Journal articles on the topic 'Coupling between the surface salinity and the atmospheric transport of freshwater'

To see the other types of publications on this topic, follow the link: Coupling between the surface salinity and the atmospheric transport of freshwater.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 27 journal articles for your research on the topic 'Coupling between the surface salinity and the atmospheric transport of freshwater.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wolfe, Christopher L., and Paola Cessi. "Salt Feedback in the Adiabatic Overturning Circulation." Journal of Physical Oceanography 44, no. 4 (April 1, 2014): 1175–94. http://dx.doi.org/10.1175/jpo-d-13-0154.1.

Full text
Abstract:
Abstract The adiabatic overturning circulation is the part of the meridional overturning circulation that persists in the limit of vanishing diffusivity. Two conditions are required for the existence of the adiabatic overturning circulation: a high-latitude zonally reentrant channel subject to surface westerlies and a set of outcropping isopycnals shared between the channel and the opposite hemisphere. This paper examines how different buoyancy forcing regimes, particularly freshwater flux, affect the surface buoyancy distribution and the strength of the adiabatic overturning circulation. Without freshwater forcing, salinity is uniform and buoyancy is determined by temperature only. In this case, the size of the shared isopycnal window is effectively fixed by the coupling between atmospheric and sea surface temperatures. With freshwater forcing (applied as a surface flux), the salinity, and thus the sea surface buoyancy and the size of the shared isopycnal window, is not specified by the atmospheric state alone. It is found that a salt–advection feedback leads to surface buoyancy distributions that increase the size of the isopycnal window and strengthen the adiabatic overturning circulation. The strength of the feedback is controlled by processes in high latitudes—the southern channel, where the surface salinity is determined by a balance between freshwater input from the atmosphere, salt input from upwelling deep water, and freshwater export by Ekman transport; and the Northern Hemisphere, where the overturning and wind-driven transport in the thermocline advect salty water from the subtropics, mitigating the freshening effect of the surface freshwater flux. The freshwater budget in the channel region provides an estimate of the size of the isopycnal window.
APA, Harvard, Vancouver, ISO, and other styles
2

Rathore, Saurabh, Nathaniel L. Bindoff, Caroline C. Ummenhofer, Helen E. Phillips, and Ming Feng. "Near-Surface Salinity Reveals the Oceanic Sources of Moisture for Australian Precipitation through Atmospheric Moisture Transport." Journal of Climate 33, no. 15 (August 1, 2020): 6707–30. http://dx.doi.org/10.1175/jcli-d-19-0579.1.

Full text
Abstract:
AbstractThe long-term trend of sea surface salinity (SSS) reveals an intensification of the global hydrological cycle due to human-induced climate change. This study demonstrates that SSS variability can also be used as a measure of terrestrial precipitation on interseasonal to interannual time scales, and to locate the source of moisture. Seasonal composites during El Niño–Southern Oscillation/Indian Ocean dipole (ENSO/IOD) events are used to understand the variations of moisture transport and precipitation over Australia, and their association with SSS variability. As ENSO/IOD events evolve, patterns of positive or negative SSS anomaly emerge in the Indo-Pacific warm pool region and are accompanied by atmospheric moisture transport anomalies toward Australia. During co-occurring La Niña and negative IOD events, salty anomalies around the Maritime Continent (north of Australia) indicate freshwater export and are associated with a significant moisture transport that converges over Australia to create anomalous wet conditions. In contrast, during co-occurring El Niño and positive IOD events, a moisture transport divergence anomaly over Australia results in anomalous dry conditions. The relationship between SSS and atmospheric moisture transport also holds for pure ENSO/IOD events but varies in magnitude and spatial pattern. The significant pattern correlation between the moisture flux divergence and SSS anomaly during the ENSO/IOD events highlights the associated ocean–atmosphere coupling. A case study of the extreme hydroclimatic events of Australia (e.g., the 2010/11 Brisbane flood) demonstrates that the changes in SSS occur before the peak of ENSO/IOD events. This raises the prospect that tracking of SSS variability could aid the prediction of Australian rainfall.
APA, Harvard, Vancouver, ISO, and other styles
3

Colin de Verdière, Alain. "The Instability of the Thermohaline Circulation in a Low-Order Model." Journal of Physical Oceanography 40, no. 4 (April 1, 2010): 757–73. http://dx.doi.org/10.1175/2009jpo4219.1.

Full text
Abstract:
Abstract Although the instability of the thermohaline circulation has been widely observed in numerical ocean models, theoretical advances have been hindered by the nonlinearity of heat and salt transports, a circulation governed by lateral temperature, and salinity gradients. Because the instability occurs initially in polar waters through the formation of haloclines and the halt of convection, any explanatory model must have at least a surface and a deep layer. The model proposed here (two surface boxes above a deep one) reduces to a 2 degrees-of-freedom dynamical system when convection is active and 3 degrees when it is interrupted. The instability that is induced by a negative freshwater perturbation in polar waters has three stages. The first stage is a rapid 5-yr adjustment to a transient thermal attractor that results from an approximate balance between heat advection and air–sea heat fluxes. The second stage is a slow evolution that self-organizes near this attractor, which preconditions the instability, as it can be shown that the circulation becomes more sensitive to changes in salinity gradients than in temperature gradients. The slow O(100 yr) growth of salinity in the subtropics is the critical precursor of the instability while at the same time the subpolar salinity rises against the initial perturbation to stabilize the system by increasing the overturning and restoring convection. When the overturning becomes smaller than the value at the unstable fixed point, the third stage occurs, which is when the subpolar salinity decreases at last on a fast O(10 yr) time scale, precipitating the fall of the overturning. During the last two stages of the instability, the horizontal thermal gradient increases, but its stabilizing effect is just barely unable to prevent the outcome. The return to stability occurs frequently through a regime of multidecadal oscillations with intermittent convection. The hypothesis of mixed boundary conditions has been relaxed by coupling the ocean box model to an atmospheric energy balance model to show that the coupling increases the stability of the oceanic circulation; however, the precursors of the instability are unchanged.
APA, Harvard, Vancouver, ISO, and other styles
4

Levang, Samuel J., and Raymond W. Schmitt. "Intergyre Salt Transport in the Climate Warming Response." Journal of Physical Oceanography 50, no. 1 (January 2020): 255–68. http://dx.doi.org/10.1175/jpo-d-19-0166.1.

Full text
Abstract:
ABSTRACTRegional connectivity is important to the global climate salinity response, particularly because salinity anomalies do not have a damping feedback with atmospheric freshwater fluxes and may therefore be advected over long distances by ocean circulation, resulting in nonlocal influences. Climate model intercomparison experiments such as CMIP5 exhibit large uncertainty in some aspects of the salinity response, hypothesized here to be a result of ocean dynamics. We use two types of Lagrangian particle tracking experiments to investigate pathways of exchange for salinity anomalies. The first uses forward trajectories to estimate average transport time scales between water cycle regimes. The second uses reverse trajectories and a freshwater accumulation method to quantitatively identify remote influences in the salinity response. Additionally, we compare velocity fields with both resolved and parameterized eddies to understand the impact of eddy stirring on intergyre exchange. These experiments show that surface anomalies are readily exchanged within the ocean gyres by the mean circulation, but intergyre exchange is slower and largely eddy driven. These dynamics are used to analyze the North Atlantic salinity response to climate warming and water cycle intensification, where the system is broadly forced with fresh surface anomalies in the subpolar gyre and salty surface anomalies in the subtropical gyres. Under these competing forcings, strong intergyre eddy fluxes carry anomalously salty subtropical water into the subpolar gyre which balances out much of the local freshwater input.
APA, Harvard, Vancouver, ISO, and other styles
5

Shi, Jia-Rui, Lynne D. Talley, Shang-Ping Xie, Wei Liu, and Sarah T. Gille. "Effects of Buoyancy and Wind Forcing on Southern Ocean Climate Change." Journal of Climate 33, no. 23 (December 1, 2020): 10003–20. http://dx.doi.org/10.1175/jcli-d-19-0877.1.

Full text
Abstract:
AbstractObservations show that since the 1950s, the Southern Ocean has stored a large amount of anthropogenic heat and has freshened at the surface. These patterns can be attributed to two components of surface forcing: poleward-intensified westerly winds and increased buoyancy flux from freshwater and heat. Here we separate the effects of these two forcing components by using a novel partial-coupling technique. We show that buoyancy forcing dominates the overall response in the temperature and salinity structure of the Southern Ocean. Wind stress change results in changes in subsurface temperature and salinity that are closely related to intensified residual meridional overturning circulation. As an important result, we show that buoyancy and wind forcing result in opposing changes in salinity: the wind-induced surface salinity increase due to upwelling of saltier subsurface water offsets surface freshening due to amplification of the global hydrological cycle. Buoyancy and wind forcing further lead to different vertical structures of Antarctic Circumpolar Current (ACC) transport change; buoyancy forcing causes an ACC transport increase (3.1 ± 1.6 Sv; 1 Sv ≡ 106 m3 s−1) by increasing the meridional density gradient across the ACC in the upper 2000 m, while the wind-induced response is more barotropic, with the whole column transport increased by 8.7 ± 2.3 Sv. While previous research focused on the wind effect on ACC intensity, we show that surface horizontal current acceleration within the ACC is dominated by buoyancy forcing. These results shed light on how the Southern Ocean might change under global warming, contributing to more reliable future projections.
APA, Harvard, Vancouver, ISO, and other styles
6

Czaja, Arnaud. "Atmospheric Control on the Thermohaline Circulation." Journal of Physical Oceanography 39, no. 1 (January 1, 2009): 234–47. http://dx.doi.org/10.1175/2008jpo3897.1.

Full text
Abstract:
Abstract In an attempt to elucidate the role of atmospheric and oceanic processes in setting a vigorous ocean overturning circulation in the North Atlantic but not in the North Pacific, a comparison of the observed atmospheric circulation and net surface freshwater fluxes over the North Atlantic and Pacific basins is conducted. It is proposed that the more erratic meridional displacements of the atmospheric jet stream over the North Atlantic sector is instrumental in maintaining high surface salinities in its subpolar gyre. In addition, it is suggested that the spatial pattern of the net freshwater flux at the sea surface favors higher subpolar Atlantic salinity, because the geographical line separating net precipitation from net evaporation is found well south of the time-mean gyre separation in the North Pacific, whereas the two lines tend to coincide in the North Atlantic. Numerical experiments with an idealized two-gyre system confirm that these differences impact the salinity budget of the subpolar gyre. Further analysis of a coupled climate model in which the Atlantic meridional overturning cell has been artificially weakened suggests that the more erratic jet fluctuations in the Atlantic and the shift of the zero [net evaporation minus precipitation (E − P)] line are likely explained by features independent of the state of the thermohaline circulation. It is thus proposed that the atmospheric circulation helps “locking” high surface salinities and an active coupling between upper and deep ocean layers in the North Atlantic rather than in the North Pacific basin.
APA, Harvard, Vancouver, ISO, and other styles
7

Morrison, Adele K., Matthew H. England, and Andrew McC Hogg. "Response of Southern Ocean Convection and Abyssal Overturning to Surface Buoyancy Perturbations." Journal of Climate 28, no. 10 (May 12, 2015): 4263–78. http://dx.doi.org/10.1175/jcli-d-14-00110.1.

Full text
Abstract:
Abstract This study explores how buoyancy-driven modulations in the abyssal overturning circulation affect Southern Ocean temperature and salinity in an eddy-permitting ocean model. Consistent with previous studies, the modeled surface ocean south of 50°S cools and freshens in response to enhanced surface freshwater fluxes. Paradoxically, upper-ocean cooling also occurs for small increases in the surface relaxation temperature. In both cases, the surface cooling and freshening trends are linked to reduced convection and a slowing of the abyssal overturning circulation, with associated changes in oceanic transport of heat and salt. For small perturbations, convective shutdown does not begin immediately, but instead develops via a slow feedback between the weakened overturning circulation and buoyancy anomalies. Two distinct phases of surface cooling are found: an initial smaller trend associated with the advective (overturning) adjustment of up to ~60 yr, followed by more rapid surface cooling during the convective shutdown period. The duration of the first advective phase decreases for larger forcing perturbations. As may be expected during the convective shutdown phase, the deep ocean warms and salinifies for both types of buoyancy perturbation. However, during the advective phase, the deep ocean freshens in response to freshwater perturbations but salinifies in the surface warming perturbations. The magnitudes of the modeled surface and abyssal trends during the advective phase are comparable to the recent observed multidecadal Southern Ocean temperature and salinity changes.
APA, Harvard, Vancouver, ISO, and other styles
8

Tesdal, Jan-Erik, Ryan P. Abernathey, Joaquim I. Goes, Arnold L. Gordon, and Thomas W. N. Haine. "Salinity Trends within the Upper Layers of the Subpolar North Atlantic." Journal of Climate 31, no. 7 (April 2018): 2675–98. http://dx.doi.org/10.1175/jcli-d-17-0532.1.

Full text
Abstract:
Examination of a range of salinity products collectively suggests widespread freshening of the North Atlantic from the mid-2000s to the present. Monthly salinity fields reveal negative trends that differ in magnitude and significance between western and eastern regions of the North Atlantic. These differences can be attributed to the large negative interannual excursions in salinity in the western subpolar gyre and the Labrador Sea, which are not apparent in the central or eastern subpolar gyre. This study demonstrates that temporal trends in salinity in the northwest (including the Labrador Sea) are subject to mechanisms that are distinct from those responsible for the salinity trends in the central and eastern North Atlantic. In the western subpolar gyre a negative correlation between near-surface salinity and the circulation strength of the subpolar gyre suggests that negative salinity anomalies are connected to an intensification of the subpolar gyre, which is causing increased flux of freshwater from the East Greenland Current and subsequent transport into the Labrador Sea during the melting season. Analyses of sea surface wind fields suggest that the strength of the subpolar gyre is linked to the North Atlantic Oscillation– and Arctic Oscillation–driven changes in wind stress curl in the eastern subpolar gyre. If this trend of decreasing salinity continues, it has the potential to enhance water column stratification, reduce vertical fluxes of nutrients, and cause a decline in biological production and carbon export in the North Atlantic Ocean.
APA, Harvard, Vancouver, ISO, and other styles
9

Levang, Samuel J., and Raymond W. Schmitt. "Centennial Changes of the Global Water Cycle in CMIP5 Models." Journal of Climate 28, no. 16 (August 10, 2015): 6489–502. http://dx.doi.org/10.1175/jcli-d-15-0143.1.

Full text
Abstract:
Abstract The global water cycle is predicted to intensify under various greenhouse gas emissions scenarios. Here the nature and strength of the expected changes for the ocean in the coming century are assessed by examining the output of several CMIP5 model runs for the periods 1990–2000 and 2090–2100 and comparing them to a dataset built from modern observations. Key elements of the water cycle, such as the atmospheric vapor transport, the evaporation minus precipitation over the ocean, and the surface salinity, show significant changes over the coming century. The intensification of the water cycle leads to increased salinity contrasts in the ocean, both within and between basins. Regional projections for several areas important to large-scale ocean circulation are presented, including the export of atmospheric moisture across the tropical Americas from Atlantic to Pacific Ocean, the freshwater gain of high-latitude deep water formation sites, and the basin averaged evaporation minus precipitation with implications for interbasin mass transports.
APA, Harvard, Vancouver, ISO, and other styles
10

Krebs, Uta, and A. Timmermann. "Tropical Air–Sea Interactions Accelerate the Recovery of the Atlantic Meridional Overturning Circulation after a Major Shutdown." Journal of Climate 20, no. 19 (October 1, 2007): 4940–56. http://dx.doi.org/10.1175/jcli4296.1.

Full text
Abstract:
Abstract Using a coupled ocean–sea ice–atmosphere model of intermediate complexity, the authors study the influence of air–sea interactions on the stability of the Atlantic Meridional Overturning Circulation (AMOC). Mimicking glacial Heinrich events, a complete shutdown of the AMOC is triggered by the delivery of anomalous freshwater forcing to the northern North Atlantic. Analysis of fully and partially coupled freshwater perturbation experiments under glacial conditions shows that associated changes of the heat transport in the North Atlantic lead to a cooling north of the thermal equator and an associated strengthening of the northeasterly trade winds. Because of advection of cold air and an intensification of the trade winds, the intertropical convergence zone (ITCZ) is shifted southward. Changes of the accumulated precipitation lead to the generation of a positive salinity anomaly in the northern tropical Atlantic and a negative anomaly in the southern tropical Atlantic. During the shutdown phase of the AMOC, cross-equatorial oceanic surface flow is halted, preventing dilution of the positive salinity anomaly in the North Atlantic. Advected northward by the wind-driven ocean circulation, the positive salinity anomaly increases the upper-ocean density in the deep-water formation regions, thereby accelerating the recovery of the AMOC considerably. Partially coupled experiments that neglect tropical air–sea coupling reveal that the recovery time of the AMOC is almost twice as long as in the fully coupled case. The impact of a shutdown of the AMOC on the Indian and Pacific Oceans can be decomposed into atmospheric and oceanic contributions. Temperature anomalies in the Northern Hemisphere are largely controlled by atmospheric circulation anomalies, whereas those in the Southern Hemisphere are strongly determined by ocean dynamical changes and exhibit a time lag of several decades. An intensification of the Pacific meridional overturning cell in the northern North Pacific during the AMOC shutdown can be explained in terms of wind-driven ocean circulation changes acting in concert with global ocean adjustment processes.
APA, Harvard, Vancouver, ISO, and other styles
11

Danabasoglu, Gokhan. "On Multidecadal Variability of the Atlantic Meridional Overturning Circulation in the Community Climate System Model Version 3." Journal of Climate 21, no. 21 (November 1, 2008): 5524–44. http://dx.doi.org/10.1175/2008jcli2019.1.

Full text
Abstract:
Abstract Multidecadal variability of the Atlantic meridional overturning circulation (MOC) is investigated diagnostically in the NCAR Community Climate System Model version 3 (CCSM3) present-day simulations, using the highest (T85 × 1) resolution version. This variability has a 21-yr period and is present in many other ocean fields in the North Atlantic. In MOC, the oscillation amplitude is about 4.5 Sv (1 Sv ≡ 106 m3 s−1), corresponding to 20% of the mean maximum MOC transport. The northward heat transport (NHT) variability has an amplitude of about 0.12 PW, representing 10% of the mean maximum NHT. In sea surface temperature (SST) and sea surface salinity (SSS), the peak-to-peak changes can be as large as 6°–7°C and 3 psu, respectively. The Labrador Sea region is identified as the deep-water formation (DWF) site associated with the MOC oscillations. In contrast with some previous studies, temperature and salinity contributions to the total density in this DWF region are almost equal and in phase. The heat and freshwater budget analyses performed for the DWF site indicate a complex relationship between the DWF, MOC, North Atlantic Oscillation (NAO), and subpolar gyre circulation anomalies. Their complicated interactions appear to be responsible for the maintenance of this multidecadal oscillation. In these interactions, the atmospheric variability associated with the model’s NAO plays a prominent role. In particular, the NAO modulates the subpolar gyre strength and contributes to the formation of the temperature and salinity anomalies that lead to positive/negative density anomalies at the DWF site. In addition, the wind stress curl anomalies occurring during the transition phase between the positive and negative NAO states produce fluctuations of the subtropical–subpolar gyre boundary, thus creating midlatitude SST and SSS anomalies. Comparisons with observations show that neither the pattern nor the magnitude of this dominant SST variability is realistic.
APA, Harvard, Vancouver, ISO, and other styles
12

Stouffer, Ronald J., Dan Seidov, and Bernd J. Haupt. "Climate Response to External Sources of Freshwater: North Atlantic versus the Southern Ocean." Journal of Climate 20, no. 3 (February 1, 2007): 436–48. http://dx.doi.org/10.1175/jcli4015.1.

Full text
Abstract:
Abstract The response of an atmosphere–ocean general circulation model (AOGCM) to perturbations of freshwater fluxes across the sea surface in the North Atlantic and Southern Ocean is investigated. The purpose of this study is to investigate aspects of the so-called bipolar seesaw where one hemisphere warms and the other cools and vice versa due to changes in the ocean meridional overturning. The experimental design is idealized where 1 Sv (1 Sv ≡ 106 m3 s−1) of freshwater is added to the ocean surface for 100 model years and then removed. In one case, the freshwater perturbation is located in the Atlantic Ocean from 50° to 70°N. In the second case, it is located south of 60°S in the Southern Ocean. In the case where the North Atlantic surface waters are freshened, the Atlantic thermohaline circulation (THC) and associated northward oceanic heat transport weaken. In the Antarctic surface freshening case, the Atlantic THC is mainly unchanged with a slight weakening toward the end of the integration. This weakening is associated with the spreading of the fresh sea surface anomaly from the Southern Ocean into the rest of the World Ocean. There are two mechanisms that may be responsible for such weakening of the Atlantic THC. First is that the sea surface salinity (SSS) contrast between the North Atlantic and North Pacific is reduced. And, second, when freshwater from the Southern Ocean reaches the high latitudes of the North Atlantic Ocean, it hinders the sinking of the surface waters, leading to the weakening of the THC. The spreading of the fresh SSS anomaly from the Southern Ocean into the surface waters worldwide was not seen in earlier experiments. Given the geography and climatology of the Southern Hemisphere where the climatological surface winds push the surface waters northward away from the Antarctic continent, it seems likely that the spreading of the fresh surface water anomaly could occur in the real world. A remarkable symmetry between the two freshwater perturbation experiments in the surface air temperature (SAT) response can be seen. In both cases, the hemisphere with the freshwater perturbation cools, while the opposite hemisphere warms slightly. In the zonally averaged SAT figures, both the magnitude and the pattern of the anomalies look similar between the two cases. The oceanic response, on the other hand, is very different for the two freshwater cases, as noted above for the spreading of the SSS anomaly and the associated THC response. If the differences between the atmospheric and oceanic responses apply to the real world, then the interpretation of paleodata may need to be revisited. To arrive at a correct interpretation, it matters whether or not the evidence is mainly of atmospheric or oceanic origin. Also, given the sensitivity of the results to the exact details of the freshwater perturbation locations, especially in the Southern Hemisphere, a more realistic scenario must be constructed to explore these questions.
APA, Harvard, Vancouver, ISO, and other styles
13

Yang, Haijun, Yingying Zhao, and Zhengyu Liu. "Understanding Bjerknes Compensation in Atmosphere and Ocean Heat Transports Using a Coupled Box Model." Journal of Climate 29, no. 6 (March 15, 2016): 2145–60. http://dx.doi.org/10.1175/jcli-d-15-0281.1.

Full text
Abstract:
Abstract A coupled box model is used to study the compensation between atmosphere and ocean heat transports. An analytical solution to the Bjerknes compensation (BJC) rate, defined as the ratio of anomalous atmosphere heat transport (AHT) to anomalous ocean heat transport (OHT), is obtained. The BJC rate is determined by local feedback between surface temperature and net heat flux at the top of atmosphere (TOA) and the AHT efficiency. In a stable climate that ensures global energy conservation, the changes between AHT and OHT tend to be always out of phase, and the BJC is always valid. This can be demonstrated when the climate is perturbed by freshwater flux. The BJC in this case exhibits three different behaviors: the anomalous AHT can undercompensate, overcompensate, or perfectly compensate the anomalous OHT, depending on the local feedback. Stronger negative local feedback will result in a lower BJC rate. Stronger positive local feedback will result in a larger overcompensation. If zero climate feedback occurs in the system, the AHT will compensate the OHT perfectly. However, the BJC will fail if the climate system is perturbed by heat flux. In this case, the changes in AHT and OHT will be in phase, and their ratio will be closely related to the mean AHT and OHT. In a more realistic situation when the climate is perturbed by both heat and freshwater fluxes, whether the BJC will occur depends largely on the interplay among meridional temperature and salinity gradients and the thermohaline circulation strength. This work explicitly shows that the energy conservation is the intrinsic mechanism of BJC and establishes a specific link between radiative feedback and the degree of compensation. It also implies a close relationship between the energy balance at the TOA and the ocean thermohaline dynamics.
APA, Harvard, Vancouver, ISO, and other styles
14

Downes, Stephanie M., Nathaniel L. Bindoff, and Stephen R. Rintoul. "Impacts of Climate Change on the Subduction of Mode and Intermediate Water Masses in the Southern Ocean." Journal of Climate 22, no. 12 (June 15, 2009): 3289–302. http://dx.doi.org/10.1175/2008jcli2653.1.

Full text
Abstract:
Abstract Changes in the temperature, salinity, and subduction of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) between the 1950s and 2090s are diagnosed using the CSIRO Mark version 3.5 (Mk3.5) climate system model Caps under a CO2 forcing that reaches 860 ppm by the year 2100. These Southern Ocean upper-limb water masses ventilate the ocean interior, and changes in their properties have been related to climate change in numerous studies. Over time, the authors follow the low potential vorticity and salinity minimum layers describing SAMW and AAIW and find that the water column in the 2090s shifts to lighter densities by approximately 0.2 kg m−3. The model projects a reduction in the SAMW and AAIW annual mean subduction rates as a result of a combination of a shallower mixed layer, increased potential vorticity at the base of the mixed layer, and a net buoyancy gain. There is little change in the projected total volume of SAMW transported into the ocean interior via the subduction process; however, the authors find a significant decrease in the subduction of AAIW. The authors find overall that increases in the air–sea surface heat and freshwater fluxes mainly control the reduction in the mean loss of the SAMW and AAIW surface buoyancy flux when compared with the effect of changes supplied by Ekman transport because of increased zonal wind stress. In the A2 scenario, there are cooling and freshening on neutral density surfaces less than 27.3 kg m−3 in response to the warming and freshening observed at the ocean’s surface. The model projects deepening of density surfaces due to southward shifts in the outcrop regions and the downward displacement of these surfaces north of 45°S. The volume transport across 32°S is predicted to decrease in all three basins, with southward transport of SAMW and AAIW decreasing by up to 1.2 and 2.0 Sv (1 Sv ≡ 106 m3 s−1), respectively, in the Indian Ocean. These projected reductions in the subduction and transport of mode and intermediate water masses in the CSIRO Mk3.5 model could potentially decrease the absorption and storage of CO2 in the Southern Ocean.
APA, Harvard, Vancouver, ISO, and other styles
15

Vettoretti, Guido, and W. Richard Peltier. "Fast Physics and Slow Physics in the Nonlinear Dansgaard–Oeschger Relaxation Oscillation." Journal of Climate 31, no. 9 (March 29, 2018): 3423–49. http://dx.doi.org/10.1175/jcli-d-17-0559.1.

Full text
Abstract:
Abstract The Dansgaard–Oeschger (D-O) relaxation oscillation that governed glacial climate variability during marine isotope stage 3 has been accurately simulated using a high-resolution coupled climate model. Here the authors present additional detailed analyses of both the slow physics transition between warm and cold states and the fast physics transition between cold and warm states of the D-O cycle. First, the authors demonstrate that the mechanisms active during the slow transition from interstadial to stadial conditions involves the continuous flux of thick and old sea ice from the Arctic basin into the North Atlantic subpolar gyre region along the East Greenland Current. During this slow physical process, the freshwater input from sea ice melting as it moves over the surface of the warm ocean restratifies the high-latitude North Atlantic and leads to a significant reduction in the rate of North Atlantic Deep Water formation. A detailed freshwater budget and hydrography analysis is also presented to demonstrate that the D-O cycle is a low-latitude–high-latitude salt oscillator as the authors have previously argued. Second, the authors provide a more detailed analysis than previously of the fast-time-scale processes that govern the extremely rapid transition from cold stadial conditions back to the warm interstadial state. These are associated with the onset of a sub-sea ice thermohaline convective instability, which opens a massive polynya to the north of the southern boundary of the extensive North Atlantic sea ice lid that is characteristic of stadial conditions. This instability is enabled by the continuous increase of salinity above the sub-sea ice pycnocline, which eliminates the vertical salinity gradient that prevents convective destabilization of the water column under full stadial conditions. This reduction in the vertical salinity gradient beneath the sea ice lid results from the continuing northward salt transport by the North Atlantic gyre circulation once the expansion of the stadial sea ice lid has ceased. The onset of instability occurs in the Irminger basin to the south of Denmark Strait, and the authors discuss the reason for this localization of instability onset.
APA, Harvard, Vancouver, ISO, and other styles
16

Ferreira, David, John Marshall, and Jean-Michel Campin. "Localization of Deep Water Formation: Role of Atmospheric Moisture Transport and Geometrical Constraints on Ocean Circulation." Journal of Climate 23, no. 6 (March 15, 2010): 1456–76. http://dx.doi.org/10.1175/2009jcli3197.1.

Full text
Abstract:
Abstract A series of coupled atmosphere–ocean–ice aquaplanet experiments is described in which topological constraints on ocean circulation are introduced to study the role of ocean circulation on the mean climate of the coupled system. It is imagined that the earth is completely covered by an ocean of uniform depth except for the presence or absence of narrow barriers that extend from the bottom of the ocean to the sea surface. The following four configurations are described: Aqua (no land), Ridge (one barrier extends from pole to pole), Drake (one barrier extends from the North Pole to 35°S), and DDrake (two such barriers are set 90° apart and join at the North Pole, separating the ocean into a large basin and a small basin, connected to the south). On moving from Aqua to Ridge to Drake to DDrake, the energy transports in the equilibrium solutions become increasingly “realistic,” culminating in DDrake, which has an uncanny resemblance to the present climate. Remarkably, the zonal-average climates of Drake and DDrake are strikingly similar, exhibiting almost identical heat and freshwater transports, and meridional overturning circulations. However, Drake and DDrake differ dramatically in their regional climates. The small and large basins of DDrake exhibit distinctive Atlantic-like and Pacific-like characteristics, respectively: the small basin is warmer, saltier, and denser at the surface than the large basin, and is the main site of deep water formation with a deep overturning circulation and strong northward ocean heat transport. A sensitivity experiment with DDrake demonstrates that the salinity contrast between the two basins, and hence the localization of deep convection, results from a deficit of precipitation, rather than an excess of evaporation, over the small basin. It is argued that the width of the small basin relative to the zonal fetch of atmospheric precipitation is the key to understanding this salinity contrast. Finally, it is argued that many gross features of the present climate are consequences of two topological asymmetries that have profound effects on ocean circulation: a meridional asymmetry (circumpolar flow in the Southern Hemisphere; blocked flow in the Northern Hemisphere) and a zonal asymmetry (a small basin and a large basin).
APA, Harvard, Vancouver, ISO, and other styles
17

Mernild, Sebastian H., Glen E. Liston, Christopher A. Hiemstra, Jens H. Christensen, Martin Stendel, and Bent Hasholt. "Surface Mass Balance and Runoff Modeling Using HIRHAM4 RCM at Kangerlussuaq (Søndre Strømfjord), West Greenland, 1950–2080." Journal of Climate 24, no. 3 (February 1, 2011): 609–23. http://dx.doi.org/10.1175/2010jcli3560.1.

Full text
Abstract:
Abstract A regional atmospheric model, the HIRHAM4 regional climate model (RCM) using boundary conditions from the ECHAM5 atmosphere–ocean general circulation model (AOGCM), was downscaled to a 500-m gridcell increment using SnowModel to simulate 131 yr (1950–2080) of hydrologic cycle evolution in west Greenland’s Kangerlussuaq drainage. Projected changes in the Greenland Ice Sheet (GrIS) surface mass balance (SMB) and runoff are relevant for potential hydropower production and prediction of ecosystem changes in sensitive Kangerlussuaq Fjord systems. Mean annual surface air temperatures and precipitation in the Kangerlussuaq area were simulated to increase by 3.4°C and 95 mm water equivalent (w.eq.), respectively, between 1950 and 2080. The local Kangerlussuaq warming was less than the average warming of 4.8°C simulated for the entire GrIS. The Kangerlussuaq SMB loss increased by an average of 0.3 km3 because of a 0.4 km3 rise in precipitation, 0.1 km3 rise in evaporation and sublimation, and 0.6 km3 gain in runoff (1950–2080). By 2080, the spring runoff season begins approximately three weeks earlier. The average modeled SMB and runoff is approximately −0.1 and 1.2 km3 yr−1, respectively, indicating that ∼10% of the Kangerlussuaq runoff is explained by the GrIS SMB net loss. The cumulative net volume loss (1950–2080) from SMB was 15.9 km3, and runoff was 151.2 km3 w.eq. This runoff volume is expected to have important hydrodynamic and ecological impacts on the stratified salinity in the Kangerlussuaq Fjord and on the transport of freshwater to the ocean.
APA, Harvard, Vancouver, ISO, and other styles
18

Stohl, Andreas, and Paul James. "A Lagrangian Analysis of the Atmospheric Branch of the Global Water Cycle. Part II: Moisture Transports between Earth’s Ocean Basins and River Catchments." Journal of Hydrometeorology 6, no. 6 (December 1, 2005): 961–84. http://dx.doi.org/10.1175/jhm470.1.

Full text
Abstract:
Abstract A diagnostic Lagrangian method to trace the budgets of freshwater fluxes, first described in Part I of this article, is used here to establish source–sink relationships of moisture between earth’s ocean basins and river catchments. Using the Lagrangian particle dispersion model FLEXPART, driven with meteorological analyses, 1.1 million particles, representing the mass of the atmosphere, were tracked over a period of 4 yr. Via diagnosis of the changes of specific humidity along the trajectories, budgets of evaporation minus precipitation (E − P) were determined. For validation purposes, E − P budgets were calculated for 39 river catchments and compared with climatological streamflow data for these rivers. Good agreement (explained variance 87%) was found between the two quantities. The E − P budgets were then tracked forward from all of earth’s ocean basins and backward from the 39 major river catchments for a period of 10 days. As much previous work was done for the Mississippi basin, this basin was chosen for a detailed analysis. Moisture recycling over the continent and moisture transport from the Gulf of Mexico were identified as the major sources for precipitation over the Mississippi basin, in quantitative agreement with previous studies. In the remainder of the paper, global statistics for source–sink relationships of moisture between the ocean basins and river catchments are presented. They show, for instance, the evaporative capacity of monsoonal flows for precipitation over the Ganges and Niger catchments, and the transport of moisture from both hemispheres to supply the Amazon’s precipitation. In contrast, precipitation in northern Eurasia draws its moisture mainly via recycling over the continent. The atmospheric transport of moisture between different ocean basins was also investigated. It was found that transport of air from the North Pacific produces net evaporation over the North Atlantic, but not vice versa. This helps to explain why the sea surface salinity is higher in the North Atlantic than in the North Pacific, a difference thought to be an important driver of the oceans’ thermohaline circulation. Finally, limitations of the method are discussed and possible future developments are outlined.
APA, Harvard, Vancouver, ISO, and other styles
19

Du, Jiabi, Kyeong Park, Jian Shen, Yinglong J. Zhang, Xin Yu, Fei Ye, Zhengui Wang, and Nancy N. Rabalais. "A hydrodynamic model for Galveston Bay and the shelf in the northern Gulf of Mexico." Ocean Science 15, no. 4 (July 17, 2019): 951–66. http://dx.doi.org/10.5194/os-15-951-2019.

Full text
Abstract:
Abstract. A 3-D unstructured-grid hydrodynamic model for the northern Gulf of Mexico was developed, with a hybrid s–z vertical grid and high-resolution horizontal grid for the main estuarine systems along the Texas–Louisiana coast. This model, based on the Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM), is driven by the observed river discharge, reanalysis atmospheric forcing, and open boundary conditions from global HYCOM output. The model reproduces the temporal and spatial variation of observed water level, salinity, temperature, and current velocity in Galveston Bay and on the shelf. The validated model was applied to examine the remote influence of neighboring large rivers, specifically the Mississippi–Atchafalaya River (MAR) system, on salinity, stratification, vertical mixing, and longshore transport along the Texas coast. Numerical experiments reveal that the MAR discharge could significantly decrease the salinity and change the stratification and vertical mixing on the inner Texas shelf. It would take about 25 and 50 d for the MAR discharge to reach the mouth of Galveston Bay and Port Aransas, respectively. The influence of the MAR discharge is sensitive to the wind field. Winter wind constrains the MAR freshwater to form a narrow lower-salinity band against the shore from the Mississippi Delta all the way to the southwestern Texas coast, while summer wind reduces the downcoast longshore transport significantly, weakening the influence of the MAR discharge on surface salinity along Texas coast. However, summer wind causes a much stronger stratification on the Texas shelf, leading to a weaker vertical mixing. The decrease in salinity of up to 10 psu at the mouth of Galveston Bay due to the MAR discharge results in a decrease in horizontal density gradient, a decrease in the salt flux, and a weakened estuarine circulation and estuarine–ocean exchange. We highlight the flexibility of the model and its capability to simulate not only estuarine dynamics and shelf-wide transport, but also the interactions between them.
APA, Harvard, Vancouver, ISO, and other styles
20

Larson, Sarah M., Daniel J. Vimont, Amy C. Clement, and Ben P. Kirtman. "How Momentum Coupling Affects SST Variance and Large-Scale Pacific Climate Variability in CESM." Journal of Climate 31, no. 7 (April 2018): 2927–44. http://dx.doi.org/10.1175/jcli-d-17-0645.1.

Full text
Abstract:
The contribution of buoyancy (thermal + freshwater fluxes) versus momentum (wind driven) coupling to SST variance in climate models is a longstanding question. Addressing this question has proven difficult because a gap in the model hierarchy exists between the fully coupled (momentum + buoyancy + ocean dynamics) and slab–mixed layer ocean coupled (thermal with no ocean dynamics) versions. The missing piece is a thermally coupled configuration that permits anomalous ocean heat transport convergence decoupled from the anomalous wind stress. A mechanically decoupled model configuration is provided to fill this gap and diagnose the impact of momentum coupling on SST variance in NCAR CESM. A major finding is that subtropical SST variance increases when momentum coupling is disengaged. An “opposing flux hypothesis” may explain why the subtropics (midlatitudes) experience increased (reduced) variance without momentum coupling. In a subtropical easterly wind regime, Ekman fluxes [Formula: see text] oppose thermal fluxes [Formula: see text], such that when the air and sea are mechanically decoupled [Formula: see text], [Formula: see text] variance increases. As a result, SST variance increases. In a midlatitude westerly regime where [Formula: see text] and [Formula: see text] typically reinforce each other, SST variance is reduced. Changes in mean surface winds with climate change could impact the [Formula: see text] and [Formula: see text] covariance relationships. A by-product of mechanically decoupling the model is the absence of ENSO variability. The Pacific decadal oscillation operates without momentum coupling or tropical forcing, although the pattern is modified with enhanced (reduced) variability in the subtropics (midlatitudes). Results show that Ekman fluxes are an important component to tropical, subtropical, and midlatitude SST variance.
APA, Harvard, Vancouver, ISO, and other styles
21

Arzel, Olivier, Matthew H. England, and Willem P. Sijp. "Reduced Stability of the Atlantic Meridional Overturning Circulation due to Wind Stress Feedback during Glacial Times." Journal of Climate 21, no. 23 (December 1, 2008): 6260–82. http://dx.doi.org/10.1175/2008jcli2291.1.

Full text
Abstract:
Abstract A previous study by Mikolajewicz suggested that the wind stress feedback stabilizes the Atlantic thermohaline circulation. This result was obtained under modern climate conditions, for which the presence of the massive continental ice sheets characteristic of glacial times is missing. Here a coupled ocean–atmosphere–sea ice model of intermediate complexity, set up in an idealized spherical sector geometry of the Atlantic basin, is used to show that, under glacial climate conditions, wind stress feedback actually reduces the stability of the meridional overturning circulation (MOC). The analysis reveals that the influence of the wind stress feedback on the glacial MOC response to an external source of freshwater applied at high northern latitudes is controlled by the following two distinct processes: 1) the interactions between the wind field and the sea ice export in the Northern Hemisphere (NH), and 2) the northward Ekman transport in the tropics and upward Ekman pumping in the core of the NH subpolar gyre. The former dominates the response of the coupled system; it delays the recovery of the MOC, and in some cases even stabilizes collapsed MOC states achieved during the hosing period. The latter plays a minor role and mitigates the impact of the former process by reducing the upper-ocean freshening in deep-water formation regions. Hence, the wind stress feedback delays the recovery of the glacial MOC, which is the opposite of what occurs under modern climate conditions. Close to the critical transition threshold beyond which the circulation collapses, the glacial MOC appears to be very sensitive to changes in surface wind stress forcing and exhibits, in the aftermath of the freshwater pulse, a nonlinear dependence upon the wind stress feedback magnitude: a complete and irreversible MOC shutdown occurs only for intermediate wind stress feedback magnitudes. This behavior results from the competitive effects of processes 1 and 2 on the midlatitude upper-ocean salinity during the shutdown phase of the MOC. The mechanisms presented here may be relevant to the large meltwater pulses that punctuated the last glacial period.
APA, Harvard, Vancouver, ISO, and other styles
22

Liu, S. M., G. H. Hong, X. W. Ye, J. Zhang, and X. L. Jiang. "Nutrient budgets for large Chinese estuaries and embayment." Biogeosciences Discussions 6, no. 1 (January 8, 2009): 391–435. http://dx.doi.org/10.5194/bgd-6-391-2009.

Full text
Abstract:
Abstract. Nutrient concentrations among the Chinese rivers and bays vary 10–75 fold depending on nutrient elements. The silicic acid levels in South China rivers are higher than those from North China rivers and the yields of dissolved silicate increased from the north to the south of China, indicating the effect of climate on weathering. The nutrient levels in Chinese rivers are higher than those from the large and less-disturbed world rivers such as Amazon and Zaire, but comparable to the values for European and North American polluted and eutrophic rivers like the Loire and Po. This may be ascribed to both of extensive leaching and influences from agricultural and domestic activities over the drainage basins of Chinese rivers. DIN:PO3−4 ratios in most of Chinese rivers and bays are higher (up to 2800) than the other rivers in the world. The atomic ratios of DIN to PO43− in the major Chinese rivers and embayment decrease in exponential trend with increase in the atomic ratios of PO43− to Si(OH)4, indicating that primary production in coastal environments changes with the nutrients transport when the urbanization develops to a certain extent, and the potential limited nutrient elements can be changed from phosphorus to nitrogen limitation, which can modify aquatic food webs and then the ocean ecosystem. A simple steady-state mass-balance box model was employed. The output shows that the estuaries and embayment behave as a sink or source of nutrients. For the major Chinese estuaries, both residual and mixing flow transport nutrients off the estuaries, and nutrient transport fluxes in summer is 3–4 fold that in winter except comparable for NH4+. These fluxes are 1.0–1.7 fold that estimated by timing riverine nutrient concentrations and freshwater discharge. For the major Chinese embayment, nutrient elements are transported to China Seas except PO43− and Si(OH)4 in Sanggou Bay and Jiaozhou Bay. Seasonally, nutrients transport fluxes off the bays in the summer are 2.2–7.0 fold that in the winter. In the embayment, the exchange flow dominated the water budgets, resulting in average system salinity approaching the China seas salinity where river discharge is limited. The major Chinese estuaries and embayment transport 1.0–3.1% of nitrogen, 0.2–0.5% of phosphorus and 3% of silicon necessary for phytoplankton growth for the China Seas. This demonstrates regenerated nutrients in water column and sediments and nutrients transport fluxes between the China Seas and open ocean play an important role for phytoplankton growth. Atmospheric deposition may be another important source of nutrients for the China Seas.
APA, Harvard, Vancouver, ISO, and other styles
23

Dai, Aiguo, A. Hu, G. A. Meehl, W. M. Washington, and W. G. Strand. "Atlantic Thermohaline Circulation in a Coupled General Circulation Model: Unforced Variations versus Forced Changes." Journal of Climate 18, no. 16 (August 15, 2005): 3270–93. http://dx.doi.org/10.1175/jcli3481.1.

Full text
Abstract:
Abstract A 1200-yr unforced control run and future climate change simulations using the Parallel Climate Model (PCM), a coupled atmosphere–ocean–land–sea ice global model with no flux adjustments and relatively high resolution (∼2.8° for the atmosphere and 2/3° for the oceans) are analyzed for changes in Atlantic Ocean circulations. For the forced simulations, historical greenhouse gas and sulfate forcing of the twentieth century and projected forcing for the next two centuries are used. The Atlantic thermohaline circulation (THC) shows large multidecadal (15–40 yr) variations with mean-peak amplitudes of 1.5–3.0 Sv (1 Sv ≡ 106 m3 s−1) and a sharp peak of power around a 24-yr period in the control run. Associated with the THC oscillations, there are large variations in North Atlantic Ocean heat transport, sea surface temperature (SST) and salinity (SSS), sea ice fraction, and net surface water and energy fluxes, which all lag the variations in THC strength by 2–3 yr. However, the net effect of the SST and SSS variations on upper-ocean density in the midlatitude North Atlantic leads the THC variations by about 6 yr, which results in the 24-yr period. The simulated SST and sea ice spatial patterns associated with the THC oscillations resemble those in observed SST and sea ice concentrations that are associated with the North Atlantic Oscillation (NAO). The results suggest a dominant role of the advective mechanism and strong coupling between the THC and the NAO, whose index also shows a sharp peak around the 24-yr time scale in the control run. In the forced simulations, the THC weakens by ∼12% in the twenty-first century and continues to weaken by an additional ∼10% in the twenty-second century if CO2 keeps rising, but the THC stabilizes if CO2 levels off. The THC weakening results from stabilizing temperature increases that are larger in the upper and northern Atlantic Ocean than in the deep and southern parts of the basin. In both the control and forced simulations, as the THC gains (loses) strength and depth, the separated Gulf Stream (GS) moves southward (northward) while the subpolar gyre centered at the Labrador Sea contracts from (expands to) the east with the North Atlantic Current (NAC) being shifted westward (eastward). These horizontal circulation changes, which are dynamically linked to the THC changes, induce large temperature and salinity variations around the GS and NAC paths.
APA, Harvard, Vancouver, ISO, and other styles
24

Cauquoin, Alexandre, Martin Werner, and Gerrit Lohmann. "Water isotopes – climate relationships for the mid-Holocene and preindustrial period simulated with an isotope-enabled version of MPI-ESM." Climate of the Past 15, no. 6 (November 14, 2019): 1913–37. http://dx.doi.org/10.5194/cp-15-1913-2019.

Full text
Abstract:
Abstract. We present here the first results, for the preindustrial and mid-Holocene climatological periods, of the newly developed isotope-enhanced version of the fully coupled Earth system model MPI-ESM, called hereafter MPI-ESM-wiso. The water stable isotopes H216O, H218O and HDO have been implemented into all components of the coupled model setup. The mid-Holocene provides the opportunity to evaluate the model response to changes in the seasonal and latitudinal distribution of insolation induced by different orbital forcing conditions. The results of our equilibrium simulations allow us to evaluate the performance of the isotopic model in simulating the spatial and temporal variations of water isotopes in the different compartments of the hydrological system for warm climates. For the preindustrial climate, MPI-ESM-wiso reproduces very well the observed spatial distribution of the isotopic content in precipitation linked to the spatial variations in temperature and precipitation rate. We also find a good model–data agreement with the observed distribution of isotopic composition in surface seawater but a bias with the presence of surface seawater that is too 18O-depleted in the Arctic Ocean. All these results are improved compared to the previous model version ECHAM5/MPIOM. The spatial relationships of water isotopic composition with temperature, precipitation rate and salinity are consistent with observational data. For the preindustrial climate, the interannual relationships of water isotopes with temperature and salinity are globally lower than the spatial ones, consistent with previous studies. Simulated results under mid-Holocene conditions are in fair agreement with the isotopic measurements from ice cores and continental speleothems. MPI-ESM-wiso simulates a decrease in the isotopic composition of precipitation from North Africa to the Tibetan Plateau via India due to the enhanced monsoons during the mid-Holocene. Over Greenland, our simulation indicates a higher isotopic composition of precipitation linked to higher summer temperature and a reduction in sea ice, shown by positive isotope–temperature gradient. For the Antarctic continent, the model simulates lower isotopic values over the East Antarctic plateau, linked to the lower temperatures during the mid-Holocene period, while similar or higher isotopic values are modeled over the rest of the continent. While variations of isotopic contents in precipitation over West Antarctica between mid-Holocene and preindustrial periods are partly controlled by changes in temperature, the transport of relatively 18O-rich water vapor near the coast to the western ice core sites could play a role in the final isotopic composition. So, more caution has to be taken about the reconstruction of past temperature variations during warm periods over this area. The coupling of such a model with an ice sheet model or the use of a zoomed grid centered on this region could help to better describe the role of the water vapor transport and sea ice around West Antarctica. The reconstruction of past salinity through isotopic content in sea surface waters can be complicated for regions with strong ocean dynamics, variations in sea ice regimes or significant changes in freshwater budget, giving an extremely variable relationship between the isotopic content and salinity of ocean surface waters over small spatial scales. These complicating factors demonstrate the complexity of interpreting water isotopes as past climate signals of warm periods like the mid-Holocene. A systematic isotope model intercomparison study for further insights on the model dependency of these results would be beneficial.
APA, Harvard, Vancouver, ISO, and other styles
25

Bladwell, Christopher, Ryan M. Holmes, and Jan D. Zika. "Internal salt content: a useful framework for understanding the oceanic branch of the water cycle." Journal of Physical Oceanography, April 13, 2021. http://dx.doi.org/10.1175/jpo-d-20-0212.1.

Full text
Abstract:
AbstractThe global water cycle is dominated by an atmospheric branch which transfers fresh water away from subtropical regions and an oceanic branch which returns that fresh water from subpolar and tropical regions. Salt content is commonly used to understand the oceanic branch because surface freshwater fluxes leave an imprint on ocean salinity. However, freshwater fluxes do not actually change the amount of salt in the ocean and – in the mean – no salt is transported meridionally by ocean circulation. To study the processes which determine ocean salinity we introduce a new variable: “internal salt” and its counterpart “internal fresh water”. Precise budgets for internal salt in salinity coordinates relate meridional and diahaline transport to surface freshwater forcing, ocean circulation and mixing, and reveal the pathway of fresh water in the ocean. We apply this framework to a 1° global ocean model. We find that in order for fresh water to be exported from the ocean’s tropical and subpolar regions to the subtropics, salt must be mixed across the salinity surfaces that bound those regions. In the tropics, this mixing is achieved by parameterized vertical mixing, along-isopycnal mixing, and numerical mixing associated with truncation errors in the model’s advection scheme, while along-isopycnal mixing dominates at high latitudes. We analyze the internal freshwater budgets of the Indo-Pacific and Atlantic Ocean basins and identify the transport pathways between them which redistribute fresh water added through precipitation, balancing asymmetries in freshwater forcing between the basins.
APA, Harvard, Vancouver, ISO, and other styles
26

Couldrey, Matthew P., Jonathan M. Gregory, Fabio Boeira Dias, Peter Dobrohotoff, Catia M. Domingues, Oluwayemi Garuba, Stephen M. Griffies, et al. "What causes the spread of model projections of ocean dynamic sea-level change in response to greenhouse gas forcing?" Climate Dynamics, October 27, 2020. http://dx.doi.org/10.1007/s00382-020-05471-4.

Full text
Abstract:
Abstract Sea levels of different atmosphere–ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial uncertainty in climate change research. We isolate the role of the ocean dynamics in setting the spatial pattern of dynamic sea-level (ζ) change by forcing several AOGCMs with prescribed identical heat, momentum (wind) and freshwater flux perturbations. This method produces a ζ projection spread comparable in magnitude to the spread that results from greenhouse gas forcing, indicating that the differences in ocean model formulation are the cause, rather than diversity in surface flux change. The heat flux change drives most of the global pattern of ζ change, while the momentum and water flux changes cause locally confined features. North Atlantic heat uptake causes large temperature and salinity driven density changes, altering local ocean transport and ζ. The spread between AOGCMs here is caused largely by differences in their regional transport adjustment, which redistributes heat that was already in the ocean prior to perturbation. The geographic details of the ζ change in the North Atlantic are diverse across models, but the underlying dynamic change is similar. In contrast, the heat absorbed by the Southern Ocean does not strongly alter the vertically coherent circulation. The Arctic ζ change is dissimilar across models, owing to differences in passive heat uptake and circulation change. Only the Arctic is strongly affected by nonlinear interactions between the three air-sea flux changes, and these are model specific.
APA, Harvard, Vancouver, ISO, and other styles
27

Jabbari, Aidin, Josef D. Ackerman, Leon Boegman, and Yingming Zhao. "Increases in Great Lake winds and extreme events facilitate interbasin coupling and reduce water quality in Lake Erie." Scientific Reports 11, no. 1 (March 11, 2021). http://dx.doi.org/10.1038/s41598-021-84961-9.

Full text
Abstract:
AbstractClimate change affects physical and biogeochemical processes in lakes. We show significant increases in surface-water temperature (~ 0.5 °C decade−1; > 0.2% year−1) and wave power (> 1% year−1; the transport of energy by waves) associated with atmospheric phenomena (Atlantic Multidecadal Oscillation and Multivariate El Niño/Southern Oscillation) in the month of August between 1980 and 2018 in the Laurentian Great Lakes. A pattern in wave power, in response to extreme winds, was identified as a proxy to predict interbasin coupling in Lake Erie. This involved the upwelling of cold and hypoxic (dissolved oxygen < 2 mg L−1) hypolimnetic water containing high total phosphorus concentration from the seasonally stratified central basin into the normally well-mixed western basin opposite to the eastward flow. Analysis of historical records indicate that hypoxic events due to interbasin exchange have increased in the western basin over the last four decades (43% in the last 10 years) thus affecting the water quality of the one of the world’s largest freshwater sources and fisheries.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography