Journal articles on the topic 'Coupled evolution equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Coupled evolution equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Maruszewski, Bogdan. "Coupled evolution equations of deformable semiconductors." International Journal of Engineering Science 25, no. 2 (1987): 145–53. http://dx.doi.org/10.1016/0020-7225(87)90002-4.
Full textYusufoğlu, Elcin, and Ahmet Bekir. "Exact solutions of coupled nonlinear evolution equations." Chaos, Solitons & Fractals 37, no. 3 (2008): 842–48. http://dx.doi.org/10.1016/j.chaos.2006.09.074.
Full textNakagiri, Shin-ichi, and Jun-hong Ha. "COUPLED SINE-GORDON EQUATIONS AS NONLINEAR SECOND ORDER EVOLUTION EQUATIONS." Taiwanese Journal of Mathematics 5, no. 2 (2001): 297–315. http://dx.doi.org/10.11650/twjm/1500407338.
Full textZhao, Dan, and Zhaqilao. "Darboux transformation approach for two new coupled nonlinear evolution equations." Modern Physics Letters B 34, no. 01 (2019): 2050004. http://dx.doi.org/10.1142/s0217984920500049.
Full textKhan, K., and M. A. Akbar. "Solitary Wave Solutions of Some Coupled Nonlinear Evolution Equations." Journal of Scientific Research 6, no. 2 (2014): 273–84. http://dx.doi.org/10.3329/jsr.v6i2.16671.
Full textMalfliet, W. "Travelling-wave solutions of coupled nonlinear evolution equations." Mathematics and Computers in Simulation 62, no. 1-2 (2003): 101–8. http://dx.doi.org/10.1016/s0378-4754(02)00182-9.
Full textAlabau, F., P. Cannarsa, and V. Komornik. "Indirect internal stabilization of weakly coupled evolution equations." Journal of Evolution Equations 2, no. 2 (2002): 127–50. http://dx.doi.org/10.1007/s00028-002-8083-0.
Full textRYDER, E., and D. F. PARKER. "Coupled evolution equations for axially inhomogeneous optical fibres." IMA Journal of Applied Mathematics 49, no. 3 (1992): 293–309. http://dx.doi.org/10.1093/imamat/49.3.293.
Full textKhan, Kamruzzaman, and M. Ali Akbar. "Traveling Wave Solutions of Some Coupled Nonlinear Evolution Equations." ISRN Mathematical Physics 2013 (May 20, 2013): 1–8. http://dx.doi.org/10.1155/2013/685736.
Full textHassaballa, Abaker A., Fathea M. O. Birkea, Ahmed M. A. Adam, et al. "Multiple and Singular Soliton Solutions for Space–Time Fractional Coupled Modified Korteweg–De Vries Equations." International Journal of Analysis and Applications 22 (April 22, 2024): 68. http://dx.doi.org/10.28924/2291-8639-22-2024-68.
Full textWan, Qian, and Ti-Jun Xiao. "Exponential Stability of Two Coupled Second-Order Evolution Equations." Advances in Difference Equations 2011 (2011): 1–14. http://dx.doi.org/10.1155/2011/879649.
Full textArafa, A. A. M., and S. Z. Rida. "Numerical solutions for some generalized coupled nonlinear evolution equations." Mathematical and Computer Modelling 56, no. 11-12 (2012): 268–77. http://dx.doi.org/10.1016/j.mcm.2011.12.046.
Full textSeadawy, A. R., and K. El-Rashidy. "Traveling wave solutions for some coupled nonlinear evolution equations." Mathematical and Computer Modelling 57, no. 5-6 (2013): 1371–79. http://dx.doi.org/10.1016/j.mcm.2012.11.026.
Full textHao, Jianghao, Zhaobin Kuang, Zhuangyi Liu, and Jiongmin Yong. "Stability analysis for two coupled second order evolution equations." Journal of Differential Equations 432 (July 2025): 113246. https://doi.org/10.1016/j.jde.2025.113246.
Full textLiu, Wenyuan, Wei Xia, and Shengping Shen. "Fully Coupling Chemomechanical Yield Theory Based on Evolution Equations." International Journal of Applied Mechanics 08, no. 04 (2016): 1650058. http://dx.doi.org/10.1142/s1758825116500587.
Full textElwakil, Elsayed Abd Elaty, and Mohamed Aly Abdou. "New Applications of the Homotopy Analysis Method." Zeitschrift für Naturforschung A 63, no. 7-8 (2008): 385–92. http://dx.doi.org/10.1515/zna-2008-7-801.
Full textHan, Ding, Bing Gen Zhan, and Xiao Ming Huang. "Fatigue Analysis of the Asphalt Mixture Beam Using Damage Evolution Equations." Advanced Materials Research 163-167 (December 2010): 3332–35. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.3332.
Full textJunker, Philipp, and Daniel Balzani. "An extended Hamilton principle as unifying theory for coupled problems and dissipative microstructure evolution." Continuum Mechanics and Thermodynamics 33, no. 4 (2021): 1931–56. http://dx.doi.org/10.1007/s00161-021-01017-z.
Full textMA, WEN-XIU. "AKNS Type Reduced Integrable Hierarchies with Hamiltonian Formulations." Romanian Journal of Physics 68, no. 9-10 (2023): 116. http://dx.doi.org/10.59277/romjphys.2023.68.116.
Full textRoy, P. K. "An integrable system governed by coupled non-linear evolution equations." Il Nuovo Cimento A 109, no. 11 (1996): 1613–15. http://dx.doi.org/10.1007/bf02778246.
Full textAbdelkawy, M. A., A. H. Bhrawy, E. Zerrad, and A. Biswas. "Application of Tanh Method to Complex Coupled Nonlinear Evolution Equations." Acta Physica Polonica A 129, no. 3 (2016): 278–83. http://dx.doi.org/10.12693/aphyspola.129.278.
Full textKovriguine, Dmitrij, та Alexandr Potapov. "Nonlinear wave dynamics of one-dimensional elastic systems. Part I. Method оf coupled normal waves". Izvestiya VUZ. Applied Nonlinear Dynamics 4, № 2 (1996): 72–80. https://doi.org/10.18500/0869-6632-1996-4-2-72-80.
Full textAlzaidy, J. F. "Extended Mapping Method and Its Applications to Nonlinear Evolution Equations." Journal of Applied Mathematics 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/597983.
Full textDebsarma, S., S. Senapati, and K. P. Das. "Nonlinear Evolution Equations for Broader Bandwidth Wave Packets in Crossing Sea States." International Journal of Oceanography 2014 (June 9, 2014): 1–9. http://dx.doi.org/10.1155/2014/597895.
Full textSchneider, Guido. "Justification of mean-field coupled modulation equations." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 127, no. 3 (1997): 639–50. http://dx.doi.org/10.1017/s0308210500029942.
Full textHua, Yuan, Bao Hua Lv, and Tai Quan Zhou. "Parametric Variational Principle for Solving Coupled Damage Problem." Key Engineering Materials 348-349 (September 2007): 813–16. http://dx.doi.org/10.4028/www.scientific.net/kem.348-349.813.
Full textEl-Aqqad, Brahim. "The equations coupled by Von Karman system with thermoelasticity." Gulf Journal of Mathematics 17, no. 2 (2024): 190–207. http://dx.doi.org/10.56947/gjom.v17i2.2171.
Full textCarrington, M. E., R. Kobes, G. Kunstatter, D. Pickering, and E. Vaz. "Equilibration in an interacting field theory." Canadian Journal of Physics 80, no. 9 (2002): 987–93. http://dx.doi.org/10.1139/p02-065.
Full textXu, Siqi, Xianguo Geng, and Bo Xue. "An extension of the coupled derivative nonlinear Schrödinger hierarchy." Modern Physics Letters B 32, no. 02 (2018): 1850016. http://dx.doi.org/10.1142/s0217984918500161.
Full textKHANI, F., M. T. DARVISHI, A. FARMANY, and L. KAVITHA. "NEW EXACT SOLUTIONS OF COUPLED (2+1)-DIMENSIONAL NONLINEAR SYSTEMS OF SCHRÖDINGER EQUATIONS." ANZIAM Journal 52, no. 1 (2010): 110–21. http://dx.doi.org/10.1017/s1446181111000563.
Full textErjaee, G. H., and M. Alnasr. "Phase Synchronization in Coupled Sprott Chaotic Systems Presented by Fractional Differential Equations." Discrete Dynamics in Nature and Society 2009 (2009): 1–10. http://dx.doi.org/10.1155/2009/753746.
Full textGuesmia, Aissa. "Asymptotic behavior for coupled abstract evolution equations with one infinite memory." Applicable Analysis 94, no. 1 (2014): 184–217. http://dx.doi.org/10.1080/00036811.2014.890708.
Full textTsang, S. C., and K. W. Chow. "The evolution of periodic waves of the coupled nonlinear Schrödinger equations." Mathematics and Computers in Simulation 66, no. 6 (2004): 551–64. http://dx.doi.org/10.1016/j.matcom.2004.04.002.
Full textda Silva Alves, Margareth, and Octavio Paulo Vera Villagrán. "Smoothing properties for a coupled system of nonlinear evolution dispersive equations." Indagationes Mathematicae 20, no. 2 (2009): 285–327. http://dx.doi.org/10.1016/s0019-3577(09)80015-3.
Full textXiao, Ti-Jun, and Jin Liang. "Coupled second order semilinear evolution equations indirectly damped via memory effects." Journal of Differential Equations 254, no. 5 (2013): 2128–57. http://dx.doi.org/10.1016/j.jde.2012.11.019.
Full textGhose, Chandana, and A. Roy Chowdhury. "Periodic inverse problem for a new hierarchy of coupled evolution equations." International Journal of Theoretical Physics 30, no. 7 (1991): 1033–39. http://dx.doi.org/10.1007/bf00673994.
Full textBekir, Ahmet. "Applications of the extended tanh method for coupled nonlinear evolution equations." Communications in Nonlinear Science and Numerical Simulation 13, no. 9 (2008): 1748–57. http://dx.doi.org/10.1016/j.cnsns.2007.05.001.
Full textHereman, Willy. "Exact solitary wave solutions of coupled nonlinear evolution equations using MACSYMA." Computer Physics Communications 65, no. 1-3 (1991): 143–50. http://dx.doi.org/10.1016/0010-4655(91)90166-i.
Full textYaşar, Emrullah, and Sait San. "A Procedure to Construct Conservation Laws of Nonlinear Evolution Equations." Zeitschrift für Naturforschung A 71, no. 5 (2016): 475–80. http://dx.doi.org/10.1515/zna-2016-0057.
Full textShah, Ijaz, Ghazala Anwar, H. A. Shah, T. Abdullah, and M. Anis Alam. "Chaotic Evolution of a Parametric Instability in a Piezoelectric Semiconductor Plasma." International Journal of Bifurcation and Chaos 07, no. 05 (1997): 1103–13. http://dx.doi.org/10.1142/s021812749700090x.
Full textGao, Yi-Tian, and Bo Tian. "Notiz: A Symbolic Computation-Based Method and Two Nonlinear Evolution Equations for Water Waves." Zeitschrift für Naturforschung A 52, no. 3 (1997): 295–96. http://dx.doi.org/10.1515/zna-1997-0311.
Full textLi, Bang Qing, and Yu Lan Ma. "Exact Solutions for Coupled mKdV Equations by a New Symbolic Computation Method." Applied Mechanics and Materials 20-23 (January 2010): 184–89. http://dx.doi.org/10.4028/www.scientific.net/amm.20-23.184.
Full textFASANO, ANTONIO, DIETMAR HÖMBERG, and LUCIA PANIZZI. "A MATHEMATICAL MODEL FOR CASE HARDENING OF STEEL." Mathematical Models and Methods in Applied Sciences 19, no. 11 (2009): 2101–26. http://dx.doi.org/10.1142/s0218202509004054.
Full textYan, Zhenya. "Abundant New Exact Solutions of the Coupled Potential KdV Equation and the Modified KdV-Type Equation." Zeitschrift für Naturforschung A 56, no. 12 (2001): 809–15. http://dx.doi.org/10.1515/zna-2001-1203.
Full textSekhar, Ashok, Alex D. Bain, Jessica A. O. Rumfeldt, Elizabeth M. Meiering, and Lewis E. Kay. "Evolution of magnetization due to asymmetric dimerization: theoretical considerations and application to aberrant oligomers formed by apoSOD12SH." Physical Chemistry Chemical Physics 18, no. 8 (2016): 5720–28. http://dx.doi.org/10.1039/c5cp03044g.
Full textKUZEMSKY, A. L. "GENERALIZED KINETIC AND EVOLUTION EQUATIONS IN THE APPROACH OF THE NONEQUILIBRIUM STATISTICAL OPERATOR." International Journal of Modern Physics B 19, no. 06 (2005): 1029–59. http://dx.doi.org/10.1142/s0217979205029419.
Full textMohammed Djaouti, Abdelhamid. "Weakly Coupled System of Semi-Linear Fractional θ-Evolution Equations with Special Cauchy Conditions". Symmetry 15, № 7 (2023): 1341. http://dx.doi.org/10.3390/sym15071341.
Full textLandim, Ricardo C. G. "Coupled tachyonic dark energy: A dynamical analysis." International Journal of Modern Physics D 24, no. 11 (2015): 1550085. http://dx.doi.org/10.1142/s0218271815500856.
Full textWEBB, G. M., M. BRIO, and G. P. ZANK. "Lagrangian and Hamiltonian aspects of wave mixing in non-uniform media: waves on strings and waves in gas dynamics." Journal of Plasma Physics 60, no. 2 (1998): 341–82. http://dx.doi.org/10.1017/s002237789800693x.
Full textBorisov, V. E., A. V. Ivanov, B. V. Kritsky, and E. B. Savenkov. "Numerical Algorithms for Simulation of a Fluid-Filed Fracture Evolution in a Poroelastic Medium." PNRPU Mechanics Bulletin, no. 2 (December 15, 2021): 24–35. http://dx.doi.org/10.15593/perm.mech/2021.2.03.
Full text