Academic literature on the topic 'Coupling with floating object'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Coupling with floating object.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Coupling with floating object"
Huang, Panfeng, Yangsheng Xu, and Bin Liang. "Dynamic Balance Control of Multi-Arm Free-Floating Space Robots." International Journal of Advanced Robotic Systems 2, no. 2 (June 1, 2005): 13. http://dx.doi.org/10.5772/5797.
Full textLai, Bin Bin, Cheng Bi Zhao, Xiao Ming Chen, You Hong Tang, and Wei Lin. "A Novel Structural Form of Semi-Submersible Platform for a Floating Offshore Wind Turbine with Hydrodynamic Performance Analysis." Applied Mechanics and Materials 477-478 (December 2013): 109–13. http://dx.doi.org/10.4028/www.scientific.net/amm.477-478.109.
Full textSuo, Chunguang, Mingxing He, Guoqiong Zhou, Xinghua Shi, Xiangyu Tan, and Wenbin Zhang. "Research on Non-Invasive Floating Ground Voltage Measurement and Calibration Method." Electronics 12, no. 8 (April 14, 2023): 1858. http://dx.doi.org/10.3390/electronics12081858.
Full textXue, Xiangzhen, Jian Liu, Jipeng Jia, Siwei Yang, and Yifan Li. "Simulation and Verification of Involute Spline Tooth Surface Wear before and after Carburizing Based on Energy Dissipation Method." Machines 11, no. 1 (January 8, 2023): 78. http://dx.doi.org/10.3390/machines11010078.
Full textDu, Nei Juan, Yue Guo Shen, and Jun Hai Zhang. "The Dynamic Response Analysis of the Multi-Body System with Floating Base Based on the ADAMS." Applied Mechanics and Materials 574 (July 2014): 58–61. http://dx.doi.org/10.4028/www.scientific.net/amm.574.58.
Full textChang, Zongyu, Yang Zhang, Zhongqiang Zheng, Lin Zhao, and Kunfan Shen. "Dynamics Simulation of Grasping Process of Underwater Vehicle-Manipulator System." Journal of Marine Science and Engineering 9, no. 10 (October 15, 2021): 1131. http://dx.doi.org/10.3390/jmse9101131.
Full textJi, Hong, Jie Guo, Gao Zhang, Ke Yang, Juncheng Jiang, Yaxin Wang, Zhixiang Xing, and Haipu Bi. "Multi-Factor Coupling Analysis of Porous Leakage in Underwater Gas Pipelines." Processes 11, no. 4 (April 19, 2023): 1259. http://dx.doi.org/10.3390/pr11041259.
Full textZhang, Qingyun, and Xinhua Zhao. "Inverse Dynamics Modeling and Simulation Analysis of Multi-Flexible-Body Spatial Parallel Manipulators." Electronics 12, no. 9 (April 28, 2023): 2038. http://dx.doi.org/10.3390/electronics12092038.
Full textRodríguez-Barrera, M. I., Ch Helling, and K. Wood. "Environmental effects on the ionisation of brown dwarf atmospheres." Astronomy & Astrophysics 618 (October 2018): A107. http://dx.doi.org/10.1051/0004-6361/201832685.
Full textXia, Guoqing, Chuang Sun, and Bo Zhao. "Output Feedback Cooperative Dynamic Positioning Control for an Unactuated Floating Object Using Multiple Vessels." Journal of Marine Science and Engineering 9, no. 5 (April 24, 2021): 463. http://dx.doi.org/10.3390/jmse9050463.
Full textDissertations / Theses on the topic "Coupling with floating object"
Haidar, Ali. "Numerical simulation of nonlinear shallow-water interactions between surface waves and a floating structure." Electronic Thesis or Diss., Université de Montpellier (2022-....), 2022. https://ged.scdi-montpellier.fr/florabium/jsp/nnt.jsp?nnt=2022UMONS093.
Full textIn this Ph.D., we investigate two main research problems: (i) the design of stabilization patches for higher-order discontinuous-Galerkin (DG) methods applied to highly nonlinear free-surface shallow-water flows, (ii) the construction of a new numerical approximation strategy for the simulation of nonlinear interactions between waves in a free-surface shallow flow and a partly immersed floating object. The stabilization methods developed in the first research line are used in the second part of this work.High-order discontinuous-Galerkin (DG) methods generally suffer from a lack of nonlinear stability in the presence of singularities in the solution. Such singularities may be of various kinds, involving discontinuities, rapidly varying gradients or the occurence of dry areas in the particular case of free-surface flows. In the first part of this work, we introduce two new stabilization methods based on the use of Finite-Volume Subcells in order to alleviate these robustness issues. The first method relies on an a priori limitation of the DG scheme, together with the use of a TVB slope-limiter and a PL. The second one is built upon an a posteriori correction strategy, allowing to surgically detect the incriminated local subcells, together with the robustness properties of the corresponding lowest-order Finite-Volume scheme. This last strategy allows to ensure the nonlinear stability of the DG scheme in the vicinity of discontinuities, as well as the positivity of the discrete water-height, while preserving the subcell resolution of the initial scheme. This second strategy is also preliminary investigated in the two dimensional horizontal case. An extensive set of test-cases assess the validity of this approach.In the second part, we introduce a new numerical strategy designed for the modeling and simulation of nonlinear interactions between surface waves in shallow-water and a partially immersed surface piercing object. At the continuous level, the flow located in the textit{exterior} domain is globally modeled with the nonlinear hyperbolic shallow-water equations, while the description of the flow beneath the object reduces to a nonlinear ordinary differential equation. The coupling between the flow and the object is formulated as a free-boundary problem, associated with the computation of the time evolution of the spatial locations of the air-water-body interface. At the discrete level, the proposed formulation relies on an arbitrary-order discontinuous Galerkin approximation, which is stabilized with the a posteriori Local Subcell Correction method through low-order finite volume scheme introduced in the first part. The time evolution of the air-water-body interface is computed from an Arbitrary-Lagrangian-Eulerian (ALE) description and a suitable smooth mapping between the original frame and the current configuration. For any order of polynomial approximation, the resulting algorithm is shown to: (1) preserves the Discrete Geometric Conservation Law, (2) ensures the preservation of the water-height positivity at the subcell level, (3) preserves the class of motionless steady states (well-balancing), possibly with the occurrence of a partially immersed object.Several numerical computations and test-cases are presented, highlighting that the proposed numerical model(1) effectively allows to model all types of wave / object interactions, (2) efficiently provides the time-evolution of the air-water-body contact points and accordingly redefine the new mesh-grid thanks to ALE method (3) accurately handles strong flow singularities without any robustness issues, (4) retains the highly accurate subcell resolution of discontinuous Galerkin schemes
Shim, Sangyun. "Coupled dynamic analysis of floating offshore wind farms." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-2564.
Full textRobert, Joël. "Autonomous capture of a free-floating object using a predictive approach." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=19257.
Full textAu cours des dernières décennies, l'utilisation de systèmes autonomes afin d'accomplir des tâches en orbite a reçu de plus en plus d'attention de la part de l'industrie aerospaciale. Le ravitaillement, la mise à jour et la réparation de satellites en orbite représente deux applications intéressantes de cette approche. De telles opérations requièrent un system capable de capturer un satellite défectueux (le client) de façon autonome. Dans le cas présent, un bras manipulateur robotisé est utilisé afin d'intercepter le client. L'interception se divise en deux parties distinctes : l'approche et la capture. La première phase consiste à estimer la pose et la trajectoire future du client à l'aide des données provenant d'un système de vision et d'un filtre de Kalman. Le lieu optimal où l'interception aura lieu est ensuite choisie par iteration en tenant compte des données du filtre et de celles du générateur de trajectoire du robot. Cet dernière est créée par la concaténation de polynômes du cinquième degrée définissant la courbe d'accélération des joints. Lors de la seconde phase, un algorithme de pistage est utilisé afin d'obtenir un alignment plus précis et de capturer le client. Cette thèse présente les détails de la méthode d'interception et expose les résultats de simulations numériques et d'expériences. Les résultats expérimentaux ont été obtenues à l'aide d'un bras manipulateur et d'un ballon à l'hélium imitant la trajectoire d'un satellite dans l'espace.
Aliyar, Sithik. "Extreme wave interaction with fixed and floating structures using hybrid coupling approach." Electronic Thesis or Diss., Ecole centrale de Nantes, 2022. http://www.theses.fr/2022ECDN0047.
Full textThe thesis aims to study the effectiveness and accuracy of the NS and SWENSEbased solvers for simulating fixed and floating structures. Both solvers are OpenFOAM-based and are independently coupled with HOS for wave generation in terms of domain and functional decomposition approach. The solvers are tested for three applications. The first and second applications present the focusing wave interaction with fixed and moving cylinders and the third is the interaction of regular and irregular waves with the OC3 Hywind SPAR type substructure. The wave generating methods and parametersfor NS and SWENSE solvers are discussed in detail for regular, irregular, and focused waves. For verification, the case’s uncertainty is quantified using the Richardson extrapolation approach and validated with the experimental measurements.A significant reduction in the mesh size is predicted in both approaches. For the floating body wave interaction study, the moorings are modelled in two ways: by considering the mooring lines as a linear spring with defined spring stiffnessand coupling with a dynamic mooring model (MoorDyn). The numerical results of surface elevation, body motions, and mooring tensions are validated against the experiments carried out in the SOFTWIND project, and the efficiency andaccuracy of the two solvers are compared
Symes, Edward Michael. "The coupling of perception and action in representation." Thesis, University of Plymouth, 2003. http://hdl.handle.net/10026.1/1741.
Full textBaig, Imran. "Measuring Cohesion and Coupling of Object-Oriented Systems Derivation and Mutual Study of Cohesion and Coupling." Thesis, Blekinge Tekniska Högskola, Avdelningen för programvarusystem, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-6010.
Full textBiller, Beth A., Johanna Vos, Esther Buenzli, Katelyn Allers, Mickaël Bonnefoy, Benjamin Charnay, Bruno Bézard, et al. "Simultaneous Multiwavelength Variability Characterization of the Free-floating Planetary-mass Object PSO J318.5−22." IOP PUBLISHING LTD, 2018. http://hdl.handle.net/10150/627034.
Full textAlmugrin, Saleh A. "DEFINITIONS AND VALIDATIONS OF METRICS OF INDIRECT PACKAGE COUPLING IN AN AGILE, OBJECT-ORIENTED ENVIRONMENT." Kent State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=kent1436828087.
Full textGray, Christopher L. Janzen David. "A coupling-complexity metric suite for predicting software quality : a thesis /." [San Luis Obispo, Calif. : California Polytechnic State University], 2008. http://digitalcommons.calpoly.edu/theses/14/.
Full textMajor professor: David Janzen, Ph.D. "Presented to the faculty of California Polytechnic State University, San Luis Obispo." "In partial fulfillment of the requirements for the degree [of] Master of Science in Computer Science." "June 2008." Includes bibliographical references (leaves 57-62). Also available online. Also available on microfiche (1 sheet).
Feld, Adam. "Haptic Affordance: Where affordances and haptics blend: a study in feedback and object recognition." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1367923917.
Full textBooks on the topic "Coupling with floating object"
Masciola, Marco. Investigation of a FAST-OrcaFlex coupling module for integrating turbine and mooring dynamics of offshore floating wind turbines: Preprint. Golden, CO: National Renewable Energy Laboratory, U.S. Dept. of Energy, Office of Energy Efficiency and Renewable Energy, 2011.
Find full textThe C programmer's handbook. [Murray Hill, N.J.]: AT&T Bell Laboratories, 1985.
Find full textPanfilov, Anatoliy, Vladimir Mayorov, and Aleksey Sumachev. Countering illegal archaeological activity in the Russian Federation: issues of legal regulation and law enforcement. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/1894394.
Full textNakov, Svetlin. Fundamentals of Computer Programming with C#: The Bulgarian C# Book. Sofia, Bulgaria: Svetlin Nakov, 2013.
Find full textFoxies and the Mysterious Floating Object. Infinity Kids Press, 2018.
Find full textEscudier, Marcel. Hydrostatic force exerted on a submerged surface. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198719878.003.0005.
Full textParsons, Laurel, and Brenda Ravenscroft. Amy Beach, “Phantoms,” Op. 15, No. 2 (1892). Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190237028.003.0010.
Full textBook chapters on the topic "Coupling with floating object"
Wei, Zhao-Yi, Dah-Jye Lee, David Jilk, and Robert Schoenberger. "Motion Projection for Floating Object Detection." In Advances in Visual Computing, 152–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-76856-2_15.
Full textSchreyjak, Stefan. "Coupling of Workflow and Component—Oriented Systems." In Object-Oriented Technologys, 364–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-69687-3_74.
Full textDickinson, Jennet Elizabeth. "Object Reconstruction." In ATLAS Measurements of the Higgs Boson Coupling to the Top Quark in the Higgs to Diphoton Decay Channel, 45–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86368-5_4.
Full textĆatipović, I., L. Ilić, A. Mikulić, and D. Smoljan. "Seakeeping assessment of a floating object with installed photovoltaic system." In Sustainable Development and Innovations in Marine Technologies, 217–28. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003358961-28.
Full textde Lataillade, Tristan, Aggelos Dimakopoulos, Chris Kees, and Lars Johanning. "A Coupling Strategy for Modelling Dynamics of Moored Floating Structures." In Advanced Numerical Modelling of Wave Structure Interactions, 203–47. First edition. 1 Boca Raton, FL : CRC Press/Taylor & Francis: CRC Press, 2020. http://dx.doi.org/10.1201/9781351119542-8.
Full textRavindran, E., and S. C. Hui. "Coupling object orientation & deduction — A modelling perspective." In Concurrency and Parallelism, Programming, Networking, and Security, 355–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0027816.
Full textWahler, Ksenia, and Jochen M. Küster. "Predicting Coupling of Object-Centric Business Process Implementations." In Lecture Notes in Computer Science, 148–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-85758-7_13.
Full textFurumoto, Takuro, Yutaro Toide, Masahiro Fujiwara, Yasutoshi Makino, and Hiroyuki Shinoda. "Encounter-Type Haptic Feedback System Using an Acoustically Manipulated Floating Object." In Lecture Notes in Electrical Engineering, 183–86. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3194-7_40.
Full textRay, Kumar S. "Pattern Classification Based on New Interpretation of MFI and Floating Point Genetic Algorithm." In Soft Computing Approach to Pattern Classification and Object Recognition, 61–76. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5348-2_4.
Full textNandedkar, A. V., and P. K. Biswas. "Object Recognition Using Reflex Fuzzy Min-Max Neural Network with Floating Neurons." In Computer Vision, Graphics and Image Processing, 597–609. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11949619_53.
Full textConference papers on the topic "Coupling with floating object"
Veldman, Arthur E. P., Henk Seubers, Peter van der Plas, and Joop Helder. "Free-Surface Flow Simulations With Interactively Moving Bodies." In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-61175.
Full textWang, Xue-gang, Zong-quan Ying, and Ze-cong Chen. "The Analysis of the Joint Limitation Condition of Wave Height-Period on the Floating Crane Lifting Operation." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-96461.
Full textHigashida, Kyohei, Teppei Yamada, Takuya Tsuji, and Toshitsugu Tanaka. "A Numerical Model for the Motion of Large Non-Spherical Object in Fluidized Bed." In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-32744.
Full textWoeckner, Katja, Withold Drazyk, and Thomas Rung. "An Efficient VOF-Based RANS Method to Capture Complex Sea States." In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20674.
Full textHeilskov, Nicolai F., and Ole Svenstrup Petersen. "Non-Linear 3D Hydrodynamics of Floating Wind Turbine Compared Against Wave Tank Tests." In ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-55090.
Full textAida, Yasuhiro, Tomoki Ikoma, and Koichi Masuda. "Development of a Simulation System for Estimating the Impact Force of Tsunami Drift Using the Explicit MPS Method." In ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/omae2021-62244.
Full textWang, Jiangan, Jiayou Zhang, and Zengjun Ye. "Floating object image treatment based on wavelet." In Photonics China '98, edited by LiWei Zhou and Chung-Sheng Li. SPIE, 1998. http://dx.doi.org/10.1117/12.319701.
Full textVenkatrayappa, Darshan, Agnès Desolneux, Jean-Michel Hubert, and Josselin Manceau. "Unidentified Floating Object Detection in Maritime Environment." In 17th International Conference on Computer Vision Theory and Applications. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0010771800003124.
Full textMotwani, R. "Hierarchical Constrained Coding for Floating-Gate to Floating-Gate Coupling Mitigation in Flash Memory." In 2011 IEEE Global Communications Conference (GLOBECOM 2011). IEEE, 2011. http://dx.doi.org/10.1109/glocom.2011.6134528.
Full textWang, Jiangan, Jiayou Zhang, and Zengjun Ye. "Application of wavelet on floating-object image processing." In International Symposium on Multispectral Image Processing, edited by Ji Zhou, Anil K. Jain, Tianxu Zhang, Yaoting Zhu, Mingyue Ding, and Jianguo Liu. SPIE, 1998. http://dx.doi.org/10.1117/12.323554.
Full textReports on the topic "Coupling with floating object"
Li, Tao, Xudong Qian, Hongyou Cao, Aziz Merchant, Ains Hussain, Amit Jain, Bernad A. P. Francis, and Ankit Choudhary. FINITE ELEMENT MODELLING AND TEST OF A NOVEL COUPLING ARM CONNECTING TWO FLOATING BODIES. The Hong Kong Institute of Steel Construction, December 2018. http://dx.doi.org/10.18057/icass2018.p.119.
Full textKim, MooHyun. Development of mooring-anchor program in public domain for coupling with floater program for FOWTs (Floating Offshore Wind Turbines). Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1178273.
Full text