Contents
Academic literature on the topic 'Couplage des équations de Maxwell et de Boltzmann'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Couplage des équations de Maxwell et de Boltzmann.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Couplage des équations de Maxwell et de Boltzmann"
Baranger, Céline. "Modélisation, étude mathématique et simulation des collisions." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2004. http://tel.archives-ouvertes.fr/tel-00008826.
Full textLe premier résultat que nous présentons est consacré à l'étude mathématique d'un couplage entre une équation cinétique de type Vlasov et les équations d'Euler isentropiques. Ces équations modélisent un spray fin. Nous démontrons l'existence en temps petit d'une solution régulière pour le couplage Vlasov-Euler isentropique.
Ensuite, nous présentons les équations précises relatives à la modélisation des collisions, coalescences et fragmentations dans un spray.
Nous décrivons par la suite la simulation numérique du couplage fluide-cinétique dans un code industriel (Commissariat à l'Énergie Atomique), en particulier l'ajout des phénomènes de collisions.
Un deuxième modèle de fragmentation est également présenté. Ce modèle est plus pertinent dans les cas où les particules de la phase dispersée ont un grand nombre de Weber.
Enfin, nous présentons un résultat concernant une estimation explicite de trou spectral pour l'opérateur de Boltzmann avec potentiels durs linéarisé, et pour l'opérateur de Landau avec potentiels durs linéarisé.
Papon, Laurence. "Approximation paraxiale des équations de Vlasov-Maxwell et applications." Paris 6, 1993. http://www.theses.fr/1993PA066619.
Full textSirbu, Marina. "Couplage des équations de Maxwell avec l'équation de Boltzmann en 3D : appliqué à la modélisation d'un photocommutateur THz." Paris 11, 2005. http://www.theses.fr/2005PA112255.
Full textThis PhD thesis presents the coupling between the Boltzmann transport equations and the electromagnetic field equations in a photoconductive switch generating THz signals. First, the transport equations are solved in the drift diffusion approximation. Then, a more complex resolution is made with a Monte Carlo based model. The photoconductive switch is located is coplanar wave guide whose dimensions are comparables with the existents structures. The numerical constraints come from the time dependant resolution, the necessarily space mesh, the simulation domain dimensions, boundary conditions and non linearity introduced by the time and space coefficients variation. The 3D equation system is solved with the variable space step FDTD (Finite Difference Time Domain) method, which allows a sufficiently refined mesh inside the switch. We have studied the photoconductive switch response when a femto second optic excitation is applied. We have shown the electromagnetic field implication in the device response origin. We also made a parametric analysis identifying the main parameters controlling the electromagnetic THz pulse. There is a good agreement between the modelling results and the experimental data. The Monte Carlo method allows taking into account the inertial effects between the electromagnetic field variation and the carrier response. This method is still in developing phase, but we have obtained good preliminary results
Ast, Isabelle d'. "Calcul parallèle en mécanique des fluides et problèmes spécifiques au couplage magnétohydrodynamique." Toulouse, INPT, 1995. http://www.theses.fr/1995INPT041H.
Full textBarthelmé, Régine. "Le problème de conservation de la charge dans le couplage des équations de Vlasov et de Maxwell." Université Louis Pasteur (Strasbourg) (1971-2008), 2005. https://publication-theses.unistra.fr/public/theses_doctorat/2005/BARTHELME_Regine_2005.pdf.
Full textGatard, Ludovic. "Méthodes d'équations intégrales de frontière d'ordre élevé pour les équations de Maxwell : couplage de la méthode de discrétisation microlocale et de la méthode multipôle rapide FMM." Bordeaux 1, 2007. http://www.theses.fr/2007BOR13416.
Full textHamiaz, Adnane. "Étude d'une méthode volumes finis pour la résolution d'un modèle non linéaire d'un couplage Maxwell/plasma dans le domaine temporel." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1711/.
Full textThis thesis presents the study of an efficient numerical method to solve the Maxwell equations coupled with a fluid plasma model. The document is split into five chapters where we introduce the formulation of the physical model, a mathematical study to demonstrate the existence and uniqueness of a solution for the problem, numerical approximations of the equations, simulations and validations on 3D and 2D examples and a prospective work on a finite volume method with adaptative mesh for the 1D case. The accent is continuously put on the choice of the most efficient numerical approximation to solve the coupled problem. In this work, we exhibit the drawbacks of the finite difference method usually employed in this context. To overcome these drawbacks, we propose a method based upon a finite volume scheme which allows the capability to use local refinements. Then, to increase the gain in time CPU and memory storage, we introduce a local time-stepping scheme
Balin, Nolwenn. "Etude de méthodes de couplage pour la résolution des équations de Maxwell : application au calcul de la signature radar d’aéronefs par hybridation de méthodes exactes et asymptotiques." Toulouse, INSA, 2005. http://www.theses.fr/2005ISAT0012.
Full textThis thesis is concerned with the numerical simulation of the scattering of an electromagnetic wave by air-breathing aircraft, represented by a deep and narrow cavity within a large perfectly conducting structure. Due to the size and the complexity of this object, the classical methods (full-wave and asymptotic) cannot be successfully applied. The aim of this study is to develop a new hybrid method to solve this kind of problem. The methods have first been developed and validated in the 2D case and then extended to the 3D case. At first, for the treatment of the cavity, a new substructuring domain decomposition method based on a boundary element formulation and a frontal forward substitution was developed. After this step, the remaining equations are set on the aperture of the cavity and the rest of the boundary of the structure. Next, to reduce the size of the resulting external problem, we use a Schwarz method associated with an overlapping boundary decomposition well-suited for the boundary integral equations. Finally, for the part of the boundary that does not cover the aperture of the cavity, we introduce an asymptotic method, based on the radiation of equivalent currents by a Generalized Ray Expansion process. The use of the previous algorithm ensures a strong coupling between the subdomains. We have mathematically established the stability and solvability of the cavity factorization method. We have also numerically demonstrated the efficiency of these three elementary steps and of the whole hybridization process
Layouni, Siham. "Etude d'une méthode de volumes finis pour la résolution des équations de Maxwell en deux dimensions d'espace sur des maillages quelconques et couplage avec l'équation de Vlasov." Toulouse 3, 2008. http://thesesups.ups-tlse.fr/562/.
Full textWe develop and study a finite volume method to solve the bidimensional nonstationary Maxwell equations on arbitrary (non-conforming, non-convex, flat. . . ) meshes. We start by the construction of the scheme, which is based on the use of the DDFV discrete operators and a pertinent choice to discretize initial and boundary conditions. Then, we prove that the scheme locally preserves the divergence condition, that a discrete electromagnetic energy is conserved or decreasing (depending on boundary conditions) and that it is positive under a CFL condition. We also show the stability of the scheme under a CFL condition and its convergence for regular and non-regular fields. Then, these results are numerically validated with some tests using different types of meshes. We verify, also, that the use of non-conforming meshes doesn't amplify parasitic reflections. Finally, we coupled the scheme with a PIC method to solve the Maxwell-Vlasov system. We calculate the current density using a generalization of Buneman's method to arbitrary meshes and we prove that discrete charge equations, and thus Gauss' law, are conserved. The coupled problem is numerically validated and the simulation of Landau damping confirms the electric energy decrease with a precision depending on the number of particles per cell
Godinho, Pereira David. "Contribution à l'étude des équations de Boltzmann, Kac et Keller-Segel à l'aide d'équations différentielles stochastiques non linéaires." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00975091.
Full text