Journal articles on the topic 'Crack growth'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Crack growth.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kamaya, Masayuki. "Evaluation of Fatigue Crack Growth of Interacting Surface Cracks." Advanced Materials Research 33-37 (March 2008): 187–98. http://dx.doi.org/10.4028/www.scientific.net/amr.33-37.187.
Full textYoda, M. "Subcritical Crack Growth Characteristics on Compact Type Specimens and Indentation Cracks in Glass." Journal of Engineering Materials and Technology 111, no. 4 (October 1, 1989): 399–403. http://dx.doi.org/10.1115/1.3226486.
Full textJin, Huijin, Bing Cui, and Ling Mao. "Fatigue Growth Behaviour of Two Interacting Cracks with Different Crack Offset." Materials 12, no. 21 (October 28, 2019): 3526. http://dx.doi.org/10.3390/ma12213526.
Full textMcEvily, A. J. "Recent Advances in Fatigue Crack Growth." Key Engineering Materials 510-511 (May 2012): 15–21. http://dx.doi.org/10.4028/www.scientific.net/kem.510-511.15.
Full textHan, Zhichao, Caifu Qian, and Huifang Li. "Investigation of the Enhancement Interactions between Double Parallel Cracks on Fatigue Growth Behaviors." Materials 13, no. 13 (July 1, 2020): 2952. http://dx.doi.org/10.3390/ma13132952.
Full textHan, Zhichao, Caifu Qian, and Huifang Li. "Study of the Shielding Interactions between Double Cracks on Crack Growth Behaviors under Fatigue Loading." Metals 10, no. 2 (January 31, 2020): 202. http://dx.doi.org/10.3390/met10020202.
Full textPrakash, R. V. "Fatigue crack growth at stress concentrators under spectrum loading." Journal of Strain Analysis for Engineering Design 40, no. 2 (February 1, 2005): 117–27. http://dx.doi.org/10.1243/030932405x7764.
Full textKutsenko, O. G., L. V. Kharytonova, and R. M. Krush. "Regularities of flat cracks growth in plates." Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, no. 2 (2023): 124–27. http://dx.doi.org/10.17721/1812-5409.2023/2.19.
Full textTakahashi, Akiyuki, Ayaka Suzuki, and Masanori Kikuchi. "Fatigue Crack Growth Simulation Using S-Version FEM: Application to Interacting Subsurface Cracks." Key Engineering Materials 741 (June 2017): 82–87. http://dx.doi.org/10.4028/www.scientific.net/kem.741.82.
Full textLukaszewicz, Mikolaj, Shen Gi Zhou, and Alan Turnbull. "Novel Concepts on the Growth of Corrosion Fatigue Small and Short Cracks." Solid State Phenomena 227 (January 2015): 3–6. http://dx.doi.org/10.4028/www.scientific.net/ssp.227.3.
Full textCui, Zhendong, and Weige Han. "In SituScanning Electron Microscope (SEM) Observations of Damage and Crack Growth of Shale." Microscopy and Microanalysis 24, no. 2 (April 2018): 107–15. http://dx.doi.org/10.1017/s1431927618000211.
Full textZhang, Jian Yu, Rui Bao, Li Bin Zhao, Li Ping Long, and Bin Jun Fei. "Crack Growth Life Estimating for MSD Panel." Advanced Materials Research 33-37 (March 2008): 175–80. http://dx.doi.org/10.4028/www.scientific.net/amr.33-37.175.
Full textHashmi, Mudassar Hussain, Seyed Saeid Rahimian Koloor, Mohd Foad Abdul-Hamid, and Mohd Nasir Tamin. "Fractal Analysis for Fatigue Crack Growth Rate Response of Engineering Structures with Complex Geometry." Fractal and Fractional 6, no. 11 (November 1, 2022): 635. http://dx.doi.org/10.3390/fractalfract6110635.
Full textLaw, M., Valerie Linton, and Erwin Gamboa. "Fatigue Crack Growth Comparison between Sleeved and Non-Sleeved Pipeline." Advanced Materials Research 41-42 (April 2008): 105–12. http://dx.doi.org/10.4028/www.scientific.net/amr.41-42.105.
Full textHuang, Y., N. Y. Li, H. W. Zhang, and K. C. Hwang. "Interactive Growth of Multiple Fiber-Bridged Matrix Cracks in Unidirectional Composites." Journal of Engineering Materials and Technology 118, no. 3 (July 1, 1996): 295–301. http://dx.doi.org/10.1115/1.2806809.
Full textKuo, C. H., L. M. Keer, and M. P. Bujold. "Effects of Multiple Cracking on Crack Growth and Coalescence in Contact Fatigue." Journal of Tribology 119, no. 3 (July 1, 1997): 385–90. http://dx.doi.org/10.1115/1.2833499.
Full textKnorr, Alain Franz, and Michael Marx. "Microstructural Barriers against Fatigue Crack Growth." Materials Science Forum 783-786 (May 2014): 2339–46. http://dx.doi.org/10.4028/www.scientific.net/msf.783-786.2339.
Full textRen, Xu Dong, T. Zhang, Yong Kang Zhang, Da Wei Jiang, and Kang Min Chen. "Analysis of 7050 Aluminum Alloy Crack Growth by Laser Shock Processing." Advanced Materials Research 97-101 (March 2010): 3852–56. http://dx.doi.org/10.4028/www.scientific.net/amr.97-101.3852.
Full textMcClung, R. C. "A Simple Model for Fatigue Crack Growth Near Stress Concentrations." Journal of Pressure Vessel Technology 113, no. 4 (November 1, 1991): 542–48. http://dx.doi.org/10.1115/1.2928793.
Full textTumanov, N. V. "Steady fatigue crack growth: micromechanism and mathematical modeling." Industrial laboratory. Diagnostics of materials 84, no. 11 (December 3, 2018): 52–69. http://dx.doi.org/10.26896/1028-6861-2018-84-11-52-69.
Full textKAMIL, KUSNO, MASAHIRO GOTO, SEUNG-ZEON HAN, KWANGJUN EUH, NORIO KAWAGOISHI, and SANGSHIK KIM. "SMALL CRACK GROWTH BEHAVIOR AND EVALUATION OF GROWTH RATE OF COPPER PROCESSED BY EQUAL CHANNEL ANGULAR PRESSING." International Journal of Modern Physics: Conference Series 06 (January 2012): 245–50. http://dx.doi.org/10.1142/s201019451200325x.
Full textJONES, R., L. MOLENT, and S. PITT. "Crack growth of physically small cracks." International Journal of Fatigue 29, no. 9-11 (September 2007): 1658–67. http://dx.doi.org/10.1016/j.ijfatigue.2007.01.031.
Full textWijerathne, M. L. L., Muneo Hori, T. Okinaka, and Hide Sakaguchi. "Application of PDS-FEM for Simulating 3D Wing Crack Growth." Applied Mechanics and Materials 553 (May 2014): 725–30. http://dx.doi.org/10.4028/www.scientific.net/amm.553.725.
Full textQian, Cai-Fu, Ming-O. Wang, Bao-Juan Wu, Shu-Ho Dai, and J. C. M. Li. "Mixed-Mode Fatigue Crack Growth in Stainless Steels Under Biaxial Loading." Journal of Engineering Materials and Technology 118, no. 3 (July 1, 1996): 349–55. http://dx.doi.org/10.1115/1.2806817.
Full textPotirniche, G. P., M. F. Horstemeyer, P. M. Gullett, and B. Jelinek. "Atomistic modelling of fatigue crack growth and dislocation structuring in FCC crystals." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462, no. 2076 (July 5, 2006): 3707–31. http://dx.doi.org/10.1098/rspa.2006.1746.
Full textBower, A. F. "The Influence of Crack Face Friction and Trapped Fluid on Surface Initiated Rolling Contact Fatigue Cracks." Journal of Tribology 110, no. 4 (October 1, 1988): 704–11. http://dx.doi.org/10.1115/1.3261717.
Full textOrtiz, K., and A. S. Kiremidjian. "A Stochastic Model for Fatigue Crack Growth Rate Data." Journal of Engineering for Industry 109, no. 1 (February 1, 1987): 13–18. http://dx.doi.org/10.1115/1.3187085.
Full textTong, Jie. "Three Stages of Fatigue Crack Growth in GFRP Composite Laminates." Journal of Engineering Materials and Technology 123, no. 1 (February 13, 2000): 139–43. http://dx.doi.org/10.1115/1.1286234.
Full textKikuchi, Masanori, Yoshitaka Wada, and Yu Long Li. "Evaluation of Interaction Effect of Two Surface Cracks by Fatigue." Key Engineering Materials 417-418 (October 2009): 97–100. http://dx.doi.org/10.4028/www.scientific.net/kem.417-418.97.
Full textSchneider, Jens, and Jonas Hilcken. "Cyclical fatigue of annealed and of thermally tempered soda-lime-silica glass." MATEC Web of Conferences 165 (2018): 18003. http://dx.doi.org/10.1051/matecconf/201816518003.
Full textTurnbull, Alan. "Corrosion pitting and environmentally assisted small crack growth." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2169 (September 8, 2014): 20140254. http://dx.doi.org/10.1098/rspa.2014.0254.
Full textPang, John Hock Lye, and You Xiang Chew. "Fatigue Crack Growth and Coalescence Algorithm Starting from Multiple Surface Cracks." Advanced Materials Research 891-892 (March 2014): 1003–8. http://dx.doi.org/10.4028/www.scientific.net/amr.891-892.1003.
Full textChan, K. S., J. Feiger, Y. D. Lee, R. John, and S. J. Hudak,. "Fatigue Crack Growth Thresholds of Deflected Mixed-Mode Cracks in PWA1484." Journal of Engineering Materials and Technology 127, no. 1 (January 1, 2005): 2–7. http://dx.doi.org/10.1115/1.1836765.
Full textGall, Ken, Huseyin Sehitoglu, and Yavuz Kadioglu. "A Methodology for Predicting Variability in Microstructurally Short Fatigue Crack Growth Rates." Journal of Engineering Materials and Technology 119, no. 2 (April 1, 1997): 171–79. http://dx.doi.org/10.1115/1.2805990.
Full textBurchill, Madeleine, Simon Barter, Lok Hin Chan, and Michael Jones. "Microstructurally small fatigue crack growth rates in aluminium alloys for developing improved predictive models." MATEC Web of Conferences 165 (2018): 13004. http://dx.doi.org/10.1051/matecconf/201816513004.
Full textHe, Wen Tao, Jing Xi Liu, and De Xie. "Two-Dimensional Crack Growth Simulation under Mixed-Mode Loading." Applied Mechanics and Materials 577 (July 2014): 301–4. http://dx.doi.org/10.4028/www.scientific.net/amm.577.301.
Full textLin, X. B., and R. A. Smith. "Direct simulation of fatigue crack growth for arbitrary-shaped defects in pressure vessels." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 213, no. 2 (February 1, 1998): 175–89. http://dx.doi.org/10.1243/0954406991522257.
Full textMcClung, R. C., and H. Sehitoglu. "Closure and Growth of Fatigue Cracks at Notches." Journal of Engineering Materials and Technology 114, no. 1 (January 1, 1992): 1–7. http://dx.doi.org/10.1115/1.2904135.
Full textTomaru, Shuji, and Akiyuki Takahashi. "Three-dimensional fatigue crack growth simulation of embedded cracks using s-version FEM." International Journal of Structural Integrity 11, no. 4 (December 19, 2019): 547–55. http://dx.doi.org/10.1108/ijsi-10-2019-0107.
Full textGoto, Masahiro, Takaei Yamamoto, Junichi Kitamura, Seung Zeon Han, R. Takanami, Terutoshi Yakushiji, and J. H. Lee. "Growth Rate of Small Surface-Cracks in Age Hardening Cu-Ni-Si Alloy under Cyclic Stressing." Key Engineering Materials 827 (December 2019): 216–21. http://dx.doi.org/10.4028/www.scientific.net/kem.827.216.
Full textDe Francisco, Unai, Felix Beckmann, Julian Moosmann, Nicolas O. Larrosa, and Matthew J. Peel. "3D characterisation of hydrogen environmentally assisted cracking during static loading of AA7449-T7651." International Journal of Fracture 232, no. 1 (October 28, 2021): 93–116. http://dx.doi.org/10.1007/s10704-021-00595-y.
Full textAkama, Makoto. "Fatigue Crack Growth under Non-Proportional Mixed Mode Loading in Rail and Wheel Steel Part 1: Sequential Mode I and Mode II Loading." Applied Sciences 9, no. 10 (May 16, 2019): 2006. http://dx.doi.org/10.3390/app9102006.
Full textShaari, Mohd Shamil, Sylvia Urai, Akiyuki Takahashi, and Mohd Akramin Mohd Romlay. "Predicting Fatigue Crack Growth Behavior of Coalesced Cracks Using the Global-Local Superimposed Technique." Frattura ed Integrità Strutturale 16, no. 62 (September 22, 2022): 150–67. http://dx.doi.org/10.3221/igf-esis.62.11.
Full textMa, Wei. "Discontinuous Growth Mechanisms of Mode II Crack under High-Speed Impact Conditions." Advanced Materials Research 41-42 (April 2008): 169–73. http://dx.doi.org/10.4028/www.scientific.net/amr.41-42.169.
Full textYarullin, Rustam, and Mikhail Yakovlev. "Fatigue growth rate of inclined surface cracks in aluminum and titanium alloys." Frattura ed Integrità Strutturale 16, no. 60 (March 25, 2022): 451–63. http://dx.doi.org/10.3221/igf-esis.60.31.
Full textLin, X. B., and R. A. Smith. "Fatigue Growth Prediction of Internal Surface Cracks in Pressure Vessels." Journal of Pressure Vessel Technology 120, no. 1 (February 1, 1998): 17–23. http://dx.doi.org/10.1115/1.2841878.
Full textLuo, Yuan, Xiaofan Liu, Fanghuai Chen, Haiping Zhang, and Xinhui Xiao. "Numerical Simulation on Crack–Inclusion Interaction for Rib-to-Deck Welded Joints in Orthotropic Steel Deck." Metals 13, no. 8 (August 5, 2023): 1402. http://dx.doi.org/10.3390/met13081402.
Full textMATSUSAKO, HIRONORI, KOHJI KARIYA, NORIO KAWAGOISHI, QINGYUAN WANG, and MASAHIRO GOTO. "EFFECT OF TEXTURE ON FATIGUE PROPERTIES OF AGE-HARDENED Al ALLOYS UNDER ULTRASONIC LOADING." International Journal of Modern Physics: Conference Series 06 (January 2012): 294–99. http://dx.doi.org/10.1142/s2010194512003339.
Full textGuo, Hao, Guang Fu Li, Xun Cai, Jiasheng Bai, and Wu Yang. "Effect of Cyclic Loading on Crack Propagation of X-70 Pipeline Steel in Near-Neutral pH Solution." Key Engineering Materials 297-300 (November 2005): 2501–7. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.2501.
Full textLados, Diana A. "Fatigue Crack Propagation Mechanisms of Long and Small Cracks in Al-Si-Mg and Al-Mg Cast Alloys." Materials Science Forum 618-619 (April 2009): 563–74. http://dx.doi.org/10.4028/www.scientific.net/msf.618-619.563.
Full text