Academic literature on the topic 'CPU throttling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CPU throttling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "CPU throttling"
Owahid, Abdullah A., and Eugene B. John. "Wasted dynamic power and correlation to instruction set architecture for CPU throttling." Journal of Supercomputing 75, no. 5 (October 11, 2018): 2436–54. http://dx.doi.org/10.1007/s11227-018-2637-6.
Full textBenoit-Cattin, Théo, Delia Velasco-Montero, and Jorge Fernández-Berni. "Impact of Thermal Throttling on Long-Term Visual Inference in a CPU-Based Edge Device." Electronics 9, no. 12 (December 10, 2020): 2106. http://dx.doi.org/10.3390/electronics9122106.
Full textKwon, Ohchul, Wonjae Jang, Giyeon Kim, and Chang-Gun Lee. "Optimal Planning of Dynamic Thermal Management for NANS (N-App N-Screen) Services." Electronics 7, no. 11 (November 8, 2018): 311. http://dx.doi.org/10.3390/electronics7110311.
Full textChen, Jing, Madhavan Manivannan, Mustafa Abduljabbar, and Miquel Pericàs. "ERASE: Energy Efficient Task Mapping and Resource Management for Work Stealing Runtimes." ACM Transactions on Architecture and Code Optimization 19, no. 2 (June 30, 2022): 1–29. http://dx.doi.org/10.1145/3510422.
Full textKirov, Denis E., Natalia V. Toutova, Anatoly S. Vorozhtsov, and Iliya A. Andreev. "FEATURE SELECTION FOR PREDICTING LIVE MIGRATION CHARACTERISTICS OF VIRTUAL MACHINES." T-Comm 15, no. 7 (2021): 62–70. http://dx.doi.org/10.36724/2072-8735-2021-15-7-62-70.
Full textAlkharabsheh, Sami, Udaya L. N. Puvvadi, Bharath Ramakrishnan, Kanad Ghose, and Bahgat Sammakia. "Failure Analysis of Direct Liquid Cooling System in Data Centers." Journal of Electronic Packaging 140, no. 2 (May 9, 2018). http://dx.doi.org/10.1115/1.4039137.
Full textBrilli, Gianluca, Roberto Cavicchioli, Marco Solieri, Paolo Valente, and Andrea Marongiu. "Evaluating Controlled Memory Request Injection for Efficient Bandwidth Utilization and Predictable Execution in Heterogeneous SoCs." ACM Transactions on Embedded Computing Systems, September 19, 2022. http://dx.doi.org/10.1145/3548773.
Full text"Enhancement of Plant Disease Detection Framework using Cloud Computing and GPU Computing." International Journal of Engineering and Advanced Technology 9, no. 1 (October 30, 2019): 3139–41. http://dx.doi.org/10.35940/ijeat.a9541.109119.
Full textMaity, Srijeeta, Anirban Majumder, Rudrajyoti Roy, Ashish Hota, and Soumyajit Dey. "Harnessing Machine Learning in Dynamic Thermal Management in Embedded CPU-GPU Platforms." ACM Transactions on Design Automation of Electronic Systems, December 20, 2024. https://doi.org/10.1145/3708890.
Full textPandey, Shailja, Lokesh Siddhu, and Preeti Ranjan Panda. "NeuroCool: Dynamic Thermal Management of 3D DRAM for Deep Neural Networks through Customized Prefetching." ACM Transactions on Design Automation of Electronic Systems, October 23, 2023. http://dx.doi.org/10.1145/3630012.
Full textDissertations / Theses on the topic "CPU throttling"
Perera, Jayasuriya Kuranage Menuka. "AI-driven Zero-Touch solutions for resource management in cloud-native 5G networks." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0427.
Full textThe deployment of 5G networks has introduced cloud-native architectures and automated management systems, offering communication service providers scalable, flexible, and agile infrastructure. These advancements enable dynamic resource allocation, scaling resources up during high demand and down during low usage, optimizing CapEx and OpEx. However, limited observability and poor workload characterization hinder resource management. Overprovisioning during off-peak periods raises costs, while underprovisioning during peak demand degrades QoS. Despite industry solutions, the trade-off between cost efficiency and QoS remains unresolved. This thesis addresses these challenges by proposing proactive autoscaling solutions for network functions in cloud-native 5G. It focuses on accurately forecasting resource usage, intelligently differentiating scaling events (scaling up, down, or none), and optimizing timing to achieve a balance between cost and QoS. Additionally, CPU throttling, a significant barrier to this balance, is mitigated through a novel approach. The developed framework ensures efficient resource allocation, reducing operational costs while maintaining high QoS. These contributions establish a foundation for sustainable and efficient 5G network operations, setting a benchmark for future cloud-native architectures
Conference papers on the topic "CPU throttling"
Kuranage, Menuka Perera Jayasuriya, Elisabeth Hanser, Ahmed Bouabdallah, Loutfi Nuaymi, and Philippe Bertin. "CPU throttling-aware AI-based autoscaling for Kubernetes." In 2024 IEEE 35th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 1–7. IEEE, 2024. https://doi.org/10.1109/pimrc59610.2024.10817283.
Full textKnorst, Tiago, Michael Guilherme Jordan, Guilherme Korol, Mateus Beck Rutzig, and Antonio Carlos Schneider Beck. "An Automatic Framework for Collaborative CPU Thread Throttling and FPGA HLS-Versioning." In 2024 XIV Brazilian Symposium on Computing Systems Engineering (SBESC), 1–6. IEEE, 2024. https://doi.org/10.1109/sbesc65055.2024.10771920.
Full textKnorst, Tiago, Michael G. Jordan, Arthur F. Lorenzen, Mateus Beck Rutzig, and Antonio Carlos Schneider Beck. "ETCG: Energy-Aware CPU Thread Throttling for CPU-GPU Collaborative Environments." In 2021 34th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI). IEEE, 2021. http://dx.doi.org/10.1109/sbcci53441.2021.9529986.
Full textRai, Siddharth, and Mainak Chaudhuri. "Improving CPU Performance Through Dynamic GPU Access Throttling in CPU-GPU Heterogeneous Processors." In 2017 IEEE International Parallel and Distributed Processing Symposium: Workshops (IPDPSW). IEEE, 2017. http://dx.doi.org/10.1109/ipdpsw.2017.37.
Full textKnorst, Tiago, Michael G. Jordan, Arthur F. Lorenzon, Mateus Beck Rutzig, and Antonio Carlos Schneider Beck. "ETCF – Energy-Aware CPU Thread Throttling and Workload Balancing Framework for CPU-FPGA Collaborative Environments." In 2021 XI Brazilian Symposium on Computing Systems Engineering (SBESC). IEEE, 2021. http://dx.doi.org/10.1109/sbesc53686.2021.9628345.
Full textOwahid, Abdullah A., and Eugene B. John. "RTL Level Instruction Profiling for CPU Throttling to Reduce Wasted Dynamic Power." In 2017 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, 2017. http://dx.doi.org/10.1109/csci.2017.281.
Full textKnorst, Tiago, Guilherme Korol, Michael Guilherme Jordan, Julio Costella Vicenzi, Arthur Lorenzon, Mateus Beck Rutzig, and Antonio Carlos Schneider Beck. "On the benefits of Collaborative Thread Throttling and HLS-Versioning in CPU-FPGA Environments." In 2022 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI). IEEE, 2022. http://dx.doi.org/10.1109/sbcci55532.2022.9893223.
Full textAlkharabsheh, Sami, Bharath Ramakrishnan, and Bahgat Sammakia. "Failure Analysis of Direct Liquid Cooling System in Data Centers." In ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2017 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ipack2017-74174.
Full textDawson, Michael K., and Jeffrey W. Herrmann. "Metareasoning Approaches for Thermal Management During Image Processing." In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-88459.
Full textHeydari, Ali, and Kathy Russell. "Miniature Vapor Compression Refrigeration Systems for Active Cooling of High Performance Computers." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/epp-24710.
Full text