Academic literature on the topic 'Coupled waveguides'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Coupled waveguides.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Coupled waveguides"
Seidel, Andreas, Jacek Gosciniak, Maria U. Gonzalez, Jan Renger, Carsten Reinhardt, Roman Kiyan, Romain Quidant, Sergey I. Bozhevolnyi, and Boris N. Chichkov. "Fiber-Coupled Surface Plasmon Polariton Excitation in Imprinted Dielectric-Loaded Waveguides." International Journal of Optics 2010 (2010): 1–6. http://dx.doi.org/10.1155/2010/897829.
Full textPetersen, Jan, Jürgen Volz, and Arno Rauschenbeutel. "Chiral nanophotonic waveguide interface based on spin-orbit interaction of light." Science 346, no. 6205 (September 4, 2014): 67–71. http://dx.doi.org/10.1126/science.1257671.
Full textWang, Yiquan, Tianzhe Wang, and Juan Liu. "Waveguide modes in coupled-resonator optical waveguides." Physics Letters A 353, no. 1 (April 2006): 101–4. http://dx.doi.org/10.1016/j.physleta.2005.12.099.
Full textWeeber, Jean-Claude, Gérard Colas-des-Francs, Alexandre Bouhelier, Aymeric Leray, Kirill Vasilev, Xiao Yu, Kamal Hammani, et al. "Colloidal quantum dots decorated micro-ring resonators for efficient integrated waveguides excitation." Nanophotonics 9, no. 6 (April 24, 2020): 1411–23. http://dx.doi.org/10.1515/nanoph-2019-0516.
Full textBankov, S. E., V. I. Kalinichev, and E. V. Frolova. "Coupled EBG Waveguides." Journal of Communications Technology and Electronics 66, no. 4 (April 2021): 375–85. http://dx.doi.org/10.1134/s106422692104001x.
Full textLI, DENG-FENG, HUI-NING DONG, XIAO-TAO ZU, and YI-SHEN QIU. "A CORRECTED SCALAR COUPLED-MODE THEORY FOR THE ANISOTROPIC WAVEGUIDE." International Journal of Modern Physics B 21, no. 02 (January 20, 2007): 159–68. http://dx.doi.org/10.1142/s0217979207036515.
Full textShamonin, M., M. Lohmeyer, and P. Hertel. "Directional coupler based on radiatively coupled waveguides." Applied Optics 36, no. 3 (January 20, 1997): 635. http://dx.doi.org/10.1364/ao.36.000635.
Full textSlobodianiuk, D. V. "Excitation of Ultrashort Spin Waves via Spin-Cherenkov Effect in Magnetic Waveguides." Ukrainian Journal of Physics 66, no. 5 (May 28, 2021): 424. http://dx.doi.org/10.15407/ujpe66.5.424.
Full textYang, Chunmei, Wenyu Luo, Renhe Zhang, Liangang Lyu, and Fangli Qiao. "An Efficient Coupled-Mode Formulation for Acoustic Propagation in Inhomogeneous Waveguides." Journal of Computational Acoustics 24, no. 01 (March 2016): 1550019. http://dx.doi.org/10.1142/s0218396x15500198.
Full textDalir, Hamed, Farzad Mokhtari-Koushyar, Iman Zand, Elham Heidari, Xiaochuan Xu, Zeyu Pan, Shuai Sun, Rubab Amin, Volker J. Sorger, and Ray T. Chen. "Atto-Joule, high-speed, low-loss plasmonic modulator based on adiabatic coupled waveguides." Nanophotonics 7, no. 5 (May 24, 2018): 859–64. http://dx.doi.org/10.1515/nanoph-2017-0092.
Full textDissertations / Theses on the topic "Coupled waveguides"
Mak, William Chi Keung Electrical Engineering & Telecommunications Faculty of Engineering UNSW. "Coupled Solitary Waves in Optical Waveguides." Awarded by:University of New South Wales. Electrical Engineering and Telecommunications, 1998. http://handle.unsw.edu.au/1959.4/17494.
Full textSangarpaul, Anil Kumar. "Nonlinear coupled-states in optical waveguides." Thesis, University of Salford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308294.
Full textQueraltó, Isach Gerard. "Supersymmetry and topology in coupled optical waveguides." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670742.
Full textLa integración de todos los componentes básicos para la generación, manipulación y detección de luz en chips ópticos está impulsando avances científicos y tecnológicos, por ejemplo, en el desarrollo de tecnologías de la información o en los dispositivos de detección para las tecnologías cuánticas. Debido a su flexibilidad, escalabilidad y a la posibilidad de observar directamente la evolución de la función de onda utilizando senzillas técnicas de trata, las estructuras fotónicas son ideales para la simulación cuántica, es decir, para emular fenómenos cuánticos que aparecen en otras ramas de la física. Es más, estas analogías ópticas-cuánticas también permiten diseñar nuevos circuitos fotónicos integrados con propiedades excepcionales. En esta tesis, aprovechamos propiedades no triviales que emergen de la física cuántica para diseñar nuevos dispositivos fotónicos integrados con funcionalidades avanzadas y rendimientos mejorados, así como nuevos simuladores fotónicos. Específicamente, explotamos las similitudes entre las ecuaciones de Helmholtz y de Schrödinger, que permiten reproducir la dinámica temporal de una particula atrapada en un potencial periódico con la evolución espacial de la luz propagándose en guías de onda, para aplicar transformaciones supersimétricas y procesos adiabáticos así como explorar geometrías topológicas no triviales en sistemas de guías de onda ópticas acopladas. La primera parte de la tesis está dedicada a introducir los conceptos matemáticos y físicos que describen las guías de onda ópticas acopladas, las analogías ópticas-cuánticas y la supersimetria óptica. La segunda parte de la tesis engloba el diseño de nuevos dispositivos fotónicos integrados basados en combinar transformaciones supersimétricas para manipular los modos espaciales con las técnicas adiabáticas para introducir robustez. Primero presentamos un nuevo método para la multiplexación de modos espaciales basado en guías de onda supersimétricas, que filtran los modos, en combinación con la técnica de pasaje adiabático espacial que se usa para transmitir de manera eficiente y robusta los modos escogidos entre guías. De manera similar, manteniéndonos en la idea de aplicar protocolos de ingeniería cuántica para diseñar nuevos dispositivos fotónicos con rendimientos superiores, proponemos conectar de manera adiabática estructuras supersimétricas a lo largo de la propagación. En particular, ésta técnica la utilizamos para diseñar guías de onda cónicas, filtros modales, divisores de haz e interferómetros. Finalmente, la tercera parte de la tesis está dedicada a la simulación de diferentes fenómenos físicos utilizando sistemas fotónicos. Para empezar, exploramos los efectos que las transformaciones supersimétricas inducen en sistemas con propiedades topológicas no triviales, las cuales están intrínsecamente ligadas a las simetrías internas del sistema. Con este objetivo, consideramos el sistema más simple con propiedades topológicas no triviales y demostramos en un sistema de guías de onda acopladas cómo la protección topológica de un estado puede ser suspendida y restablecida utilizando transformaciones supersimétricas. Además, para acceder a las fases topológicas no triviales, un elemento clave es la introducción de campos artificiales de gauge (AGF) que controlan la dinámica de partículas no cargadas que de otra manera eluden la influencia de los campos electromagnéticos. Es esta línea, investigamos la posibilidad de inducir AGF utilizando luz con momento orbital angular en lugar de manipular la geometría del sistema. Específicamente, medimos el fenómeno de jaula de Aharonov-Bohm que está ligado a la presencia de un campo magnético sintético. Esta técnica permite acceder a diferentes regímenes topológicos en una sola estructura, un paso importante para la simulación cuántica utilizando sistemas fotónicos.
The integration of all the basic components for light generation, manipulation and detection in optical chips is boosting scientific and technological advances, for instance, in the development of information technology and data communications or of sensing devices for quantum technologies. Due to its flexibility, scalability and of the possibility of directly observing the wavefunction evolution using simple imaging techniques, integrated photonic structures are an ideal playground for quantum simulation i.e., for emulating quantum phenomena appearing in other branches of physics. Moreover, these quantum-optical analogies also allow to design novel integrated photonic circuits with exceptional properties. In this context, in this thesis we harness non-trivial properties stemming from quantum physics to design novel integrated photonic devices with advanced functionalities and enhanced performances as well as to engineer novel photonic simulators. Specifically, we exploit the similarities between the Helmholtz and the Schrödinger equations, which allow to mimic the temporal dynamics of a single particle trapped in a lattice potential with the spatial evolution of a light beam propagating in an array of optical waveguides, to apply supersymmetric (SUSY) transformations and adiabatic passage processes as well as to explore non-trivial topological geometries in systems of coupled optical waveguides. In this vein, the first part of the thesis is devoted to introduce the mathematical concepts and physical ideas behind coupled optical waveguides, quantum-optical analogies and optical SUSY. After that, the second part of the thesis encompasses the design of novel integrated photonic devices by combining the spatial modal content manipulation offered by SUSY transformations with the robustness supplied by adiabatic passage techniques. In this regard, we start by presenting a novel method for mode division (de)multiplexing rooted on SUSY waveguides, which provide the mode filtering capabilities, in combination with a Spatial Adiabatic Passage protocol, which is used to efficiently and robustly transfer the desired modes between waveguides. Similarly, keeping on the idea of applying quantum engineering protocols to design novel photonic devices with enhanced performances, we also propose to connect, in an adiabatic fashion, SUSY structures along the propagation direction. In particular, this technique is used to engineer efficient and robust tapered waveguides, mode filters, beam splitters and interferometers. Finally, the third part of the thesis is dedicated to the photonic simulation of different phenomena. We explore first the effect that SUSY transformations induce in systems with non-trivial topological properties, which are intrinsically connected with the system's internal symmetries. To this aim, we consider the simplest system with non-trivial topological properties and demonstrate in waveguide arrays how the topological protection of a targeted state can be suspended and reestablished by applying SUSY transformations. Moreover, to access these non-trivial topological phases, a key step is the introduction of Artificial Gauge Fields (AGF) controlling the dynamics of uncharged particles that otherwise elude the influence of standard electromagnetic fields. To this end, we investigate the possibility of inducing AGF by injecting light beams carrying Orbital Angular Momentum, rather than manipulating the geometry of the system. Specifically, we measure the Aharonov-Bohm caging effect, which is directly related with the presence of a synthetic magnetic flux, in an array of coupled optical waveguides. This technique paves the way towards accessing different topological regimes in one single structure, representing an important step forward for quantum simulation in photonic structures.
Poon, Joyce Kai See Yariv Amnon. "Active and passive coupled-resonator optical waveguides /." Diss., Pasadena, Calif. : California Institute of Technology, 2007. http://resolver.caltech.edu/CaltechETD:etd-05242007-105741.
Full textMookherjea, Shayan Yariv Amnon. "Coupled-resonator optical waveguides and multiplexed solitons /." Diss., Pasadena, Calif. : California Institute of Technology, 2003. http://resolver.caltech.edu/CaltechETD:etd-05152003-144457.
Full textWang, TingTing. "Acoustic / elastic wave propagation in coupled-resonator waveguides." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCD061.
Full textWhen a defect is introduced into a phononic crystal, states localized at the defect appear in the band gaps. They decay rapidly far away from the defect. Therefore, it is possible to localize and guide wave propagation by designing defects in the perfect phononic crystal. Coupled-resonator waveguides based on the coupling effect between a sequence of defect cavities have simultaneously strong wave confinement and low group velocity, and can be used to design rather arbitrary circuits. Furthermore, the propagation of elastic waves in a solid matrix can be controlled through changing fluid fillings based on fluid-solid interaction. Thus, they have essential applications in vibration reduction and noise isolation. In this thesis, the acoustic and elastic waves propagating in both periodic and aperiodic coupled-resonator waveguides are investigated. The fluid-solid interaction in fluid/solid phononic crystals is studied. The work is conducted by combining numerical simulations, theoretical model analysis and experimental investigations
Ozturk, Mensur. "Analysis Of Circular Waveguides Coupled By Axially Uniform Slots." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607730/index.pdf.
Full textMoore, Kieron R. "Coupled Boussinesq equations and nonlinear waves in layered waveguides." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/13636.
Full textDoménech, Gómez José David. "Apodized Coupled Resonator Optical Waveguides: Theory, design and characterization." Doctoral thesis, Universitat Politècnica de València, 2013. http://hdl.handle.net/10251/32278.
Full textDoménech Gómez, JD. (2013). Apodized Coupled Resonator Optical Waveguides: Theory, design and characterization [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/32278
TESIS
Luo, Wenyu. "A three-dimensional coupled modes solution for range-dependent waveguides." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/69207.
Full textIncludes bibliographical references (p. 149-151).
Despite the great achievements obtained with fast-field and parabolic equation models, normal mode programs still remain a very efficient, simple and practical tool for describing ocean acoustics in range-independent environments. Numerical implementations of wave-theory solutions for range-dependent acoustic problems can be classified as: normal-mode techniques (adiabatic or coupled modes); parabolic-approximation techniques (narrow- or wide-angle parabolic equations solved by split-step or finite-difference techniques); and finite-element/finite- difference solutions of the full wave equation. The mode techniques provide approximate field solutions if implemented in the adiabatic approximation, while complete wave theory solutions can be obtained by including full mode coupling. Parabolic approximations to the elliptic wave equation have been extensively studied over the past 10 years([15], [23]). The advantage of using a parabolic wave equation is that it can be efficiently solved by noniterative forward marching techniques. However, any form of the parabolic equation is an approximate wave equation derived under the assumptions of: (1) forward propagation only, and (2) that energy is propagating within a limited angular spectrum around the main propagation direction. The last category of models based on finite-difference and finite-element solutions of the full wave equation([22]) is well suited for providing solutions for propagation in general range-dependent environments.
(cont.) The existing codes, however, are extremely computer intensive. My thesis focuses on a two-dimensional two-way coupled modes model, and then expend it to a three-dimensional coupled modes model for two-dimensional, range- dependent waveguides. Numerical examples of two-dimensional and three-dimensional problems are presented, and comparisons with the results from analytical solution, as well as from COUPLE are also considered.
by Wenyu Luo.
S.M.
Books on the topic "Coupled waveguides"
Sangarpaul, Anil Kumar. Nonlinear coupled-states in optical waveguides. Salford: University of Salford, 1995.
Find full textGraglia, Roberto D., Giuseppe Pelosi, and Stefano Selleri, eds. International Workshop on Finite Elements for Microwave Engineering. Florence: Firenze University Press, 2016. http://dx.doi.org/10.36253/978-88-6655-968-9.
Full textElia, A. Microstrip and coplanar waveguide (CPW) directional couplers. Manchester: UMIST, 1996.
Find full textNappert, L. Circular waveguide couplers for the DREV two-stage light-gas gun. Valcartier, Quebec: Defence Research Establishment, 1993.
Find full textHo, Chien-Hsun. Slotline, CPW ring circuits and waveguide ring cavities for coupler and filter applications. Ann Arbor: UMI Dissertation Services, 1994.
Find full textChang, Hosung. Analysis of linear and nonlinear coupled dielectric waveguides. 1993.
Find full textLin, C. W., N. F. Chiu, and C. C. Chang. Modulation design of plasmonics for diagnostic and drug screening. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.18.
Full textJui-chʻeng, Cheng, and United States. National Aeronautics and Space Administration., eds. Analysis of a slot coupled coplanar waveguide fed patch antenna. [Washington, D.C.]: National Aeronautics and Space Administration, 1994.
Find full textBook chapters on the topic "Coupled waveguides"
Neshev, Dragomir N., Andrey A. Sukhorukov, and Yuri S. Kivshar. "Nonlinear Control of Multicolor Beams in Coupled Optical Waveguides." In Springer Series in Optical Sciences, 111–32. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3538-9_4.
Full textGirka, Volodymyr, Igor Girka, and Manfred Thumm. "Coupled Surface Flute Waves Propagating in Current-Carrying Plasma Waveguides." In Surface Flute Waves in Plasmas, 37–64. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02027-3_3.
Full textSamanta, Swagata, Pallab Banerji, and Pranabendu Ganguly. "Design and Development of Polarization-Independent Power Splitter Using Coupled Silicon Waveguides." In Photonic Waveguide Components on Silicon Substrate, 81–96. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1311-4_5.
Full textWeng, Wei-Sung, Yu-Tai Huang, Kun-Yi Lee, Yao-Chang Jeng, Wei-Yu Lee, and Wei-Ching Chuang. "Design of Bended Multimode Interference Demultiplexer with Multi-Sectional Coherent Coupled Bended Waveguides." In Lecture Notes in Electrical Engineering, 129–38. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04573-3_17.
Full textLonghi, Stefano. "Fano Resonances and Bound States in the Continuum in Evanescently-Coupled Optical Waveguides and Resonators." In Springer Series in Optical Sciences, 85–108. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99731-5_4.
Full textPopov, Igor Yu. "Asymptotics of Bound States, Bands and Resonances for Waveguides and Layers Coupled Through Small Windows." In Mathematical and Numerical Aspects of Wave Propagation WAVES 2003, 813–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55856-6_132.
Full textWeik, Martin H. "waveguide coupler." In Computer Science and Communications Dictionary, 1911. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_21016.
Full textWeik, Martin H. "optical waveguide coupler." In Computer Science and Communications Dictionary, 1190. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_13179.
Full textEom, Hyo J. "Waveguides and Couplers." In Wave Scattering Theory, 87–119. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59487-8_4.
Full textSibilia, C., and M. Bertolotti. "Nonlinear Waveguide Couplers." In Springer Proceedings in Physics, 105–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-46580-2_30.
Full textConference papers on the topic "Coupled waveguides"
Usievich, Boris A., Vladimir A. Sychugov, and Alexandre V. Tishchenko. "Radiationally coupled corrugated waveguides." In Integrated Optoelectronics '94, edited by Giancarlo C. Righini and David Yevick. SPIE, 1994. http://dx.doi.org/10.1117/12.185169.
Full textBelibassakis, K. A., and G. A. Athanassoulis. "A Coupled-Mode Method for Acoustic Propagation and Scattering in Inhomogeneous Ocean Waveguides." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23317.
Full textPoon, Andrew. "Dimensional Coupled-Resonator Optical-Waveguides." In Frontiers in Optics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/fio.2016.ftu2d.1.
Full textVaishnavi, G. V. S., Sushrut Modak, S. Dutta Gupta, and Achanta Venu Gopal. "Light propagation in coupled waveguides." In International Conference on Fibre Optics and Photonics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/photonics.2012.mpo.22.
Full textShepard, Scott, and Joshua Copeland. "Detuning in Mode Coupled Waveguides." In Access Networks and In-house Communications. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/anic.2012.jm5a.26.
Full textScheuer, Jacob, Joyce K. S. Poon, George T. Paloczi, and Amnon Yariv. "Coupled resonator optical waveguides (CROW)." In Integrated Optoelectronic Devices 2005, edited by Hans J. Coufal, Zameer U. Hasan, and Alan E. Craig. SPIE, 2005. http://dx.doi.org/10.1117/12.602589.
Full textShamonin, Mikhail, Manfred Lohmeyer, Peter Hertel, and Horst Doetsch. "Radiatively coupled magneto-optic waveguides." In Photonics West '96, edited by S. Iraj Najafi and Mario N. Armenise. SPIE, 1996. http://dx.doi.org/10.1117/12.229964.
Full textOmar, A. S., C. Rieckmann, and A. Jostingmneier. "TEM-Modes in Slot-Coupled Waveguides." In 1997 27th European Microwave Conference. IEEE, 1997. http://dx.doi.org/10.1109/euma.1997.337860.
Full textCooper, Michael L., Greeshma Gupta, William M. J. Green, Solomon Assefa, Fengnian Xia, Yurii A. Vlasov, and Shayan Mookherjea. "235-ring Coupled-Resonator Optical Waveguides." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/cleo.2010.ctuhh3.
Full textLeykam, Daniel, and Anton S. Desyatnikov. "Vortex clusters in coupled nonlinear waveguides." In 2011 IEEE International Workshop "Nonlinear Photonics" (NLP). IEEE, 2011. http://dx.doi.org/10.1109/nlp.2011.6102662.
Full textReports on the topic "Coupled waveguides"
Pannatoni, Rondald F. A Revision of Coupled Mode Theory for Irregular Acoustic Waveguides. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada198466.
Full textZlatanovic, Sanja, Randy Shimabukuro, Bruce Offord, and Bill Jacobs. Silicon-on-Sapphire Waveguides: Mode-converting Couplers and Four-wave Mixing. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada614629.
Full textFeuerstein, R. J., W. Feng, J. C. Powelson, S. Lin, and L. Bintz. Equivalence of Voltage Bias and Geometric Waveguide Design in Directional Couplers. Fort Belvoir, VA: Defense Technical Information Center, January 1996. http://dx.doi.org/10.21236/ada303297.
Full textGreene, G. J., J. R. Wilson, P. L. Colestock, C. M. Fortgang, J. C. Hosea, D. Q. Hwang, and A. Nagy. Measurements of ICRF (ion cyclotron range of frequencies) loading with a ridged waveguide coupler on PLT. Office of Scientific and Technical Information (OSTI), November 1987. http://dx.doi.org/10.2172/5092009.
Full text