Chatre, Lucas. "Étude et modélisation des phénomènes de transport et réactionnels dans un four à vis." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASB034.
Abstract:
Les convoyeurs à vis sont très largement utilisés dans l'industrie chimique. Du fait de leur capacité de mélange et de transport, ils sont mis en œuvre pour différentes applications (convoyage, séchage, pyrolyse, etc.). Cette technologie se voit ainsi utilisée dans le retraitement de matière nucléaire, notamment pour stabiliser des oxalates de plutonium en oxyde. De nombreuses études ont été menées à l'échelle du laboratoire afin d'établir précisément les mécanismes réactionnels par analyse thermogravimétrique (ATG) et les propriétés physico-chimiques des espèces mises en jeu. Il s'agit de réactions de décomposition thermique de chaînes carbonées couplées en phase hétérogène (réactions solide/gaz). Dans un four à vis, les phénomènes de transfert de chaleur, de matière et de quantité de mouvement peuvent significativement modifier la vitesse de réaction apparente et par conséquent l'avancement de la calcination. L'objectif de ce travail est d'améliorer un outil de simulation phénoménologique, permettant de transposer vers les plus grandes échelles les résultats des études menées en ATG sur de petites quantités de poudre supposées uniformes à chaque instant en composition et en température. Ce travail est réalisé en uranium, utilisé comme simulant du plutonium.L'outil de simulation est basé sur un modèle compartimenté, lié à l'hydrodynamique des poudres dans le réacteur. Ainsi, une majeure partie de la thèse se focalise sur l'écoulement à l'échelle globale et locale. Pour le mélange global, le point de débordement, caractérisant le changement de régime hydrodynamique, a été identifié. La Distribution des Temps de Séjour (DTS) a également été mesurée. Des modèles adimensionnels ont été élaborés pour prédire à la fois le point de débordement et la forme de la DTS. Pour le mélange local, deux études expérimentales ont été menées, en utilisant un système optique et des outils de traitement d'images. La première s'est intéressée au renouvellement de la surface du lit de poudre et la seconde au renouvellement des particules dans l'entrefer vis-tube. Ces études hydrodynamiques permettent de mieux comprendre et donc modéliser, respectivement les interactions gaz/solide et solide/paroi. Des modèles adimensionnels ont été développés pour prédire ces paramètres caractéristiques. Enfin, l'écoulement des poudres a pu être étudié en détail grâce à la modélisation de la rhéologie par mécanique des fluides numériques (CFD). En premier lieu, le modèle d'écoulement et ses paramètres ont été calibrés à partir de mesures expérimentales obtenues dans un tambour tournant ; appareil de géométrie plus simple et où la dynamique des poudres est similaire à celle observée dans un convoyeur à vis. Ce modèle a par la suite été confronté avec succès aux mesures expérimentales réalisées sur les maquettes à l'échelle pilote. Au final, le modèle a pu fournir des informations sur des données difficilement accessibles expérimentalement au sein d'un convoyeur à vis, comme l'épaisseur de la surface active ou les vitesses d'écoulement à l'intérieur de la poudre.Des études en ATG couplée à une analyse de calorimétrie différentielle à balayage (ATG/DSC) ont été menées afin d'obtenir des données cinétiques et thermochimiques robustes sur la calcination de l'oxalate d'uranium sous atmosphère oxydante et inerte, ainsi que sur la conversion de l'UO2 en U3O8. Enfin, les signaux ATG obtenus expérimentalement ont pu être modélisés, validant les paramètres cinétiques.L'outil de simulation du four à vis a été amélioré grâce à une meilleure représentation des phénomènes ayant lieu dans ce type de réacteur pendant la calcination de l'oxalate d'uranium. Ces améliorations permettent d'avoir accès aux différents profils de température et de concentration de toutes les espèces dans différentes zones prédéfinies. L'outil de simulation est capable de prédire des données expérimentales mesurées sur le four à vis pilote<br>Screw conveyors are widely used in the chemical industry. Thanks to their mixing and transport capacity, they are used for a variety of applications (conveying, drying, pyrolysis, etc.). This technology is also used in the reprocessing of nuclear materials, in particular to stabilise plutonium oxalates into oxides. Numerous studies have been carried out on a laboratory scale to establish precisely the reaction mechanisms using thermogravimetric analysis (TGA) and the physico-chemical properties of the species involved. The reactions involved are thermal decomposition of coupled carbon chains in a heterogeneous phase (solid/gas reactions). In a screw kiln reactor, heat, mass and momentum transfer phenomena can significantly modify the apparent reaction rate and consequently the progress of the calcination. The aim of this work is to improve a phenomenological simulation tool, enabling the transposition to larger scales the results of studies carried out in TGA on small quantities of powder assumed to be uniform in composition and temperature at all times. This work is carried out in uranium, used as a simulant for plutonium.The simulation tool is based on a compartment model, linked to the hydrodynamics of the powders in the reactor. Thus, a major part of the thesis focuses on the flow at the global and local scales. With regard to global mixing, the overflow point, which characterises the change in hydrodynamic regime, has been identified. The Residence Time Distribution (RTD) was also measured. Dimensionless models were developed to predict both the overflow point and the shape of the RTD. Concerning the local mixing, two experimental studies were carried out, using an optical system and image processing tools. The first one looked at the renewal of the surface of the powder bed, while the second one at the renewal of the particles within the screw-tube clearance. These hydrodynamic studies will allow a better understanding and a modeling of gas/solid and solid/wall interactions respectively. Dimensionless models have been developed to predict these characteristic parameters. Finally, the powder flow was studied in detail by modelling the rheology using Computational Fluid Dynamics (CFD). First, the flow model and its parameters were calibrated using experimental measurements obtained in a rotating drum, a device with a simpler geometry and where the powder dynamics are similar to those observed in a screw conveyor. This model was then successfully compared with the experimental measurements carried out on the pilot-scale models. In the end, the model was able to provide information on data that is difficult to access experimentally within a screw conveyor, such as the thickness of the active layer or the flow velocities within the powder.TGA coupled with differential scanning calorimetry (TGA/DSC) studies were carried out to obtain robust kinetic and thermochemical data on the calcination of uranium oxalate in an oxidising and inert atmosphere, as well as on the conversion of UO2 to U3O8. Finally, the TGA signals obtained experimentally were modeled to validate the kinetic parameters.The screw kiln reactor simulation tool has been improved with a better representation of the phenomena taking place during the calcination of uranium oxalate in such apparatus. These improvements give access to the different temperature and concentration profiles of all the species in different predefined zones. The simulation tool is capable of predicting experimental data measured on the pilot screw kiln reactor