Petr Král. "An Evaluation of Creep Mechanisms in Ultrafine-Grained Metals." Key Engineering Materials 465 (January 2011): 382–85. http://dx.doi.org/10.4028/www.scientific.net/kem.465.382.
Full textLiu, Dan, and Dirk J. Pons. "Development of a stress-based creep-fatigue equation: Accommodating pure-fatigue to pure-creep for the high-cycle loading regime." International Journal of Damage Mechanics 27, no. 9 (October 9, 2017): 1397–415. http://dx.doi.org/10.1177/1056789517735678.
Full textGareh, Salim, and Zakaria Boumerzoug. "HEAT TREATMENT EFFECT ON THE CREEP OF INDUSTRIAL COPPER WIRE." Acta Metallurgica Slovaca 22, no. 3 (September 27, 2016): 181. http://dx.doi.org/10.12776/ams.v22i3.725.
Full textWang, Minqing, Jinhui Du, and Qun Deng. "The Mechanism of Creep during Crack Propagation of a Superalloy under Fatigue–Creep–Environment Interactions." Materials 13, no. 19 (October 4, 2020): 4418. http://dx.doi.org/10.3390/ma13194418.
Full textLi, Zhenrong, Chunlei Ma, Sugui Tian, Liqing Chen, and Xianghua Liu. "Deformation Mechanisms of Tandem Hot Rolled GH4169 Superalloy during Creep." High Temperature Materials and Processes 33, no. 1 (February 1, 2014): 71–75. http://dx.doi.org/10.1515/htmp-2013-0024.
Full textBaskin, Don, Jeff Wolfenstine, and Enrique J. Lavernia. "Elevated temperature mechanical behavior of CoSi and particulate reinforced CoSi produced by spray atomization and co-deposition." Journal of Materials Research 9, no. 2 (February 1994): 362–71. http://dx.doi.org/10.1557/jmr.1994.0362.
Full textDan, Zhenhua, Jiafei Lu, Hui Chang, Ping Qu, Aifeng Zhang, Zhigang Fang, Yuecheng Dong, Ying Wang, and Lian Zhou. "High-Stress Compressive Creep Behavior of Ti-6Al-4V ELI Alloys with Different Microstructures." MATEC Web of Conferences 321 (2020): 11007. http://dx.doi.org/10.1051/matecconf/202032111007.
Full text