To see the other types of publications on this topic, follow the link: Coupled quantum well.

Journal articles on the topic 'Coupled quantum well'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Coupled quantum well.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Cheng Juang and J. H. Chang. "Field-induced coupled quantum-well oscillators." IEEE Journal of Quantum Electronics 28, no. 10 (1992): 2039–43. http://dx.doi.org/10.1109/3.159513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang Hai-Xia and Yin Wen. "A periodic coupled quantum well transport." Acta Physica Sinica 57, no. 5 (2008): 2669. http://dx.doi.org/10.7498/aps.57.2669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goodhue, W. D. "Quantum-well charge-coupled devices for charge-coupled device-addressed multiple-quantum-well spatial light modulators." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 4, no. 3 (May 1986): 769. http://dx.doi.org/10.1116/1.583562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tidrow, M. Z., K. K. Choi, A. J. DeAnni, W. H. Chang, and S. P. Svensson. "Grating coupled multicolor quantum well infrared photodetectors." Applied Physics Letters 67, no. 13 (September 25, 1995): 1800–1802. http://dx.doi.org/10.1063/1.115063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li-jun, Liu, Niu Cheng, Lin Zong-han, and Lin Tsung-han. "Resonant tunneling through coupled double-quantum-well." Acta Physica Sinica (Overseas Edition) 4, no. 6 (June 1995): 434–40. http://dx.doi.org/10.1088/1004-423x/4/6/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Akhtar, A. I., and J. M. Xu. "Differential gain in coupled quantum well lasers." Journal of Applied Physics 78, no. 5 (September 1995): 2962–69. http://dx.doi.org/10.1063/1.360043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, R., X. G. Guo, C. Y. Song, M. Buchanan, Z. R. Wasilewski, J. C. Cao, and H. C. Liu. "Metal-Grating-Coupled Terahertz Quantum-Well Photodetectors." IEEE Electron Device Letters 32, no. 5 (May 2011): 659–61. http://dx.doi.org/10.1109/led.2011.2112632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zrenner, A., P. Leeb, J. Schäfer, G. Böhm, G. Weimann, J. M. Worlock, L. T. Florez, and J. P. Harbison. "Indirect excitons in coupled quantum well structures." Surface Science 263, no. 1-3 (February 1992): 496–501. http://dx.doi.org/10.1016/0039-6028(92)90396-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Yi, Jianfeng Gao, Senbiao Qin, Ming Cheng, Kang Wang, Li Kai, and Junqiang Sun. "Asymmetric Ge/SiGe coupled quantum well modulators." Nanophotonics 10, no. 6 (March 19, 2021): 1765–73. http://dx.doi.org/10.1515/nanoph-2021-0007.

Full text
Abstract:
Abstract We design and demonstrate an asymmetric Ge/SiGe coupled quantum well (CQW) waveguide modulator for both intensity and phase modulation with a low bias voltage in silicon photonic integration. The asymmetric CQWs consisting of two quantum wells with different widths are employed as the active region to enhance the electro-optical characteristics of the device by controlling the coupling of the wave functions. The fabricated device can realize 5 dB extinction ratio at 1446 nm and 1.4 × 10−3 electrorefractive index variation at 1530 nm with the associated modulation efficiency V π L π of 0.055 V cm under 1 V reverse bias. The 3 dB bandwidth for high frequency response is 27 GHz under 1 V bias and the energy consumption per bit is less than 100 fJ/bit. The proposed device offers a pathway towards a low voltage, low energy consumption, high speed and compact modulator for silicon photonic integrated devices, as well as opens possibilities for achieving advanced modulation format in a more compact and simple frame.
APA, Harvard, Vancouver, ISO, and other styles
10

Ohtani, Keita, Kazuue Fujita, and Hideo Ohno. "InAs Quantum Cascade Lasers Based on Coupled Quantum Well Structures." Japanese Journal of Applied Physics 44, no. 4B (April 21, 2005): 2572–74. http://dx.doi.org/10.1143/jjap.44.2572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Huang, Lirong, Yi Yu, Peng Tian, and Dexiu Huang. "Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier." Semiconductor Science and Technology 24, no. 1 (December 5, 2008): 015009. http://dx.doi.org/10.1088/0268-1242/24/1/015009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Grupen, Matt, and Karl Hess. "The Coupled Optoelectronic Problems of Quantum Well Laser Operation." VLSI Design 6, no. 1-4 (January 1, 1998): 355–62. http://dx.doi.org/10.1155/1998/53869.

Full text
Abstract:
The treatment of several aspects of quantum well laser simulation are discussed in terms of the Minilase-II simulator. The discussion involves the optical problem and several components of the electronic problem, including bulk transport, carrier scattering into and within the quantum well, and the nonequilibrium LO phonon temperature within the well. Descriptions of these problems are followed by simulation results which show the ways in which they each affect the laser characteristics.
APA, Harvard, Vancouver, ISO, and other styles
13

Stroucken, T., A. Knorr, P. Thomas, and S. W. Koch. "Coherent dynamics of radiatively coupled quantum-well excitons." Physical Review B 53, no. 4 (January 15, 1996): 2026–33. http://dx.doi.org/10.1103/physrevb.53.2026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Hui-bing, Mao, Shen Xue-chu, and Xu Zhong-ying. "Recombination dynamics in asymmetric coupled quantum well structures." Acta Physica Sinica (Overseas Edition) 6, no. 3 (March 1997): 223–30. http://dx.doi.org/10.1088/1004-423x/6/3/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Islam, M. N., R. L. Hillman, D. A. B. Miller, D. S. Chemla, A. C. Gossard, and J. H. English. "Electroabsorption in GaAs/AlGaAs coupled quantum well waveguides." Applied Physics Letters 50, no. 16 (April 20, 1987): 1098–100. http://dx.doi.org/10.1063/1.97930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Butov, L. V. "Cold exciton gases in coupled quantum well structures." Journal of Physics: Condensed Matter 19, no. 29 (June 11, 2007): 295202. http://dx.doi.org/10.1088/0953-8984/19/29/295202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Paton, Miriam, and H. C. Liu. "A novel asymmetrically coupled quantum well infrared modulator." Superlattices and Microstructures 4, no. 6 (January 1988): 737–39. http://dx.doi.org/10.1016/0749-6036(88)90205-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Xinghua, Wang, and Reino Laiho. "Photoluminescence investigation of an coupled double quantum well." Superlattices and Microstructures 5, no. 1 (January 1989): 79–81. http://dx.doi.org/10.1016/0749-6036(89)90071-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Mazur, Yu I., B. L. Liang, Zh M. Wang, D. Guzun, G. J. Salamo, Z. Ya Zhuchenko, and G. G. Tarasov. "Excitonic transfer in coupled InGaAs∕GaAs quantum well to InAs quantum dots." Applied Physics Letters 89, no. 15 (October 9, 2006): 151914. http://dx.doi.org/10.1063/1.2360914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Luo, Marie S. C., Shun Lien Chuang, Paul C. M. Planken, Igal Brener, and Martin C. Nuss. "Coherent double-pulse control of quantum beats in a coupled quantum well." Physical Review B 48, no. 15 (October 15, 1993): 11043–50. http://dx.doi.org/10.1103/physrevb.48.11043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Walter, G., T. Chung, and N. Holonyak. "Coupled-stripe quantum-well-assisted AlGaAs–GaAs–InGaAs–InAs quantum-dot laser." Applied Physics Letters 80, no. 17 (April 29, 2002): 3045–47. http://dx.doi.org/10.1063/1.1473686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Child, R. A., R. J. Nicholas, and N. J. Mason. "Magneto-photoluminescence studies of a novel quantum dot–quantum well coupled system." physica status solidi (b) 238, no. 2 (July 2003): 281–84. http://dx.doi.org/10.1002/pssb.200303036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Pieczarka, M., M. Syperek, D. Biegańska, C. Gilfert, E. M. Pavelescu, J. P. Reithmaier, J. Misiewicz, and G. Sęk. "Lateral carrier diffusion in InGaAs/GaAs coupled quantum dot-quantum well system." Applied Physics Letters 110, no. 22 (May 29, 2017): 221104. http://dx.doi.org/10.1063/1.4984747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Andrzejewski, J. "Electronic Structure Calculations of InP-Based Coupled Quantum Dot-Quantum Well Structures." Acta Physica Polonica A 129, no. 1a (January 2016): A—97—A—99. http://dx.doi.org/10.12693/aphyspola.129.a-97.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Qiu, Ying Ning, Wei Sheng Lu, and Stephane Calvez. "Quantum Confinement Stark Effect of Different Gainnas Quantum Well Structures." Advanced Materials Research 773 (September 2013): 622–27. http://dx.doi.org/10.4028/www.scientific.net/amr.773.622.

Full text
Abstract:
The quantum confinement Stark effect of three types of GaInNAs quantum wells, namely single square quantum well, stepped quantum wells and coupled quantum wells, is investigated using the band anti-crossing model. The comparison between experimental observation and modeling result validate the modeling process. The effects of the external electric field and localized N states on the quantized energy shifts of these three structures are compared and analyzed. The external electric field applied to the QW not only changes the potential profile but also modulates the localized N states, which causes band gap energy shifts and increase of electron effective mass.
APA, Harvard, Vancouver, ISO, and other styles
26

Raheli, A. "Giant Kerr Nonlinearity for Three-Coupled-Quantum-Well Nanostructures." Physics of Wave Phenomena 26, no. 3 (July 2018): 182–90. http://dx.doi.org/10.3103/s1541308x18030020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Mialitsin, Aleksej, Stefan Schmult, Ilia A. Solov’yov, Brian Fluegel, and Angelo Mascarenhas. "Eigenstate localization in an asymmetric coupled quantum well pair." Superlattices and Microstructures 51, no. 6 (June 2012): 834–41. http://dx.doi.org/10.1016/j.spmi.2012.03.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Das, Prodip Kumar, Masahiro Uemukai, and Toshiaki Suhara. "InGaAs/AlGaAs Quantum Well Laterally-Coupled Distributed Feedback Laser." Japanese Journal of Applied Physics 43, no. 5A (May 11, 2004): 2549–50. http://dx.doi.org/10.1143/jjap.43.2549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Andersson, J. Y., and L. Lundqvist. "Grating‐coupled quantum‐well infrared detectors: Theory and performance." Journal of Applied Physics 71, no. 7 (April 1992): 3600–3610. http://dx.doi.org/10.1063/1.350916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Martin, P. M., R. K. Hayden, P. B. Wilkinson, T. M. Fromhold, C. R. Tench, L. Eaves, F. W. Sheard, M. Henini, N. Miura, and G. Hill. "Hybrid stable-chaotic states in coupled quantum well stadia." Physica E: Low-dimensional Systems and Nanostructures 2, no. 1-4 (July 1998): 287–90. http://dx.doi.org/10.1016/s1386-9477(98)00060-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Tokuda, Yasunori, Kyozo Kanamoto, and Noriaki Tsukada. "Novel spectral response of a coupled quantum well photodiode." Applied Physics Letters 56, no. 22 (May 28, 1990): 2166–68. http://dx.doi.org/10.1063/1.103191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kunkee, Elizabeth T., Chun-Ching Shih, QiSheng Chen, Chia-Jean Wang, and Larry J. Lembo. "Electrorefractive Coupled Quantum Well Modulators: Model and Experimental Results." IEEE Journal of Quantum Electronics 43, no. 8 (August 2007): 641–50. http://dx.doi.org/10.1109/jqe.2007.901293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Choi, K. K. "Electromagnetic modeling of edge coupled quantum well infrared photodetectors." Journal of Applied Physics 111, no. 12 (June 15, 2012): 124507. http://dx.doi.org/10.1063/1.4729810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hsu, Wei-Cheng, Hong-Shi Ling, Shiang-Yu Wang, and Chien-Ping Lee. "Characteristics of surface plasmon coupled quantum well infrared photodetectors." Journal of Applied Physics 121, no. 24 (June 28, 2017): 244503. http://dx.doi.org/10.1063/1.4985589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Khurgin, J. "Second‐order susceptibility of asymmetric coupled quantum well structures." Applied Physics Letters 51, no. 25 (December 21, 1987): 2100–2102. http://dx.doi.org/10.1063/1.98960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Moore, Karen J., Geoffrey Duggan, Karl Woodbridge, and Christine Roberts. "Exciton localization inInxGa1−xAs-GaAs coupled quantum-well structures." Physical Review B 41, no. 2 (January 15, 1990): 1095–99. http://dx.doi.org/10.1103/physrevb.41.1095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Luisier, Mathieu, Andreas Schenk, Wolfgang Fichtner, and Gerhard Klimeck. "Transport calculationof Semiconductor Nanowires Coupled to Quantum Well Reservoirs." Journal of Computational Electronics 6, no. 1-3 (December 9, 2006): 199–202. http://dx.doi.org/10.1007/s10825-006-0108-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ohno, Yuzo, and Hiroyuki Sakaki. "Suppression of resonant tunneling in a coupled quantum well." Surface Science 361-362 (July 1996): 142–45. http://dx.doi.org/10.1016/0039-6028(96)00354-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Unterrainer, K., J. N. Heyman, K. Craig, B. Galdrikian, M. S. Sherwin, H. Drexler, K. Campman, P. F. Hopkins, and A. C. Gossard. "Nonlinear resonant optical rectification in a coupled quantum well." Surface Science 361-362 (July 1996): 401–5. http://dx.doi.org/10.1016/0039-6028(96)00431-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kucharczyk, M., and M. S. Wartak. "Well-coupling and band-mixing effects on differential gain of coupled quantum wells." Microwave and Optical Technology Letters 21, no. 4 (May 20, 1999): 282–86. http://dx.doi.org/10.1002/(sici)1098-2760(19990520)21:4<282::aid-mop15>3.0.co;2-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zhang, X. B., J. H. Ryou, R. D. Dupuis, G. Walter, and N. Holonyak. "Temperature-dependent luminescence of InP quantum dots coupled with an InGaP quantum well and of InP quantum dots in a quantum well." Applied Physics Letters 87, no. 20 (November 14, 2005): 201110. http://dx.doi.org/10.1063/1.2132529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Moon, Junhee, Sheng S. Li, and Jung Hee Lee. "A high performance quantum well infrared photodetector using superlattice-coupled quantum wells for long wavelength infrared detection." Infrared Physics & Technology 44, no. 4 (August 2003): 229–34. http://dx.doi.org/10.1016/s1350-4495(02)00226-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Child, R. A., R. J. Nicholas, N. J. Mason, and E. Alphandéry. "Tunable mid-IR emission using a novel quantum dot–quantum well coupled system." Physica E: Low-dimensional Systems and Nanostructures 13, no. 2-4 (March 2002): 241–45. http://dx.doi.org/10.1016/s1386-9477(01)00529-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zrenner, A., L. V. Butov, M. Hagn, G. Abstreiter, G. Böhm, and G. Weimann. "Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures." Physical Review Letters 72, no. 21 (May 23, 1994): 3382–85. http://dx.doi.org/10.1103/physrevlett.72.3382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ito, Tetsu, Wataru Shichi, Masao Ichida, Hideki Gotoh, Hidehiko Kamada, and Hiroaki Ando. "Analysis of Electron Spin-Spin Interaction in Coupled Quantum Well." Advanced Materials Research 222 (April 2011): 70–73. http://dx.doi.org/10.4028/www.scientific.net/amr.222.70.

Full text
Abstract:
Electron spin-spin interaction in asymmetric coupled GaAs/AlGaAs quantum well (QW) is investigated through electron spin precession measurements. In the experiment, the precession (Larmor) frequency of electrons localized in thin and thick QWs are measured by means of polarization- and time-resolved photoluminescence measurements under magnetic field. The Larmor frequency observed in thin well was transformed to that of thick well with increasing excitation power density. This dependence can be reproduced by theoretical calculations, which take into account electron spin-spin interactions in GaAs wells.
APA, Harvard, Vancouver, ISO, and other styles
46

Cruz, H. "Dynamics of indirect excitons in a coupled quantum-well pair." Journal of Applied Physics 113, no. 15 (April 21, 2013): 153706. http://dx.doi.org/10.1063/1.4801808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ai-Xi, Chen, Xu Yan-Qiu, Deng Li, and Zhou Su-Yun. "Ultraslow optical solitons in tunnel-coupled double semiconductor quantum well." Chinese Physics B 18, no. 4 (March 17, 2009): 1528–33. http://dx.doi.org/10.1088/1674-1056/18/4/039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ristic, Sasa, and Nicolas A. F. Jaeger. "Improved Push–Pull Polarization Modulation Using Coupled Quantum-Well Structures." IEEE Photonics Technology Letters 19, no. 10 (May 2007): 750–52. http://dx.doi.org/10.1109/lpt.2007.895433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chen, Xin. "Intersubband absorption in an electromagnetically coupled double quantum well system." Physica Scripta 56, no. 5 (November 1, 1997): 487–89. http://dx.doi.org/10.1088/0031-8949/56/5/016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Tanguy, C., B. Deveaud, A. Regreny, D. Hulin, and A. Antonetti. "Independent and ambipolar tunneling in asymmetric‐coupled quantum well structures." Applied Physics Letters 58, no. 12 (March 25, 1991): 1283–85. http://dx.doi.org/10.1063/1.104337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography