Journal articles on the topic 'Coulomb blockade'

To see the other types of publications on this topic, follow the link: Coulomb blockade.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Coulomb blockade.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kaufman, Igor Kh, and Peter V. E. McClintock. "Ionic Coulomb blockade." Nature Materials 15, no. 8 (July 22, 2016): 825–26. http://dx.doi.org/10.1038/nmat4701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kauppinen, J. P., and J. P. Pekola. "Coulomb blockade nanothermometer." Microelectronic Engineering 41-42 (March 1998): 503–6. http://dx.doi.org/10.1016/s0167-9317(98)00117-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hirvi, K. P., J. P. Kauppinen, A. N. Korotkov, M. A. Paalanen, and J. P. Pekola. "Coulomb blockade thermometry." Czechoslovak Journal of Physics 46, S6 (June 1996): 3345–52. http://dx.doi.org/10.1007/bf02548151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Miao, Reng-lai Wu, Yabin Yu, Wei-qing Huang, and Zheng Ma. "From the Coulomb blockade regime to the Non-Coulomb blockade regime." Physica B: Condensed Matter 454 (December 2014): 82–85. http://dx.doi.org/10.1016/j.physb.2014.07.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pogosov, Artur, Maxim Budantsev, Andrey Shevyrin, Alexey Plotnikov, Ashat Bakarov, and Aleksandr Toropov. "High-Temperature Coulomb Blockade." Siberian Journal of Physics 4, no. 2 (July 1, 2009): 53–57. http://dx.doi.org/10.54362/1818-7919-2009-4-2-53-57.

Full text
Abstract:
The Coulomb blockade effect is studied in a single-electron transistor – quantum dot, separated from source and drain areas by tunnel junctions. Peculiarity of the transistor is that it is made on the basis of semiconducting membrane, separated from the suffer. Separating the transistor from the suffer having high dielectric constant leads to the drastic decrease in the quantum dot capacity С and, therefore, to the increase in the Coulomb gap 2 e C/ . This value is important since it determines the upper limit of the transistor working temperature. A direct comparison of the Coulomb gaps before and after separating from the suffer shows that it increases from 40 K (in temperature units) for conventional transistor to 150 K for the «suspended» one. High value of the Coulomb gap has made it possible to observe clear diamond-like structure of condactance dependence on the gate and source-drain voltages, specific for the Coulomb blockade, while typical temperature of this kind of measurements on conventional single-electron transistors is about hundreds of millikelvins. An additional blockade effect, different from the conventional Coulomb blockade is observed. The nature of this effect can be connected with additional mechanical degrees of freedom of the transistor (elastic deformations).
APA, Harvard, Vancouver, ISO, and other styles
6

Hahtela, O., E. Mykkänen, A. Kemppinen, M. Meschke, M. Prunnila, D. Gunnarsson, L. Roschier, J. Penttilä, and J. Pekola. "Traceable Coulomb blockade thermometry." Metrologia 54, no. 1 (December 20, 2016): 69–76. http://dx.doi.org/10.1088/1681-7575/aa4f84.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pingue, P., V. Piazza, F. Beltram, I. Farrer, D. A. Ritchie, and M. Pepper. "Coulomb blockade directional coupler." Applied Physics Letters 86, no. 5 (January 31, 2005): 052102. http://dx.doi.org/10.1063/1.1857078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xiang, Dao, Jian Wu, and Reuven Gordon. "Coulomb Blockade Plasmonic Switch." Nano Letters 17, no. 4 (March 20, 2017): 2584–88. http://dx.doi.org/10.1021/acs.nanolett.7b00360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

KUSMARTSEV, F. V. "COULOMB BLOCKADE INDUCED BY MAGNETIC FIELD." Modern Physics Letters B 06, no. 22 (September 20, 1992): 1379–89. http://dx.doi.org/10.1142/s0217984992001083.

Full text
Abstract:
We found that a Coulomb blockade can be induced by magnetic field. We illustrated this effect on the example of a ring consisting of two and many Josephson junctions. For the ring with two junctions we present an exact solution. The transition into Coulomb blockade state on a ring transforms into a real Beresinski–Kosterlitz–Thouless phase transition if the ring transforms into a linear array of Josephson junctions, although in latter case the effect of magnetic field disappears. In the state of Coulomb blockade the magnetization may be both diamagnetic and paramagnetic. The Coulomb blockade may also be removed by external magnetic field.
APA, Harvard, Vancouver, ISO, and other styles
10

Yuli V., Nazarov. "Coulomb Blockade without Tunnel Junctions." Journal of the Korean Physical Society 34, no. 92 (April 1, 1999): 161. http://dx.doi.org/10.3938/jkps.34.161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Vasseur, G., D. Weinmann, and R. A. Jalabert. "Coulomb blockade without potential barriers." European Physical Journal B 51, no. 2 (May 2006): 267–75. http://dx.doi.org/10.1140/epjb/e2006-00210-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Nazarov, Yuli V. "Coulomb Blockade without Tunnel Junctions." Physical Review Letters 82, no. 6 (February 8, 1999): 1245–48. http://dx.doi.org/10.1103/physrevlett.82.1245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Imam, H. T., V. V. Ponomarenko, and D. V. Averin. "Coulomb blockade of resonant tunneling." Physical Review B 50, no. 24 (December 15, 1994): 18288–98. http://dx.doi.org/10.1103/physrevb.50.18288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Matveev, K. A., and L. I. Glazman. "Coulomb blockade of activated conduction." Physical Review B 54, no. 15 (October 15, 1996): 10339–41. http://dx.doi.org/10.1103/physrevb.54.10339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Groshev, Atanas. "Coulomb blockade of resonant tunneling." Physical Review B 42, no. 9 (September 15, 1990): 5895–98. http://dx.doi.org/10.1103/physrevb.42.5895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Tilke, A. "Coulomb blockade in silicon nanostructures." Progress in Quantum Electronics 25, no. 3 (May 2001): 97–138. http://dx.doi.org/10.1016/s0079-6727(01)00005-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Glazman, L. I., F. W. J. Hekking, K. A. Matveev, and R. I. Shekhter. "Coulomb blockade of Andreev reflection." Physica B: Condensed Matter 194-196 (February 1994): 1245–46. http://dx.doi.org/10.1016/0921-4526(94)90952-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Molenkamp, L. W., and Karsten Flensberg. "Scaling of the Coulomb blockade." Physica B: Condensed Matter 218, no. 1-4 (February 1996): 269–71. http://dx.doi.org/10.1016/0921-4526(95)00611-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Aleiner, I. L., P. W. Brouwer, and L. I. Glazman. "Quantum effects in Coulomb blockade." Physics Reports 358, no. 5-6 (March 2002): 309–440. http://dx.doi.org/10.1016/s0370-1573(01)00063-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Krems, Matt, and Massimiliano Di Ventra. "Ionic Coulomb blockade in nanopores." Journal of Physics: Condensed Matter 25, no. 6 (January 10, 2013): 065101. http://dx.doi.org/10.1088/0953-8984/25/6/065101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Mii, Takashi, and Kenji Makoshi. "Negative Conductance in Coulomb Blockade." Japanese Journal of Applied Physics 35, Part 1, No. 6B (June 30, 1996): 3706–9. http://dx.doi.org/10.1143/jjap.35.3706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Shekhter, R. I., L. Y. Gorelik, A. Isacsson, Y. M. Galperin, Y. M. Galperin, and M. Jonson. "Nanoelectromechanics of Coulomb Blockade Nanostructures." Physica Scripta T102, no. 1 (2002): 13. http://dx.doi.org/10.1238/physica.topical.102a00013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhang, X. G., and T. Xiang. "Tunable coulomb blockade and giant coulomb blockade magnetoresistance in a double quantum dot system." International Journal of Quantum Chemistry 112, no. 1 (July 11, 2011): 28–32. http://dx.doi.org/10.1002/qua.23196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Gudata, Lamessa, Jule Leta Tesfaye, Abela Saka, R. Shanmugam, L. Priyanka Dwarampudi, Nagaraj Nagaprasad, B. Stalin, and Ramaswamy Krishnaraj. "Investigations of Optical Coulomb Blockade Oscillations in Plasmonic Nanoparticle Dimers." International Journal of Photoenergy 2022 (January 15, 2022): 1–6. http://dx.doi.org/10.1155/2022/7771607.

Full text
Abstract:
The exploration of Coulomb blockade oscillations in plasmonic nanoparticle dimers is the subject of this study. When two metal nanoparticles are brought together at the end of their journey, tunnelling current prevents an infinite connection dipolar plasmon and an infinite amplification in the electric fields throughout the hot spot in between nanoparticles from occurring. One way to think about single-electron tunnelling through some kind of quantum dot is to think about Coulomb blockage oscillations in conductance. The electron transport between the dot and source is considered. The model of study is the linear conductance skilled at describing the basic physics of electronic states in the quantum dot. The linear conductance through the dot is defined as G = lim ⟶ 0 I / V in the limit of infinity of small bias voltage. We discuss the classical and quantum metallic Coulomb blockade oscillations. Numerically, the linear conductance was plotted as a function gate voltage. The Coulomb blockade oscillation occurs as gate voltage varies. In the valleys, the conductance falls exponentially as a function gate voltage. As a result of our study, the conductance is constant at high temperature and does not show oscillation in both positive and negative gate voltages. At low temperature, conductance shows oscillation in both positive and negative gate voltages.
APA, Harvard, Vancouver, ISO, and other styles
25

Harata, Pipat, Wipada Hongthong, and Prathan Srivilai. "Calculating the Coulomb blockade phase diagram in the strong coupling regime of a single-electron transistor: a quantum Monte Carlo study." Journal of Statistical Mechanics: Theory and Experiment 2024, no. 3 (March 21, 2024): 033106. http://dx.doi.org/10.1088/1742-5468/ad319b.

Full text
Abstract:
Abstract We present a novel approach for calculating the Coulomb blockade phase diagram (CBPD) in the experimentally accessible strong coupling regime of a single-electron transistor. Our method utilizes the path integral Monte Carlo technique to accurately compute the Coulomb oscillation of the differential capacitance (DC). Furthermore, we investigate the impact of the gate voltage and temperature variations on the DC, thereby gaining insights into the system’s behavior. As a result, we propose a method to calculate the Coulomb blockade boundary line and demonstrate its efficacy by setting the visibility parameter to 10%. The resulting boundary line effectively defines the transition between the Coulomb and non-Coulomb blockade regimes, thereby enabling the construction of a comprehensive CBPD.
APA, Harvard, Vancouver, ISO, and other styles
26

MA, QIONG, TAO TU, LI WANG, CHEN ZHOU, ZHI-RONG LIN, MING XIAO, and GUO-PING GUO. "COULOMB BLOCKADE IN GRAPHENE QUANTUM DOTS." Modern Physics Letters B 27, no. 01 (November 26, 2012): 1350008. http://dx.doi.org/10.1142/s0217984913500085.

Full text
Abstract:
We study the conductance spectrum of graphene quantum dots, both single- and multiple-dot cases. The single electron tunneling through a graphene dot is investigated and the periodicity, amplitude and line shape of the Coulomb blockade oscillations at low temperatures are obtained, which are consistent with the recent experimental observations. Further, we discuss the transport behavior when multiple dots are assembled in array and find a phase transition of conductance spectra from individual Coulomb blockade to collective Coulomb blockade.
APA, Harvard, Vancouver, ISO, and other styles
27

Müller, H. O., D. A. Williams, and H. Mizuta. "Design Optimization of Coulomb Blockade Devices." VLSI Design 13, no. 1-4 (January 1, 2001): 193–98. http://dx.doi.org/10.1155/2001/29174.

Full text
Abstract:
We investigate the design of a Coulomb blockade device consisting of a rectangular array of quantum dots or ultrasmall metallic islands with regard to its stability against geometric size disorder and offset charges. To simulate the device operation we perform a statistical analysis of the Coulomb blockade voltage which results in practical design rules.
APA, Harvard, Vancouver, ISO, and other styles
28

KRECH, W., and A. HÄDICKE. "EFFECTS OF MACROSCOPIC QUANTUM TUNNELING OF CHARGE IN ULTRASMALL SET DOUBLE-JUNCTIONS WITH EXTERNAL ELECTROMAGNETIC ENVIRONMENT." International Journal of Modern Physics B 07, no. 11 (May 15, 1993): 2201–17. http://dx.doi.org/10.1142/s0217979293002845.

Full text
Abstract:
It is known that classical Coulomb blockade effects of SET devices are disturbed by the tunneling effects of higher order denoted as macroscopic quantum tunneling of charge (q-mqt) or co-tunneling. The influence of an external electromagnetic environment modelled by an additional impedance in the circuit on the mean q-mqt current is studied in the high-impedance limit. This is important especially for devices containing only two SET junctions, for instance the SET electrometer, where the influence of the environment on the Coulomb blockade is remarkable. It can be shown that the Coulomb blockade is only partly destroyed producing a new, lower “quantum” Coulomb blockade. This holds as well in the case of the incoherent as of the coherent q-mqt. Furthermore, a method is presented on how to regularize the logarithmic singularities in the q-mqt current using line width effects.
APA, Harvard, Vancouver, ISO, and other styles
29

Vivitasari, Pipit Uky, Yasuo Azuma, Masanori Sakamoto, Toshiharu Teranishi, and Yutaka Majima. "Coulomb blockade and Coulomb staircase behavior observed at room temperature." Materials Research Express 4, no. 2 (February 21, 2017): 024004. http://dx.doi.org/10.1088/2053-1591/aa5bb3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Richardson, W. H. "Quantum Description of a Degenerate P-N Junction Coupled to an Electrical Circuit." International Journal of Modern Physics B 12, no. 24 (September 30, 1998): 2513–40. http://dx.doi.org/10.1142/s0217979298001472.

Full text
Abstract:
A theory of Coulomb blockade of tunneling in a degenerate p-n junction is presented. Perturbation theory and temperature Green's functions are used to obtain the current–voltage characteristics. The formulation extends the theory of Coulomb blockade in MIM junctions, to junctions in which the characteristics of the device, is partly determined by the many particle interaction in the electrodes. Exact analytical expressions for the I-V at zero temperature and approximate expressions at nonzero temperatures are obtained. Among the novel features observed are: an asymmetry in the current–voltage characteristics even for voltages on the scale of the Coulomb blockade threshold and threshold like behavior below (e/2C).
APA, Harvard, Vancouver, ISO, and other styles
31

Ladak, Sam, Dan Read, Tolek Tyliszczak, Will R. Branford, and Lesley F. Cohen. "Monopole defects and magnetic Coulomb blockade." New Journal of Physics 13, no. 2 (February 10, 2011): 023023. http://dx.doi.org/10.1088/1367-2630/13/2/023023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Pooley, D. M., H. Ahmed, H. Mizuta, and K. Nakazato. "Coulomb blockade in silicon nano-pillars." Applied Physics Letters 74, no. 15 (April 12, 1999): 2191–93. http://dx.doi.org/10.1063/1.123797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Oncel, Nuri, Ann-Sofie Hallback, Harold J. W. Zandvliet, Emiel A. Speets, Bart Jan Ravoo, David N. Reinhoudt, and Bene Poelsema. "Coulomb blockade of small Pd clusters." Journal of Chemical Physics 123, no. 4 (July 22, 2005): 044703. http://dx.doi.org/10.1063/1.1996567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Song, D., A. Amar, C. J. Lobb, and F. C. Wellstood. "Advantages of superconducting Coulomb-blockade electrometers." IEEE Transactions on Appiled Superconductivity 5, no. 2 (June 1995): 3085–89. http://dx.doi.org/10.1109/77.403244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zimmerli, G., T. M. Eiles, R. L. Kautz, and John M. Martinis. "Noise in the Coulomb blockade electrometer." Applied Physics Letters 61, no. 2 (July 13, 1992): 237–39. http://dx.doi.org/10.1063/1.108195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Park, Hee Chul, Anatoli M. Kadigrobov, Robert I. Shekhter, and M. Jonson. "Coulomb blockade of spin-dependent shuttling." Low Temperature Physics 39, no. 12 (December 2013): 1071–77. http://dx.doi.org/10.1063/1.4830420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Groshev, Atanas. "Coulomb blockade with voltage-dependent capacitance." Physical Review B 47, no. 11 (March 15, 1993): 6765–67. http://dx.doi.org/10.1103/physrevb.47.6765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kauppinen, J. P., K. T. Loberg, A. J. Manninen, J. P. Pekola, and R. A. Voutilainen. "Coulomb blockade thermometer: Tests and instrumentation." Review of Scientific Instruments 69, no. 12 (December 1998): 4166–75. http://dx.doi.org/10.1063/1.1149265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Shin, Mincheol, Seongjae Lee, Kyoung Wan Park, and El-Hang Lee. "Geometrically Induced Multiple Coulomb Blockade Gaps." Physical Review Letters 80, no. 26 (June 29, 1998): 5774–77. http://dx.doi.org/10.1103/physrevlett.80.5774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Matveev, K. A. "Coulomb blockade at almost perfect transmission." Physical Review B 51, no. 3 (January 15, 1995): 1743–51. http://dx.doi.org/10.1103/physrevb.51.1743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Hekking, F. W. J., L. I. Glazman, K. A. Matveev, and R. I. Shekhter. "Coulomb blockade of two-electron tunneling." Physical Review Letters 70, no. 26 (June 28, 1993): 4138–41. http://dx.doi.org/10.1103/physrevlett.70.4138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Schelp, L. F., A. Fert, F. Fettar, P. Holody, S. F. Lee, J. L. Maurice, F. Petroff, and A. Vaurès. "Spin-dependent tunneling with Coulomb blockade." Physical Review B 56, no. 10 (September 1, 1997): R5747—R5750. http://dx.doi.org/10.1103/physrevb.56.r5747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Geerligs, L. J., V. F. Anderegg, and J. E. Mooij. "Coulomb blockade of cooper pair tunneling." Physica B: Condensed Matter 165-166 (August 1990): 971–72. http://dx.doi.org/10.1016/s0921-4526(09)80071-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

van Houten, H. "Coulomb blockade oscillations in semiconductor nanostructures." Surface Science 263, no. 1-3 (February 1992): 442–45. http://dx.doi.org/10.1016/0039-6028(92)90385-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Johannson, Jan, Volker Schöllmann, Karin Andersson, and David B. Haviland. "Coulomb blockade in anodised titanium nanostructures." Physica B: Condensed Matter 284-288 (July 2000): 1796–97. http://dx.doi.org/10.1016/s0921-4526(99)02984-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Bergsten, Tobias, Tord Claeson, and Per Delsing. "A fast, primary Coulomb blockade thermometer." Applied Physics Letters 78, no. 9 (February 26, 2001): 1264–66. http://dx.doi.org/10.1063/1.1351526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Patel, S. R., S. M. Cronenwett, D. R. Stewart, A. G. Huibers, C. M. Marcus, C. I. Duruöz, J. S. Harris, K. Campman, and A. C. Gossard. "Statistics of Coulomb Blockade Peak Spacings." Physical Review Letters 80, no. 20 (May 18, 1998): 4522–25. http://dx.doi.org/10.1103/physrevlett.80.4522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Stampfer, C., J. Güttinger, F. Molitor, D. Graf, T. Ihn, and K. Ensslin. "Tunable Coulomb blockade in nanostructured graphene." Applied Physics Letters 92, no. 1 (2008): 012102. http://dx.doi.org/10.1063/1.2827188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Stopa, M. "Charging ratchets: Coulomb blockade and rectification." Applied Physics A 75, no. 2 (August 2002): 247–52. http://dx.doi.org/10.1007/s003390201327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Walczak, Kamil. "Coulomb blockade in molecular quantum dots." Open Physics 4, no. 1 (March 1, 2006): 8–19. http://dx.doi.org/10.1007/s11534-005-0002-x.

Full text
Abstract:
AbstractThe rate-equation approach is used to describe sequential tunneling through a molecular junction in the Coulomb blockade regime. Such device is composed of molecular quantum dot (with discrete energy levels) coupled with two metallic electrodes via potential barriers. Based on this model, we calculate nonlinear transport characteristics (conductance-voltage and current-voltage dependences) and compare them with the results obtained within a self-consistent field approach. It is shown that the shape of transport characteristics is determined by the combined effect of the electronic structure of molecular quantum dots and by the Coulomb blockade. In particular, the following phenomena are discussed in detail: the suppression of the current at higher voltages, the charging-induced rectification effect, the charging-generated changes of conductance gap and the temperature-induced as well as broadening-generated smoothing of current steps.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography