Journal articles on the topic 'Counterfactual explanations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Counterfactual explanations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sia, Suzanna, Anton Belyy, Amjad Almahairi, Madian Khabsa, Luke Zettlemoyer, and Lambert Mathias. "Logical Satisfiability of Counterfactuals for Faithful Explanations in NLI." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 8 (June 26, 2023): 9837–45. http://dx.doi.org/10.1609/aaai.v37i8.26174.
Full textAsher, Nicholas, Lucas De Lara, Soumya Paul, and Chris Russell. "Counterfactual Models for Fair and Adequate Explanations." Machine Learning and Knowledge Extraction 4, no. 2 (March 31, 2022): 316–49. http://dx.doi.org/10.3390/make4020014.
Full textVanNostrand, Peter M., Huayi Zhang, Dennis M. Hofmann, and Elke A. Rundensteiner. "FACET: Robust Counterfactual Explanation Analytics." Proceedings of the ACM on Management of Data 1, no. 4 (December 8, 2023): 1–27. http://dx.doi.org/10.1145/3626729.
Full textKenny, Eoin M., and Mark T. Keane. "On Generating Plausible Counterfactual and Semi-Factual Explanations for Deep Learning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 13 (May 18, 2021): 11575–85. http://dx.doi.org/10.1609/aaai.v35i13.17377.
Full textLeofante, Francesco, and Nico Potyka. "Promoting Counterfactual Robustness through Diversity." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 19 (March 24, 2024): 21322–30. http://dx.doi.org/10.1609/aaai.v38i19.30127.
Full textDelaney, Eoin, Arjun Pakrashi, Derek Greene, and Mark T. Keane. "Counterfactual Explanations for Misclassified Images: How Human and Machine Explanations Differ (Abstract Reprint)." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 20 (March 24, 2024): 22696. http://dx.doi.org/10.1609/aaai.v38i20.30596.
Full textBaron, Sam, Mark Colyvan, and David Ripley. "A Counterfactual Approach to Explanation in Mathematics." Philosophia Mathematica 28, no. 1 (December 2, 2019): 1–34. http://dx.doi.org/10.1093/philmat/nkz023.
Full textSchleich, Maximilian, Zixuan Geng, Yihong Zhang, and Dan Suciu. "GeCo." Proceedings of the VLDB Endowment 14, no. 9 (May 2021): 1681–93. http://dx.doi.org/10.14778/3461535.3461555.
Full textBarzekar, Hosein, and Susan McRoy. "Achievable Minimally-Contrastive Counterfactual Explanations." Machine Learning and Knowledge Extraction 5, no. 3 (August 3, 2023): 922–36. http://dx.doi.org/10.3390/make5030048.
Full textChapman-Rounds, Matt, Umang Bhatt, Erik Pazos, Marc-Andre Schulz, and Konstantinos Georgatzis. "FIMAP: Feature Importance by Minimal Adversarial Perturbation." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 13 (May 18, 2021): 11433–41. http://dx.doi.org/10.1609/aaai.v35i13.17362.
Full textLabaien Soto, Jokin, Ekhi Zugasti Uriguen, and Xabier De Carlos Garcia. "Real-Time, Model-Agnostic and User-Driven Counterfactual Explanations Using Autoencoders." Applied Sciences 13, no. 5 (February 24, 2023): 2912. http://dx.doi.org/10.3390/app13052912.
Full textBaron, Sam. "Counterfactual Scheming." Mind 129, no. 514 (April 1, 2019): 535–62. http://dx.doi.org/10.1093/mind/fzz008.
Full textHe, Ming, Boyang An, Jiwen Wang, and Hao Wen. "CETD: Counterfactual Explanations by Considering Temporal Dependencies in Sequential Recommendation." Applied Sciences 13, no. 20 (October 11, 2023): 11176. http://dx.doi.org/10.3390/app132011176.
Full textGeng, Zixuan, Maximilian Schleich, and Dan Suciu. "Computing Rule-Based Explanations by Leveraging Counterfactuals." Proceedings of the VLDB Endowment 16, no. 3 (November 2022): 420–32. http://dx.doi.org/10.14778/3570690.3570693.
Full textFernandes, Alison. "Back to the Present: How Not to Use Counterfactuals to Explain Causal Asymmetry." Philosophies 7, no. 2 (April 9, 2022): 43. http://dx.doi.org/10.3390/philosophies7020043.
Full textAryal, Saugat. "Semi-factual Explanations in AI." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 21 (March 24, 2024): 23379–80. http://dx.doi.org/10.1609/aaai.v38i21.30390.
Full textFernández-Loría, Carlos, Foster Provost, and Xintian Han. "Explaining Data-Driven Decisions made by AI Systems: The Counterfactual Approach." MIS Quarterly 45, no. 3 (September 1, 2022): 1635–60. http://dx.doi.org/10.25300/misq/2022/16749.
Full textPrado-Romero, Mario Alfonso, Bardh Prenkaj, and Giovanni Stilo. "Robust Stochastic Graph Generator for Counterfactual Explanations." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 19 (March 24, 2024): 21518–26. http://dx.doi.org/10.1609/aaai.v38i19.30149.
Full textVries, Katja de. "Transparent Dreams (Are Made of This): Counterfactuals as Transparency Tools in ADM." Critical Analysis of Law 8, no. 1 (April 2, 2021): 121–38. http://dx.doi.org/10.33137/cal.v8i1.36283.
Full textSokol, Kacper, and Peter Flach. "Desiderata for Interpretability: Explaining Decision Tree Predictions with Counterfactuals." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 10035–36. http://dx.doi.org/10.1609/aaai.v33i01.330110035.
Full textCong, Zicun, Lingyang Chu, Yu Yang, and Jian Pei. "Comprehensible counterfactual explanation on Kolmogorov-Smirnov test." Proceedings of the VLDB Endowment 14, no. 9 (May 2021): 1583–96. http://dx.doi.org/10.14778/3461535.3461546.
Full textLe, Thao, Tim Miller, Ronal Singh, and Liz Sonenberg. "Explaining Model Confidence Using Counterfactuals." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 10 (June 26, 2023): 11856–64. http://dx.doi.org/10.1609/aaai.v37i10.26399.
Full textSunstein, Cass R. "Historical Explanations Always Involve Counterfactual History." Journal of the Philosophy of History 10, no. 3 (November 17, 2016): 433–40. http://dx.doi.org/10.1163/18722636-12341345.
Full textMadumal, Prashan, Tim Miller, Liz Sonenberg, and Frank Vetere. "Explainable Reinforcement Learning through a Causal Lens." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 03 (April 3, 2020): 2493–500. http://dx.doi.org/10.1609/aaai.v34i03.5631.
Full textLai, Chengen, Shengli Song, Shiqi Meng, Jingyang Li, Sitong Yan, and Guangneng Hu. "Towards More Faithful Natural Language Explanation Using Multi-Level Contrastive Learning in VQA." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 3 (March 24, 2024): 2849–57. http://dx.doi.org/10.1609/aaai.v38i3.28065.
Full textAmitai, Yotam, Yael Septon, and Ofra Amir. "Explaining Reinforcement Learning Agents through Counterfactual Action Outcomes." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 9 (March 24, 2024): 10003–11. http://dx.doi.org/10.1609/aaai.v38i9.28863.
Full textMcEleney, Alice, and Ruth M. J. Byrne. "Spontaneous counterfactual thoughts and causal explanations." Thinking & Reasoning 12, no. 2 (May 2006): 235–55. http://dx.doi.org/10.1080/13546780500317897.
Full textLucic, Ana, Harrie Oosterhuis, Hinda Haned, and Maarten de Rijke. "FOCUS: Flexible Optimizable Counterfactual Explanations for Tree Ensembles." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 5 (June 28, 2022): 5313–22. http://dx.doi.org/10.1609/aaai.v36i5.20468.
Full textLee, Min Hun, and Chong Jun Chew. "Understanding the Effect of Counterfactual Explanations on Trust and Reliance on AI for Human-AI Collaborative Clinical Decision Making." Proceedings of the ACM on Human-Computer Interaction 7, CSCW2 (September 28, 2023): 1–22. http://dx.doi.org/10.1145/3610218.
Full textCarreira-Perpiñán, Miguel Á., and Suryabhan Singh Hada. "Counterfactual Explanations for Oblique Decision Trees:Exact, Efficient Algorithms." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 8 (May 18, 2021): 6903–11. http://dx.doi.org/10.1609/aaai.v35i8.16851.
Full textAltmeyer, Patrick, Mojtaba Farmanbar, Arie Van Deursen, and Cynthia C. S. Liem. "Faithful Model Explanations through Energy-Constrained Conformal Counterfactuals." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 10 (March 24, 2024): 10829–37. http://dx.doi.org/10.1609/aaai.v38i10.28956.
Full textGulshad, Sadaf, and Arnold Smeulders. "Counterfactual attribute-based visual explanations for classification." International Journal of Multimedia Information Retrieval 10, no. 2 (April 18, 2021): 127–40. http://dx.doi.org/10.1007/s13735-021-00208-3.
Full textYacoby, Yaniv, Ben Green, Christopher L. Griffin Jr., and Finale Doshi-Velez. "“If it didn’t happen, why would I change my decision?”: How Judges Respond to Counterfactual Explanations for the Public Safety Assessment." Proceedings of the AAAI Conference on Human Computation and Crowdsourcing 10, no. 1 (October 14, 2022): 219–30. http://dx.doi.org/10.1609/hcomp.v10i1.22001.
Full textVirmajoki, Veli. "Frameworks in Historiography: Explanation, Scenarios, and Futures." Journal of the Philosophy of History 17, no. 2 (July 3, 2023): 288–309. http://dx.doi.org/10.1163/18722636-12341501.
Full textLey, Dan, Umang Bhatt, and Adrian Weller. "Diverse, Global and Amortised Counterfactual Explanations for Uncertainty Estimates." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 7 (June 28, 2022): 7390–98. http://dx.doi.org/10.1609/aaai.v36i7.20702.
Full textWellawatte, Geemi P., Aditi Seshadri, and Andrew D. White. "Model agnostic generation of counterfactual explanations for molecules." Chemical Science 13, no. 13 (2022): 3697–705. http://dx.doi.org/10.1039/d1sc05259d.
Full textPiccione, A., J. W. Berkery, S. A. Sabbagh, and Y. Andreopoulos. "Predicting resistive wall mode stability in NSTX through balanced random forests and counterfactual explanations." Nuclear Fusion 62, no. 3 (January 18, 2022): 036002. http://dx.doi.org/10.1088/1741-4326/ac44af.
Full textJiang, Junqi, Francesco Leofante, Antonio Rago, and Francesca Toni. "Formalising the Robustness of Counterfactual Explanations for Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 12 (June 26, 2023): 14901–9. http://dx.doi.org/10.1609/aaai.v37i12.26740.
Full textde Oliveira, Raphael Mazzine Barbosa, and David Martens. "A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular Data." Applied Sciences 11, no. 16 (August 7, 2021): 7274. http://dx.doi.org/10.3390/app11167274.
Full textAkula, Arjun, Shuai Wang, and Song-Chun Zhu. "CoCoX: Generating Conceptual and Counterfactual Explanations via Fault-Lines." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 03 (April 3, 2020): 2594–601. http://dx.doi.org/10.1609/aaai.v34i03.5643.
Full textReutlinger, Alexander. "Does the counterfactual theory of explanation apply to non-causal explanations in metaphysics?" European Journal for Philosophy of Science 7, no. 2 (August 19, 2016): 239–56. http://dx.doi.org/10.1007/s13194-016-0155-z.
Full textCarreira-Perpinan, Miguel Á., and Suryabhan Singh Hada. "Very Fast, Approximate Counterfactual Explanations for Decision Forests." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 6 (June 26, 2023): 6935–43. http://dx.doi.org/10.1609/aaai.v37i6.25848.
Full textChalyi, Serhii, Volodymyr Leshchynskyi, and Irina Leshchynska. "COUNTERFACTUAL TEMPORAL MODEL OF CAUSAL RELATIONSHIPS FOR CONSTRUCTING EXPLANATIONS IN INTELLIGENT SYSTEMS." Bulletin of National Technical University "KhPI". Series: System Analysis, Control and Information Technologies, no. 2 (6) (December 28, 2021): 41–46. http://dx.doi.org/10.20998/2079-0023.2021.02.07.
Full textAdmassu, Tsehay. "Evaluation of Local Interpretable Model-Agnostic Explanation and Shapley Additive Explanation for Chronic Heart Disease Detection." Proceedings of Engineering and Technology Innovation 23 (January 1, 2023): 48–59. http://dx.doi.org/10.46604/peti.2023.10101.
Full textZahedi, Zahra, Sailik Sengupta, and Subbarao Kambhampati. "‘Why Didn’t You Allocate This Task to Them?’ Negotiation-Aware Task Allocation and Contrastive Explanation Generation." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 9 (March 24, 2024): 10243–51. http://dx.doi.org/10.1609/aaai.v38i9.28890.
Full textNolan, Daniel. "The Possibilities of History." Journal of the Philosophy of History 10, no. 3 (November 17, 2016): 441–56. http://dx.doi.org/10.1163/18722636-12341346.
Full textde Brito Duarte, Regina, Filipa Correia, Patrícia Arriaga, and Ana Paiva. "AI Trust: Can Explainable AI Enhance Warranted Trust?" Human Behavior and Emerging Technologies 2023 (October 31, 2023): 1–12. http://dx.doi.org/10.1155/2023/4637678.
Full textFreiesleben, Timo. "The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples." Minds and Machines 32, no. 1 (October 30, 2021): 77–109. http://dx.doi.org/10.1007/s11023-021-09580-9.
Full textGuidotti, Riccardo, Anna Monreale, Fosca Giannotti, Dino Pedreschi, Salvatore Ruggieri, and Franco Turini. "Factual and Counterfactual Explanations for Black Box Decision Making." IEEE Intelligent Systems 34, no. 6 (November 1, 2019): 14–23. http://dx.doi.org/10.1109/mis.2019.2957223.
Full textWang, Xiangmeng, Qian Li, Dianer Yu, Qing Li, and Guandong Xu. "Counterfactual Explanation for Fairness in Recommendation." ACM Transactions on Information Systems, January 29, 2024. http://dx.doi.org/10.1145/3643670.
Full text