Academic literature on the topic 'Covalent Interactions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Covalent Interactions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Covalent Interactions"
Alkorta, Ibon, and Sławomir J. Grabowski. "Non-covalent interactions." Computational and Theoretical Chemistry 998 (October 2012): 1. http://dx.doi.org/10.1016/j.comptc.2012.07.025.
Full textFINKELSTEIN, ALEXEI V., MICHAEL Y. LOBANOV, NIKITA V. DOVIDCHENKO, and NATALIA S. BOGATYREVA. "MANY-ATOM VAN DER WAALS INTERACTIONS LEAD TO DIRECTION-SENSITIVE INTERACTIONS OF COVALENT BONDS." Journal of Bioinformatics and Computational Biology 06, no. 04 (August 2008): 693–707. http://dx.doi.org/10.1142/s0219720008003606.
Full textBagus, Paul S., and Connie J. Nelin. "Covalent interactions in oxides." Journal of Electron Spectroscopy and Related Phenomena 194 (June 2014): 37–44. http://dx.doi.org/10.1016/j.elspec.2013.11.004.
Full textSchneider, Hans-J�rg. "EDITORIAL: NON-COVALENT INTERACTIONS." Journal of Physical Organic Chemistry 10, no. 5 (May 1997): 253. http://dx.doi.org/10.1002/(sici)1099-1395(199705)10:5<253::aid-poc1875>3.0.co;2-r.
Full textOlson, R. E. "Ionic-covalent collision interactions." International Journal of Quantum Chemistry 24, S17 (July 9, 2009): 49–64. http://dx.doi.org/10.1002/qua.560240807.
Full textMajumdar, Dhrubajyoti, A. Frontera, Rosa M. Gomila, Sourav Das, and Kalipada Bankura. "Synthesis, spectroscopic findings and crystal engineering of Pb(ii)–Salen coordination polymers, and supramolecular architectures engineered by σ-hole/spodium/tetrel bonds: a combined experimental and theoretical investigation." RSC Advances 12, no. 10 (2022): 6352–63. http://dx.doi.org/10.1039/d1ra09346k.
Full textBjij, Imane, Pritika Ramharack, Shama Khan, Driss Cherqaoui, and Mahmoud E. S. Soliman. "Tracing Potential Covalent Inhibitors of an E3 Ubiquitin Ligase through Target-Focused Modelling." Molecules 24, no. 17 (August 28, 2019): 3125. http://dx.doi.org/10.3390/molecules24173125.
Full textNovikov, Alexander S. "Non-Covalent Interactions in Polymers." Polymers 15, no. 5 (February 24, 2023): 1139. http://dx.doi.org/10.3390/polym15051139.
Full textWang, Zhifang, Geng An, Ye Zhu, Xuemin Liu, Yunhua Chen, Hongkai Wu, Yingjun Wang, Xuetao Shi, and Chuanbin Mao. "3D-printable self-healing and mechanically reinforced hydrogels with host–guest non-covalent interactions integrated into covalently linked networks." Materials Horizons 6, no. 4 (2019): 733–42. http://dx.doi.org/10.1039/c8mh01208c.
Full textČerný, Jiří, and Pavel Hobza. "Non-covalent interactions in biomacromolecules." Physical Chemistry Chemical Physics 9, no. 39 (2007): 5291. http://dx.doi.org/10.1039/b704781a.
Full textDissertations / Theses on the topic "Covalent Interactions"
Yang, Lixu. "Non-covalent interactions in solution." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8097.
Full textCockroft, Scott L. "Understanding non-covalent interactions." Thesis, University of Sheffield, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434497.
Full textBayach, Imene. "Non-covalent interactions in natural products." Thesis, Limoges, 2014. http://www.theses.fr/2014LIMO0050/document.
Full textNatural polyphenols form non-covalent complexes in which π-stacking and H-bonding play a key stabilizing role. The dispersion-corrected DFT calculations have paved the way towards reliable description of aggregation processes of natural products. In this work, these methods are applied at i) understanding of stereo- and regio-selective oligostilbenoids biosynthesis; ii) predicting natural antioxidant aggregation within lipid bilayer membrane, which may allow rationalizing the synergism of vitamin E, vitamin C and polyphenols in their antioxidant action; and iii) modulating optical properties of chalcone derivatives
Hubbard, Thomas A. "Non-covalent interactions in lubricant chemistry." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/15935.
Full textSIRTORI, F. RICCARDI. "STUDY OF COVALENT AND NON COVALENT INTERACTIONS OF BIOPOLYMER BY MASS SPECTROMETRY." Doctoral thesis, Università degli Studi di Milano, 2010. http://hdl.handle.net/2434/150205.
Full textComí, Bonachí Marc. "Biobased polyurethanes with tunable properties through covalent and non-covalent approaches." Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/454764.
Full textEsta tesis está dirigida específicamente al desarrollo de poliuretanos (PU)s funcionalizados en la cadena lateral (FPU)s, sintetizados a partir de dioles funcionales que provienen de ácidos grasos y dos diisocianats diferentes; el diisocianato de isoforona (IPDI) y el diisocianato de hexametileno (HDI). Estos nuevos FPUs presentan una amina terciaria y grupos alquilo, alilo, propargilo o la combinación de éstos en posiciones de cadena lateral. Posteriormente los FPUs se modifican mediante dos mecanismos de post-polimerización basados en enlaces covalentes o en enlaces no covalentes.En el primer caso, se llevan a cabo una serie de reacciones fotoiniciadas de acoplamiento tiol-eno/ino entre el grupo alilo y propargilo que presentan los FPUs (formados a partir de IPDI), y tioglicerol. Los hidroxi-PUs obtenidos, exhiben una mejora de su carácter hidrófilo. Alternativamente, los FPUs que contienen sólo una amina terciaria como grupo funcional situado en la cadena lateral del PU, se mezclan con diferentes ácidos carboxílicos mediante una reacción de ácido base. Los PUs supramoleculares resultantes (SPU)s se caracterizan por espectroscopia para verificar la presencia de enlaces iónicos de hidrógeno que unen las cadenas de PU formando interacciones físicas. Además, se demuestra la correlación existente entre la estructura química y las propiedades térmicas y mecánicas de los materiales sintetizados. Estos materiales presentan prometedoras propiedades adaptativas. Por ejemplo, resaltan las buenas propiedades de regeneración y reciclaje/remodelación, debidas al carácter reversible de las interacciones físicas. Adicionalmente, estos elastómeros poseen una inherente capacidad de autorautorreparación, que en términos prácticos se podría ver como una mejora de su sostenibilidad. Finalmente, se sintetizan redes de PU que tienen un doble carácter estructural mediante enlaces iónicos de hidrógeno dinámicos y entrecruzamientos covalentes. La variación de la densidad de entrecruzamiento covalente introducido para cada una de estas redes produce un ajuste sistemático de las propiedades mecánicas y la sensibilidad del material al calor. Esta preparación demuestra una vía simple y eficaz para la fabricación de poliuretanos multifuncionales.
This Thesis is addressed to the development of side-chain functionalized polyurethanes (FPU)s, with enhanced properties, made from fatty acid-based functional diols and two different diisocyanates; isophorone diisocyanate (IPDI) and hexamethylene diisocyanate (HDI). The novel FPUs present tertiary amine and alkyl, allyl, propargyl moieties or the combination of these, as side-chain positions groups. The FPUs were further modified via two post-polymerization mechanisms based on covalent or non-covalent bonds. In the first case, photoinitiated thiol-ene/yne coupling reaction between allyl, propargyl-functionalized PUs (based on IPDI) and thioglycerol was carried out. Obtained hydroxyl-PUs exhibit different thermal and mechanical properties in comparison with precursor PUs. Moreover, the incorporation of hydroxyl groups leads to PUs with enhanced hydrophilicity. Alternatively, the FPU (based on IPDI) containing only tertiary amine pendant group was mixed with different carboxylic acids in an acid-base reaction. Supramolecular ionic PUs were characterized by spectroscopic tools to verify the presence of ionic hydrogen bond as ionic interaction. Correlation between structure and thermal and mechanical properties was demonstrated. Samples show rapid thermal reversibility and recyclability thanks to the reversible bonds. In addition, elastomeric supramolecular PUs networks were prepared from HDI and aminodiol. The resulting materials exhibit some promising adaptive material properties such as effective energy dissipation upon deformation through unzipping the ionic hydrogen bonding network, combined with good shape-regeneration property and recycling/reshaping capability arising from their recoverable nature. More importantly, the resulting biobased elastomers possess the inherent self-healing ability, which can be seen as an upgrade of their sustainability.A novel thermo-reversible network is constructed by the thiol-ene functionalized polyurethane via dynamic ionic hydrogen bonds and covalent cross-links. By varying the covalent cross-linking density, the mechanical properties and the stimuli-responsive behaviour can be systematically tuned. This synthesis demonstrates a simple and effective pathway to fabricate multifunctional polyurethanes with desired functions.
Mati, Ioulia. "Molecular torsion balances for quantifying non-covalent interactions." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7610.
Full textBenevelli, Francesca. "Solid-state NMR characterisation of non-covalent interactions." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620286.
Full textAbuajwa, Wissam. "Non-covalent interactions of C60 fullerene and its derivatives." Thesis, University of Nottingham, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.588068.
Full textAdam, Catherine. "Molecular balances for measuring non-covalent interactions in solution." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/16466.
Full textBooks on the topic "Covalent Interactions"
Hobza, Pavel. Non-covalent interactions. Cambridge: Royal Society of Chemistry, 2009.
Find full textMaharramov, Abel M., Kamran T. Mahmudov, Maximilian N. Kopylovich, and Armando J. L. Pombeiro, eds. Non-covalent Interactions in the Synthesis and Design of New Compounds. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781119113874.
Full textSinclair, Andrew Jamieson. Using non-covalent interaction to accelerate a [three plus two] dipolar cycloaddition reaction. Birmingham: University of Birmingham, 2000.
Find full textNon-Covalent Interactions. Cambridge: Royal Society of Chemistry, 2009. http://dx.doi.org/10.1039/9781847559906.
Full textNon-Covalent Interactions in Proteins. World Scientific Publishing Co Pte Ltd, 2021.
Find full textKarshikoff, Andrey. Non-Covalent Interactions in Proteins. WORLD SCIENTIFIC, 2021. http://dx.doi.org/10.1142/12035.
Full textKarshikoff, Andrey. Non-Covalent Interactions in Proteins. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2006. http://dx.doi.org/10.1142/p477.
Full textBarbier, Vincent, and Olivier R. P. David. Non-Covalent Interactions in Organocatalysis. Elsevier, 2018.
Find full textNon-covalent Interactions in Proteins. Imperial College Press, 2006.
Find full textHobza, Pavel, Jonathan Hirst, Kenneth D. Jordan, Carmay Lim, and Klaus Muller-Dethlefs. Non-Covalent Interactions: Theory and Experiment. Royal Society of Chemistry, The, 2009.
Find full textBook chapters on the topic "Covalent Interactions"
Oscarsson, S., and J. Porath. "Covalent Chromatography." In Molecular Interactions in Bioseparations, 403–13. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1872-7_26.
Full textMaharramov, Abel M., Kamran T. Mahmudov, Maximilian N. Kopylovich, M. Fátima C. Guedes da Silva, and Armando J. L. Pombeiro. "Activation of Covalent Bonds Through Non-covalent Interactions." In Non-covalent Interactions in the Synthesis and Design of New Compounds, 1–21. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781119113874.ch1.
Full textYon-Kahn, Jeannine, and Guy Hervé. "Regulation by Non-Covalent Interactions." In Molecular and Cellular Enzymology, 547–629. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01228-0_14.
Full textCheng, Yunfeng, Xiaochuan Yang, and Binghe Wang. "Covalent Interactions in Chemosensor Design." In Chemosensors, 25–40. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118019580.ch3.
Full textHunter, Christopher. "Non-Covalent Interactions Between Aromatic Molecules." In From Simplicity to Complexity in Chemistry — and Beyond, 113–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-49368-3_9.
Full textAplin, Robin T., and Carol V. Robinson. "Electrospray Ionization Mass Spectrometry: The Observation of Covalent, Ionic and Non-Covalent Interactions." In Mass Spectrometry in the Biological Sciences, 69–84. Totowa, NJ: Humana Press, 1996. http://dx.doi.org/10.1007/978-1-4612-0229-5_4.
Full textD’Urso, Alessandro, Maria Elena Fragalà, and Roberto Purrello. "Non-Covalent Interactions of Porphyrinoids with Duplex DNA." In Topics in Heterocyclic Chemistry, 139–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/7081_2013_113.
Full textKataev, Evgeny A. "Non-covalent Interactions in the Synthesis of Macrocycles." In Non-covalent Interactions in the Synthesis and Design of New Compounds, 63–82. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781119113874.ch4.
Full textSagan, Filip, and Mariusz P. Mitoraj. "Non-covalent Interactions in Selected Transition Metal Complexes." In Transition Metals in Coordination Environments, 65–89. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11714-6_3.
Full textChetverina, Helena V., and Alexander B. Chetverin. "Identifying RNA Recombination Events and Non-covalent RNA–RNA Interactions with the Molecular Colony Technique." In RNA-RNA Interactions, 1–25. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1896-6_1.
Full textConference papers on the topic "Covalent Interactions"
Sanz, M., Jackson Tang, Elena Alonso, Isabel Peï¾–a, Donatella Loru, Ecaterina Burevschi, Shefali Saxena, and S. Murugachandran. "INTERMOLECULAR NON-COVALENT INTERACTIONS REVEALED BY BROADBAND ROTATIONAL SPECTROSCOPY." In 74th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2019. http://dx.doi.org/10.15278/isms.2019.tb01.
Full textCaminati, Walther, Emilio Cocinero, Alberto Lesarri, Montserrat Vallejo-López, Lorenzo Spada, Gang Feng, Luca Evangelisti, and Qian Gou. "NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS." In 69th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2014. http://dx.doi.org/10.15278/isms.2014.rj16.
Full textFoguel, Lidor, Patrick Vaccaro, and Zachary Vealey. "MICROSOLVATION AND THE EFFECTS OF NON-COVALENT INTERACTIONS ON INTRAMOLECULAR DYNAMICS." In 72nd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2017. http://dx.doi.org/10.15278/isms.2017.wd02.
Full textChoe, Junseok, Keonwoo Kim, Minjae Ju, Sumin Lee, and Jaewoo Kang. "Improved Binding Affinity Prediction Using Non-Covalent Interactions and Graph Integration." In 2022 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE, 2022. http://dx.doi.org/10.1109/bigcomp54360.2022.00079.
Full textMelandri, Sonia, Laura Favero, Camilla Calabrese, Weixing Li, Imanol Gutierrez, Assimo Maris, and Luca Evangelisti. "TUNING OF NON-COVALENT INTERACTIONS IN MOLECULAR COMPLEXES OF FLUORINATED AROMATIC COMPOUNDS." In 73rd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2018. http://dx.doi.org/10.15278/isms.2018.wk08.
Full textOliveira, Vytor, and Elfi Kraka. "The intrinsic strength of non-covalent interactions described by coupled cluster theory." In VII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Editora Letra1, 2018. http://dx.doi.org/10.21826/9788563800374068.
Full textMelandri, Sonia, Laura Favero, Weixing Li, Camilla Calabrese, Imanol Usabiaga, Luca Evangelisti, and Assimo Maris. "NON-COVALENT INTERACTIONS IN COMPLEXES OF FLUORINATED AROMATIC RINGS INVESTIGATED BY ROTATIONAL SPECTROSCOPY." In 74th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2019. http://dx.doi.org/10.15278/isms.2019.tb05.
Full textBelov, S. P., B. A. McElmurry, F. F. Willaert, R. R. Lucchese, and J. Bevan. "Co-axially configured supersonic jet spectrometer for submillimeter investigations of non-covalent interactions." In 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2008). IEEE, 2008. http://dx.doi.org/10.1109/icimw.2008.4665616.
Full textRackers, Joshua. "What can machine learning teach us about the limits of electron correlation?." In Proposed for presentation at the Non-Covalent Interactions in Large Molecules and Extended Materials in ,. US DOE, 2021. http://dx.doi.org/10.2172/1884653.
Full textMa, Yingxian, Liqiang Huang, Zhi Zhu, Yurou Du, Jie Lai, and Jianchun Guo. "A Supramolecular Thickener Based on Non-Covalent Enhancement Mechanism." In SPE International Conference on Oilfield Chemistry. SPE, 2021. http://dx.doi.org/10.2118/204299-ms.
Full textReports on the topic "Covalent Interactions"
Nelson, Nathan, and Charles F. Yocum. Structure, Function and Utilization of Plant Photosynthetic Reaction Centers. United States Department of Agriculture, September 2012. http://dx.doi.org/10.32747/2012.7699846.bard.
Full text