Academic literature on the topic 'Coulomb blockade'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Coulomb blockade.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Coulomb blockade"

1

Kaufman, Igor Kh, and Peter V. E. McClintock. "Ionic Coulomb blockade." Nature Materials 15, no. 8 (July 22, 2016): 825–26. http://dx.doi.org/10.1038/nmat4701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kauppinen, J. P., and J. P. Pekola. "Coulomb blockade nanothermometer." Microelectronic Engineering 41-42 (March 1998): 503–6. http://dx.doi.org/10.1016/s0167-9317(98)00117-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hirvi, K. P., J. P. Kauppinen, A. N. Korotkov, M. A. Paalanen, and J. P. Pekola. "Coulomb blockade thermometry." Czechoslovak Journal of Physics 46, S6 (June 1996): 3345–52. http://dx.doi.org/10.1007/bf02548151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Miao, Reng-lai Wu, Yabin Yu, Wei-qing Huang, and Zheng Ma. "From the Coulomb blockade regime to the Non-Coulomb blockade regime." Physica B: Condensed Matter 454 (December 2014): 82–85. http://dx.doi.org/10.1016/j.physb.2014.07.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pogosov, Artur, Maxim Budantsev, Andrey Shevyrin, Alexey Plotnikov, Ashat Bakarov, and Aleksandr Toropov. "High-Temperature Coulomb Blockade." Siberian Journal of Physics 4, no. 2 (July 1, 2009): 53–57. http://dx.doi.org/10.54362/1818-7919-2009-4-2-53-57.

Full text
Abstract:
The Coulomb blockade effect is studied in a single-electron transistor – quantum dot, separated from source and drain areas by tunnel junctions. Peculiarity of the transistor is that it is made on the basis of semiconducting membrane, separated from the suffer. Separating the transistor from the suffer having high dielectric constant leads to the drastic decrease in the quantum dot capacity С and, therefore, to the increase in the Coulomb gap 2 e C/ . This value is important since it determines the upper limit of the transistor working temperature. A direct comparison of the Coulomb gaps before and after separating from the suffer shows that it increases from 40 K (in temperature units) for conventional transistor to 150 K for the «suspended» one. High value of the Coulomb gap has made it possible to observe clear diamond-like structure of condactance dependence on the gate and source-drain voltages, specific for the Coulomb blockade, while typical temperature of this kind of measurements on conventional single-electron transistors is about hundreds of millikelvins. An additional blockade effect, different from the conventional Coulomb blockade is observed. The nature of this effect can be connected with additional mechanical degrees of freedom of the transistor (elastic deformations).
APA, Harvard, Vancouver, ISO, and other styles
6

Hahtela, O., E. Mykkänen, A. Kemppinen, M. Meschke, M. Prunnila, D. Gunnarsson, L. Roschier, J. Penttilä, and J. Pekola. "Traceable Coulomb blockade thermometry." Metrologia 54, no. 1 (December 20, 2016): 69–76. http://dx.doi.org/10.1088/1681-7575/aa4f84.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pingue, P., V. Piazza, F. Beltram, I. Farrer, D. A. Ritchie, and M. Pepper. "Coulomb blockade directional coupler." Applied Physics Letters 86, no. 5 (January 31, 2005): 052102. http://dx.doi.org/10.1063/1.1857078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xiang, Dao, Jian Wu, and Reuven Gordon. "Coulomb Blockade Plasmonic Switch." Nano Letters 17, no. 4 (March 20, 2017): 2584–88. http://dx.doi.org/10.1021/acs.nanolett.7b00360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

KUSMARTSEV, F. V. "COULOMB BLOCKADE INDUCED BY MAGNETIC FIELD." Modern Physics Letters B 06, no. 22 (September 20, 1992): 1379–89. http://dx.doi.org/10.1142/s0217984992001083.

Full text
Abstract:
We found that a Coulomb blockade can be induced by magnetic field. We illustrated this effect on the example of a ring consisting of two and many Josephson junctions. For the ring with two junctions we present an exact solution. The transition into Coulomb blockade state on a ring transforms into a real Beresinski–Kosterlitz–Thouless phase transition if the ring transforms into a linear array of Josephson junctions, although in latter case the effect of magnetic field disappears. In the state of Coulomb blockade the magnetization may be both diamagnetic and paramagnetic. The Coulomb blockade may also be removed by external magnetic field.
APA, Harvard, Vancouver, ISO, and other styles
10

Yuli V., Nazarov. "Coulomb Blockade without Tunnel Junctions." Journal of the Korean Physical Society 34, no. 92 (April 1, 1999): 161. http://dx.doi.org/10.3938/jkps.34.161.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Coulomb blockade"

1

Kubala, Björn. "Quantentransport durch Coulomb-Blockade-Systeme." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=982839146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ali, Danish. "Coulomb blockade in silicon-on-insulator." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Petej, Ivan. "Coulomb blockade and quantum conductance in ferromagnetic nanostructures." Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wilson, Dominic Simon. "Scanning tunnelling spectroscopy of superconductors and Coulomb blockade effects." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dovinos, Dimitris. "Charge transport in a Coulomb blockade island under irradiation." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Johansson, Jan. "Single Charge and Spin Transport in Nanostructures." Doctoral thesis, KTH, Physics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Paul, Douglas John. "Single electronics in #delta#-doped silicon germanium." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Andersson, Karin. "Coulomb blockade of Cooper pair tunneling in one dimensional Josephson junction arrays." Doctoral thesis, KTH, Physics, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stegmann, Philipp [Verfasser], and Jürgen [Akademischer Betreuer] König. "Generalized factorial cumulants applied to Coulomb-blockade systems / Philipp Stegmann ; Betreuer: Jürgen König." Duisburg, 2017. http://d-nb.info/1136863990/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fühner, Claus. "Magneto-transport investigations on multi-electron quantum dots Coulomb blockade, Kondo effect and Fano regime /." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=967772753.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Coulomb blockade"

1

1947-, Grabert Hermann, Devoret Michel H, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Study Institute on Single Charge Tunneling (1991 : Les Houches, Haute-Savoie, France), eds. Single charge tunneling: Coulomb blockade phenomena in nanostructures. New York: Plenum Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Devoret, Michel H., and Hermann Grabert. Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures. Springer London, Limited, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Devoret, Michel H., and Hermann Grabert. Single Charge Tunneling: Coulomb Blockade Phenomena In Nanostructures. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

(Editor), Hermann Grabert, and Michel H. Devoret (Editor), eds. Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (NATO Science Series: B:). Springer, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sergeenkov, Sergei. 2D arrays of Josephson nanocontacts and nanogranular superconductors. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.21.

Full text
Abstract:
This article examines many novel effects related to the magnetic, electric, elastic and transport properties of Josephson nanocontacts and nanogranular superconductors using a realistic model of two-dimensional Josephson junction arrays. The arrays were created by a 2D network of twin-boundary dislocations with strain fields acting as an insulating barrier between hole-rich domains in underdoped crystals. The article first describes a model of nanoscopic Josephson junction arrays before discussing some interesting phenomena, including chemomagnetism and magnetoelectricity, electric analog of the ‘fishtail‘ anomaly and field-tuned weakening of the chemically induced Coulomb blockade, a giant enhancement of the non-linear thermal conductivity in 2D arrays, and thermal expansion of a singleJosephson contact.
APA, Harvard, Vancouver, ISO, and other styles
6

Tiwari, Sandip. Phenomena and devices at the quantum scale and the mesoscale. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198759874.003.0003.

Full text
Abstract:
Unique nanoscale phenomena arise in quantum and mesoscale properties and there are additional intriguing twists from effects that are classical in origin. In this chapter, these are brought forth through an exploration of quantum computation with the important notions of superposition, entanglement, non-locality, cryptography and secure communication. The quantum mesoscale and implications of nonlocality of potential are discussed through Aharonov-Bohm effect, the quantum Hall effect in its various forms including spin, and these are unified through a topological discussion. Single electron effect as a classical phenomenon with Coulomb blockade including in multiple dot systems where charge stability diagrams may be drawn as phase diagram is discussed, and is also extended to explore the even-odd and Kondo consequences for quantum-dot transport. This brings up the self-energy discussion important to nanoscale device understanding.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Coulomb blockade"

1

Kawabata, A. "Coulomb Blockade." In Mesoscopic Physics and Electronics, 31–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-71976-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khademi, Ali, Dao Xiang, and Reuven Gordon. "Coulomb Blockade Plasmonic Switch." In 21st Century Nanoscience – A Handbook, 15–1. Boca Raton, Florida : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429351617-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wharam, D. A., and T. Heinzel. "Coulomb Blockade in Quantum Dots." In Quantum Dynamics of Submicron Structures, 311–25. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0019-9_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Matveev, K. A. "Quantum Smearing of Coulomb Blockade." In Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics, 129–43. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4327-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Van Houten, H., C. W. J. Beenakker, and A. A. M. Staring. "Coulomb-Blockade Oscillations in Semiconductor Nanostructures." In NATO ASI Series, 167–216. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4757-2166-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ryndyk, Dmitry A. "Electron-Electron Interaction and Coulomb Blockade." In Springer Series in Solid-State Sciences, 123–47. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24088-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abusch-Magder, David, M. A. Kastner, C. L. Dennis, W. F. Dinatale, T. M. Lyszczarz, D. C. Shaver, and P. M. Mankiewich. "Coulomb Blockade in a Silicon Mosset." In Quantum Transport in Semiconductor Submicron Structures, 251–60. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1760-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Akai-Kasaya, Megumi. "Coulomb-Blockade in Low-Dimensional Organic Conductors." In Molecular Architectonics, 111–34. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57096-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Beenakker, C. W. J., H. van Houten, and A. A. M. Staring. "Coulomb Blockade of the Aharonov-Bohm Effect." In Granular Nanoelectronics, 359–70. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3689-9_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Jungsang, Seema Somani, and Yoshihisa Yamamoto. "Coulomb Blockade Effect in Mesoscopic p-n Junctions." In Nonclassical Light from Semiconductor Lasers and LEDs, 137–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56814-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Coulomb blockade"

1

Shekhter, R. I., L. Y. Gorelik, A. Isacsson, Y. M. Galperin, and M. Jonson. "Nanoelectromechanics of Coulomb Blockade Nanostructures." In Proceedings of the Nobel Jubilee Symposium. CO-PUBLISHED WITH PHYSICA SCRIPTA AND THE ROYAL SWEDISH ACADEMY OF SCIENCES, 2003. http://dx.doi.org/10.1142/9789812791269_0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Webb, R. A., V. Chandrasekhar, and Z. Ovadyahu. "Coulomb blockade effects in disordered wires." In Molecular electronics—Science and Technology. AIP, 1992. http://dx.doi.org/10.1063/1.42660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fraboulet, D., X. Jehl, D. Mariolle, C. Le Royer, G. Le Carval, P. Scheiblin, P. Rivallin, et al. "Coulomb Blockade in Thin SOI Nanodevices." In 32nd European Solid-State Device Research Conference. IEEE, 2002. http://dx.doi.org/10.1109/essderc.2002.194951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kaufman, I. Kh, W. Gibby, D. G. Luchinsky, P. V. E. McClintock, and R. S. Eisenberg. "Coulomb blockade oscillations in biological ion channels." In 2015 International Conference on Noise and Fluctuations (ICNF). IEEE, 2015. http://dx.doi.org/10.1109/icnf.2015.7288558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, I. H., C. C. Wang, and P. W. Li. "Designer Ge quantum dots Coulomb blockade thermometry." In 2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA). IEEE, 2014. http://dx.doi.org/10.1109/vlsi-tsa.2014.6839670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Barua, Sourabh, Rohan Poojary, and K. P. Rajeev. "Observation of Coulomb blockade and Coulomb staircase in a lateral metal nanostructure." In SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4791038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hahtela, O. M., M. Meschke, A. Savin, D. Gunnarsson, M. Prunnila, J. S. Penttilä, L. Roschier, M. Heinonen, A. Manninen, and J. P. Pekola. "Investigation of uncertainty components in Coulomb blockade thermometry." In TEMPERATURE: ITS MEASUREMENT AND CONTROL IN SCIENCE AND INDUSTRY, VOLUME 8: Proceedings of the Ninth International Temperature Symposium. AIP, 2013. http://dx.doi.org/10.1063/1.4819529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

AMAHA, SHINICHI, TSUYOSHI HATANO, SATOSHI SASAKI, TOSHIHIRO KUBO, YASUHIRO TOKURA, and SEIGO TARUCHA. "COULOMB BLOCKADE PROPERTIES OF 4-GATED QUANTUM DOT." In Proceedings of the International Symposium. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812814623_0030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

van Kempen, H., R. T. M. Smokers, and P. J. M. vanBentum. "The Coulomb Blockade in STM-type Tunnel Junctions." In Scanned probe microscopy. AIP, 1991. http://dx.doi.org/10.1063/1.41428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hahtela, O. M., A. Kemppinen, J. Lehtinen, A. J. Manninen, E. Mykkanen, M. Prunnila, N. Yurttagul, et al. "Coulomb Blockade Thermometry on a Wide Temperature Range." In 2020 Conference on Precision Electromagnetic Measurements (CPEM 2020). IEEE, 2020. http://dx.doi.org/10.1109/cpem49742.2020.9191726.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Coulomb blockade"

1

Ai, Nan, Onejae Sul, Milan Begliarbekov, Qiang Song, Kitu Kumar, Daniel S. Choi, Eui-Hyeok Yang, and Stefan Strauf. Transconductance and Coulomb Blockade Properties of In-Plane Grown Carbon Nanotube Field Effect Transistors. Fort Belvoir, VA: Defense Technical Information Center, April 2010. http://dx.doi.org/10.21236/ada524117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cleland, A. N. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions. Office of Scientific and Technical Information (OSTI), April 1991. http://dx.doi.org/10.2172/5511727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

van der Heijden, Joost. Optimizing electron temperature in quantum dot devices. QDevil ApS, March 2021. http://dx.doi.org/10.53109/ypdh3824.

Full text
Abstract:
The performance and accuracy of quantum electronics is substantially degraded when the temperature of the electrons in the devices is too high. The electron temperature can be reduced with appropriate thermal anchoring and by filtering both the low frequency and radio frequency noise. Ultimately, for high performance filters the electron temperature can approach the phonon temperature (as measured by resistive thermometers) in a dilution refrigerator. In this application note, the method for measuring the electron temperature in a typical quantum electronics device using Coulomb blockade thermometry is described. This technique is applied to find the readily achievable electron temperature in the device when using the QFilter provided by QDevil. With our thermometry measurements, using a single GaAs/AlGaAs quantum dot in an optimized experimental setup, we determined an electron temperature of 28 ± 2 milli-Kelvin for a dilution refrigerator base temperature of 18 milli-Kelvin.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography