Academic literature on the topic 'Crack growth'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Crack growth.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Crack growth"
Kamaya, Masayuki. "Evaluation of Fatigue Crack Growth of Interacting Surface Cracks." Advanced Materials Research 33-37 (March 2008): 187–98. http://dx.doi.org/10.4028/www.scientific.net/amr.33-37.187.
Full textYoda, M. "Subcritical Crack Growth Characteristics on Compact Type Specimens and Indentation Cracks in Glass." Journal of Engineering Materials and Technology 111, no. 4 (October 1, 1989): 399–403. http://dx.doi.org/10.1115/1.3226486.
Full textJin, Huijin, Bing Cui, and Ling Mao. "Fatigue Growth Behaviour of Two Interacting Cracks with Different Crack Offset." Materials 12, no. 21 (October 28, 2019): 3526. http://dx.doi.org/10.3390/ma12213526.
Full textMcEvily, A. J. "Recent Advances in Fatigue Crack Growth." Key Engineering Materials 510-511 (May 2012): 15–21. http://dx.doi.org/10.4028/www.scientific.net/kem.510-511.15.
Full textHan, Zhichao, Caifu Qian, and Huifang Li. "Investigation of the Enhancement Interactions between Double Parallel Cracks on Fatigue Growth Behaviors." Materials 13, no. 13 (July 1, 2020): 2952. http://dx.doi.org/10.3390/ma13132952.
Full textHan, Zhichao, Caifu Qian, and Huifang Li. "Study of the Shielding Interactions between Double Cracks on Crack Growth Behaviors under Fatigue Loading." Metals 10, no. 2 (January 31, 2020): 202. http://dx.doi.org/10.3390/met10020202.
Full textPrakash, R. V. "Fatigue crack growth at stress concentrators under spectrum loading." Journal of Strain Analysis for Engineering Design 40, no. 2 (February 1, 2005): 117–27. http://dx.doi.org/10.1243/030932405x7764.
Full textKutsenko, O. G., L. V. Kharytonova, and R. M. Krush. "Regularities of flat cracks growth in plates." Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, no. 2 (2023): 124–27. http://dx.doi.org/10.17721/1812-5409.2023/2.19.
Full textTakahashi, Akiyuki, Ayaka Suzuki, and Masanori Kikuchi. "Fatigue Crack Growth Simulation Using S-Version FEM: Application to Interacting Subsurface Cracks." Key Engineering Materials 741 (June 2017): 82–87. http://dx.doi.org/10.4028/www.scientific.net/kem.741.82.
Full textLukaszewicz, Mikolaj, Shen Gi Zhou, and Alan Turnbull. "Novel Concepts on the Growth of Corrosion Fatigue Small and Short Cracks." Solid State Phenomena 227 (January 2015): 3–6. http://dx.doi.org/10.4028/www.scientific.net/ssp.227.3.
Full textDissertations / Theses on the topic "Crack growth"
McFadyen, Neil B. (Neil Barry) Carleton University Dissertation Engineering Mechanical. "Fatigue crack growth in semi-elliptical surface cracks." Ottawa, 1987.
Find full textCORBANI, SILVIA. "CRACK GROWTH WITH PARTIAL BENDING-INDUCED CRACK CLOSURE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2012. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=23847@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Neste trabalho são investigadas experimentalmente e numericamente as mudanças de geometria em trincas inicialmente passantes submetidas a carregamento remoto de flexão pura induzindo fechamento parcial das faces da trinca. Esse crescimento de trinca pode ocorrer numa variedade de estruturas com defeitos pré-existentes, tais como fuselagens de aviões, cascos de navios, vasos de pressões e pontes metálicas. O carregamento de flexão pura ocasiona regiões de tração e compressão na frente da trinca. É inquestionável que parte das faces da trinca sob compressão fecha independentemente de qualquer mecanismo de fechamento; e outra parte das faces da trinca, por outro lado, sob tração cresce mudando gradualmente de geometria. Após realizar ensaios em corpos-de-prova de aço ASTM A-36, foi observado que tais carregamentos geram uma quina na frente da trinca, que é a transição de uma geometria parcialmente passante e um trecho remanescente da geometria inicial. Para entender a distribuição do fator de intensidade de tensão em tais frentes de trinca, suas geometrias foram reproduzidas em um modelador tridimensional de mecânica da fratura linear elástica, o FRANC3D, acoplado a um programa de análise de elementos finitos (ABAQUS). Com este sistema acoplado, foram executadas análises considerando efeitos não lineares causados pelo contato das faces da trinca sob compressão. Verificou-se a necessidade de propor metodologias para tratamento dos resultados numéricos na quina, obtendo-se predições eficientes das mudanças na geometria da trinca. Contudo, a estimativa de vida, quando se compara taxas de crescimento da trinca obtidas em um corpo-de-prova sob tração cíclica e as taxas em um corpo-de-prova sob flexão com fechamento parcial da trinca, foi melhor reproduzida usando um fator de correção de fechamento da trinca. Adicionalmente, uma série de expressões empíricas normalizadas para geometrias da trinca e fatores de intensidade de tensão são propostas.
This work investigates experimentally and numerically how the front of initially through edge cracks in plate changes after they pass to be remotely fatigue loaded under pure bending to induce partial closure of the crack faces. This type of crack growth problem can occur in a variety of structures with preexisting defects, such as aircraft fuselages, ship hulls, pressure vessels components, and steel bridges. The bending loads induce tension and compression regions along the crack front, with the part of the crack faces that work under compression undoubtedly closed by the load, independently of any other closure mechanism. The part of the crack faces that work under tension; on the other hand, crack grows by fatigue gradually changing its shape. After performing tests on ASTM A36 steel specimens, it was observed that the bending load induces a kink on the crack front, in the transition between the part through crack created on the tension side and initial crack geometry. To understand the distribution of the stress intensity factor along such crack fronts, the measured crack shapes were reproduced in a three-dimensional fracture mechanics modeler (FRANC3D) coupled to a finite element analysis program (ABAQUS). With this coupled system, linear elastic stress analysis simulations were performed considering the nonlinear effects caused by the crack face contact in the compressed region. In particular, methods had to be proposed to treat numerical noise around the kink. The proposed methodology efficiently predicts the observed crack front shape changes; although the observed fatigue lives were better reproduced using a crackclosure correction factor when compared to crack growth data obtained from standard compact tension specimens. In addition, a series of normalized empiric expressions for both crack front shapes and stress intensity factors are proposed.
Hejman, Ulf. "On initiation of chemically assisted crack growth and crack propagation paths of branching cracks in polycarbonate." Licentiate thesis, Malmö högskola, Teknik och samhälle, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-7790.
Full textAhmad, Haider Yousif. "Fatigue crack growth at notches." Thesis, University of Sheffield, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360410.
Full textShin, C. S. "Crack growth at stress concentrations." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355680.
Full textSheu, Yih-Chyun. "Dynamic elastic-viscoplastic crack growth /." The Ohio State University, 1988. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487587604133479.
Full textPatel, Surendra Kumar. "Experimental And Numerical Studies On Fatigue Crack Growth Of Single And Interacting Multiple Surface Cracks." Thesis, Indian Institute of Science, 2000. https://etd.iisc.ac.in/handle/2005/276.
Full textPatel, Surendra Kumar. "Experimental And Numerical Studies On Fatigue Crack Growth Of Single And Interacting Multiple Surface Cracks." Thesis, Indian Institute of Science, 2000. http://hdl.handle.net/2005/276.
Full textVethe, Stine. "NUMERICAL SIMULATION OF FATIGUE CRACK GROWTH." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for produktutvikling og materialer, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18721.
Full textBaldie, Keith David. "Crack growth in hardened cement paste." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/37934.
Full textBooks on the topic "Crack growth"
Richard, Hans Albert, and Manuela Sander. Fatigue Crack Growth. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32534-7.
Full textM, Fisher Douglas, Holka Donna, and Lewis Research Center, eds. Variables controlling fatigue crack growth of short cracks. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1986.
Find full textKrausz, A. S., and K. Krausz. Fracture Kinetics of Crack Growth. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1381-3.
Full textRecho, Naman. Fracture Mechanics and Crack Growth. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118387184.
Full textKrausz, A. S. Fracture Kinetics of Crack Growth. Dordrecht: Springer Netherlands, 1988.
Find full textK, Krausz, ed. Fracture kinetics of crack growth. Dordrecht: Kluwer Academic Publishers, 1988.
Find full textRecho, Naman. Fracture mechanics and crack growth. London: ISTE Ltd., 2012.
Find full textPrasad, N. N. V. Thermomechanical crack growth using boundary elements. Southampton: WIT Press, 1998.
Find full textHeinrich, Gert, Reinhold Kipscholl, and Radek Stoček, eds. Fatigue Crack Growth in Rubber Materials. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68920-9.
Full textMi, Yaoming. Three-dimensional analysis of crack growth. Southampton, UK: Computational Mechanics Publications, 1996.
Find full textBook chapters on the topic "Crack growth"
Richard, Hans Albert, and Manuela Sander. "Designing Components and Structures According to Strength Criteria." In Fatigue Crack Growth, 1–25. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32534-7_1.
Full textRichard, Hans Albert, and Manuela Sander. "Damages Caused by Crack Growth." In Fatigue Crack Growth, 27–53. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32534-7_2.
Full textRichard, Hans Albert, and Manuela Sander. "Fundamentals of Fracture Mechanics." In Fatigue Crack Growth, 55–112. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32534-7_3.
Full textRichard, Hans Albert, and Manuela Sander. "Fatigue Crack Growth Under Cyclic Loading with Constant Amplitude." In Fatigue Crack Growth, 113–51. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32534-7_4.
Full textRichard, Hans Albert, and Manuela Sander. "Experimental Determination of Fracture-Mechanical Material Parameters." In Fatigue Crack Growth, 153–86. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32534-7_5.
Full textRichard, Hans Albert, and Manuela Sander. "Fatigue Crack Growth Under Service Loads." In Fatigue Crack Growth, 187–221. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32534-7_6.
Full textRichard, Hans Albert, and Manuela Sander. "Simulations of Fatigue Crack Growth." In Fatigue Crack Growth, 223–37. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32534-7_7.
Full textRichard, Hans Albert, and Manuela Sander. "Crack Initiation Under Cyclic Loading." In Fatigue Crack Growth, 239–50. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32534-7_8.
Full textRichard, Hans Albert, and Manuela Sander. "Practical Examples." In Fatigue Crack Growth, 251–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32534-7_9.
Full textFarahmand, Bahram, George Bockrath, and James Glassco. "Fatigue Crack Growth." In Fatigue and Fracture Mechanics of High Risk Parts, 177–252. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6009-8_4.
Full textConference papers on the topic "Crack growth"
Lamborn, Lyndon, Greg Nelson, and James Harter. "Negligible Crack Growth Thresholds." In 2020 13th International Pipeline Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ipc2020-9248.
Full textMellings, S. C., and J. M. W. Baynham. "Automatic Fatigue Crack Growth." In ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77252.
Full textWelch, Donald E., Lee M. Hively, and Ray F. Holdaway. "Nonlinear Crack Growth Monitoring." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2459.
Full textCláudio Roberto Ávila da Silva Júnior, Rodrigo Villaca Santos, Lucas Gimenis de Moura, and Waldir Mariano Machado Júnior. "Bounds for Crack Growth." In 23rd ABCM International Congress of Mechanical Engineering. Rio de Janeiro, Brazil: ABCM Brazilian Society of Mechanical Sciences and Engineering, 2015. http://dx.doi.org/10.20906/cps/cob-2015-2658.
Full textKim, Nak Hyun, Yun Jae Kim, Catrin M. Davies, Ali Mehmanparast, and Kamran M. Nikbin. "The Effect of Discontinuous Crack in Creep Crack Growth Tests." In ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/pvp2013-98142.
Full textVan Arsdell, William W., and Stuart B. Brown. "Crack Growth in Polysilicon MEMS." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-1253.
Full textLee, Gi-Bum, Youn-Young Jang, Nam-Su Huh, Sung-Hoon Park, Noh-Hwan Park, Jun Park, and Kyoungsoo Park. "Crack Growth Simulation Using Iterative Crack-Tip Modeling Technique." In ASME 2022 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/pvp2022-84684.
Full textBrust, F. W., D. J. Shim, G. Wilkowski, and D. Rudland. "PWSCC Crack Growth Modeling Approaches." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57974.
Full textSalzman, Ronald N., Neville F. Rieger, and Letian Wang. "Turbine Blade Fatigue Crack Growth." In ASME 2004 Power Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/power2004-52138.
Full textZuo, Jianzheng, Xiaomin Deng, and Michael A. Sutton. "Computational Aspects of Three-Dimensional Crack Growth Simulations." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60699.
Full textReports on the topic "Crack growth"
Christman. NR198704 Crack Initiation and Growth Modeling and Definition of Crack Growth Behavior in Line Pipe Steels. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 1987. http://dx.doi.org/10.55274/r0011199.
Full textPost, Roger A. Crack Growth Testing. Fort Belvoir, VA: Defense Technical Information Center, March 1994. http://dx.doi.org/10.21236/ada361403.
Full textWelch, DE. Nonlinear Crack Growth Monitoring. Office of Scientific and Technical Information (OSTI), March 2001. http://dx.doi.org/10.2172/814371.
Full textWelch, D. E. Nonlinear Crack Growth Monitoring. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/816619.
Full textKirchner, Ted E., and John McCoy. Automated Fatigue Crack Growth Measurement. Fort Belvoir, VA: Defense Technical Information Center, July 1988. http://dx.doi.org/10.21236/ada198642.
Full textBrust. L51576 Crack Growth Behavior and Modeling. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 1989. http://dx.doi.org/10.55274/r0010642.
Full textHoyt, Jeffrey John. Atomistic simulations of brittle crack growth. Office of Scientific and Technical Information (OSTI), April 2007. http://dx.doi.org/10.2172/908078.
Full textHatch, P., J. VanDenAvyle, and J. Laing. Fatigue crack growth automated testing method. Office of Scientific and Technical Information (OSTI), June 1989. http://dx.doi.org/10.2172/5909955.
Full textHealy, Thomas E. Fatigue crack growth in lithium hydride. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/95360.
Full textBubenik and Nestleroth. L51619 Effects of Loading on the Growth Rates in Deep Stress-Corrosion Cracks. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 1990. http://dx.doi.org/10.55274/r0010094.
Full text