Academic literature on the topic 'COTTEN SEED OIL'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'COTTEN SEED OIL.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "COTTEN SEED OIL"
Pahlavani, M., A. Miri, and G. Kazemi. "Response of oil and protein content to seed size in cotton(Gossypium hirsutum L., cv. Sahel)." Plant Breeding and Seed Science 59, no. 1 (January 1, 2009): 53–64. http://dx.doi.org/10.2478/v10129-009-0004-8.
Full textReynolds, C. K., R. H. Phipps, A. K. Jones, and D. E. Beever. "Milk production response of lactating dairy cows to dietary fat from three sources." Proceedings of the British Society of Animal Science 1998 (1998): 223. http://dx.doi.org/10.1017/s1752756200598755.
Full textReynolds, C. K., R. H. Phipps, A. K. Jones, and D. E. Beever. "Milk production response of lactating dairy cows to dietary fat from three sources." Proceedings of the British Society of Animal Science 1998 (1998): 223. http://dx.doi.org/10.1017/s030822960003436x.
Full textReynolds, C. K., D. J. Humphries, J. D. Sutton, B. Lupoli, R. H. Phipps, and D. E. Beever. "Rumen and post-rumen digestion in lactating dairy cows fed fat from three sources." Proceedings of the British Society of Animal Science 2000 (2000): 91. http://dx.doi.org/10.1017/s1752756200000922.
Full textY Venkateshwarlu and B Vidya Vardhini. "Enhancement of yield by application of salicylic acid in two cotton varieties grown in semi-arid tropics of Nizamabad." Open Access Research Journal of Life Sciences 1, no. 2 (August 30, 2021): 001–5. http://dx.doi.org/10.53022/oarjls.2021.1.2.0107.
Full textMaeda, Andrea B., Jane K. Dever, Murilo M. Maeda, and Carol M. Kelly. "Cotton Seed Size – What is the “Fuzz” all About?" Journal of Cotton Science 23, no. 2 (April 2023): 81–89. http://dx.doi.org/10.56454/alqj7021.
Full textDowd, Michael K., Scott M. Pelitire, and Christopher D. Delhom. "Seed-Fiber Ratio, Seed Index, And Seed Tissue and Compositional Properties Of Current Cotton Cultivars." Journal of Cotton Science 22, no. 1 (2018): 60–74. http://dx.doi.org/10.56454/rjni8976.
Full textP, NAGARAJAN. "COMBINING ABILITY STUDIES ON OIL CONTENT IN RELATION TO FUZZ GRADES IN COTTON." Madras Agricultural Journal 84, February (1997): 63–65. http://dx.doi.org/10.29321/maj.10.a00839.
Full textZarbaliyeva, I. A. "SYNTHESIS AND PROPERTIES OF NEW SURFACTANTS BASED ON COTTON–SEED OIL TRIGLYCERIDES, ETHANOLAMINES AND ORTOPHOSPHORIC ACID." Azerbaijan Chemical Journal, no. 1 (2018): 31–36. http://dx.doi.org/10.32737/0005-2531-2018-1-31-36.
Full textK, RATHINAVEL, DHARMALINGAM C, and PANEERSEL VAM S. "EFFECT OF MICRONUTRIENT ON THE PRODUCTIVITY AND QUALITY OF COTTON SEED cv.TCB 209 (Gossypium barbadense L.)." Madras Agricultural Journal 86, june (1999): 313–16. http://dx.doi.org/10.29321/maj.10.a00610.
Full textDissertations / Theses on the topic "COTTEN SEED OIL"
Abdalla, A. El-S. M. "Fatty acids in germinating seeds of sunflower (Helianthus annuus) and cotton (Gossypium barbadense)." Thesis, University of Glasgow, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380400.
Full textBassan, Natália. "Modificação enzimática de óleos vegetais visando à obtenção de triglicerídeos dietéticos através do emprego de reatores de tanque agitado e leito fixo." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/152510.
Full textApproved for entry into archive by Maria Irani Coito null (irani@fcfar.unesp.br) on 2018-01-18T10:31:18Z (GMT) No. of bitstreams: 1 Diseertassão _NATALIA_IMPRESSA_15 janeiro 2018_AN vancouver_CORRIGIDA_Repósitório.doc: 2779648 bytes, checksum: 02c7a7808d0127cdc16506f50f009392 (MD5)
Made available in DSpace on 2018-01-18T10:31:19Z (GMT). No. of bitstreams: 1 Diseertassão _NATALIA_IMPRESSA_15 janeiro 2018_AN vancouver_CORRIGIDA_Repósitório.doc: 2779648 bytes, checksum: 02c7a7808d0127cdc16506f50f009392 (MD5) Previous issue date: 2017-11-28
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Objetivo: o presente trabalho teve como objetivo a síntese enzimática de lipídeos estruturados a partir dos óleos de semente de uva e algodão, especificamente os triglicerídeos dietéticos do tipo MLM (médio:longo:médio), ou seja, aqueles que possuem ácidos graxos de cadeia média (M), em posições sn-1 e sn-3, e de cadeia longa (L), na posição interna da molécula de triacilglicerol. Métodos: fez-se a caracterização das matérias primas (óleos de semente de uva e algodão) e dos TAGs (triglicerídeos) modificados em relação aos índices de acidez, peróxido, perfil em ácidos graxos por cromatografia gasosa e determinação da posição sn-2. Determinou-se as atividades de hidrólise e de esterificação das lipases empregadas. Utilizou-se um planejamento de experimentos (DCCR- Central Composite Rotatable Design) para verificar a influência de razão molar e temperatura sobre o grau de incorporação (GI) do ácido graxo de cadeia média. Por fim fez-se a caracterização hidrodinâmica do reator de leito fixo e/ou empacotado. Resultados: os resultados mostraram que as matérias primas estão dentro dos padrões de especificação (0,6 mg KOH/g para acidez e 10 meq/kg para peróxido), fornecendo valores semelhantes, independentemente do óleo analisado. Os óleos foram ainda caracterizados quanto à composição em ácidos graxos por cromatografia gasosa. Ambos apresentaram altas quantidades de ácidos graxos insaturados, ressaltando-se o essencial ácido linoleico (C18:2n6). Em seguida, foram efetuadas reações de acidólise, visando-se à seleção do ácido graxo e do biocatalisador. Para o óleo de uva, foram obtidos valores de grau de incorporação (GI, %) que variaram de 23,62±1,34 a 34,53±0,05%. Os melhores resultados foram obtidos empregando-se C10 como ácido graxo e a lipase Lipozyme RM IM (34,53±0,05%). Para o óleo de algodão, os melhores resultados de GI também foram obtidos empregando-se C10:0 e a lipase Lipozyme RM IM (36,63±0,23%), e o GI variou de 22,92±4,35 a 36,63±0,23%. Finalmente, realizou-se um planejamento de experimentos (DCCR) que avaliou a influência de razão molar e temperatura sobre o grau de incorporação, observando-se que apenas razão molar obteve influência significativa sobre o grau de incorporação. Com relação às reações de acidólise em leito fixo, estas foram conduzidas empregando-se tempo espacial de 1 hora, e o GI máximo foi em torno de 35% para ambos os óleos. Conclusão: diante do exposto, foi possível sintetizar triglicerídeos dietéticos do tipo MLM a partir dos óleos de semente de uva e algodão, utilizando reatores de tanque agitado e leito fixo.
Objective: the objective of the present work was the enzymatic synthesis of structured lipids from grape and cottonseed oils, specifically the MLM type dietary triglycerides, that is, those with medium chain fatty acids (M), in positions sn-1 and sn-3, and long-chain (L), in the internal position of the triacylglycerol molecule. Methods: The raw materials (grape and cottonseed oils) and the modified TAGs (triglycerides) were characterized in relation to the acid, peroxide, fatty acid profile by gas chromatography and the sn-2 position determination. The hydrolysis and esterification activities of the lipases employed were determined. A DCCR (Central Composite Rotatable Design) was used to verify the influence of molar ratio and temperature on the degree of incorporation (ID) of the medium chain fatty acid. Finally, the hydrodynamic characterization of the fixed bed reactor and / or packaged was performed. Results: The results showed that the raw materials are within the specification standards (0.6 mg KOH / g for acidity and 10 meq / kg for peroxide), providing similar values regardless of the oil analyzed. The oils were further characterized for fatty acid composition by gas chromatography. Both presented high amounts of unsaturated fatty acids, emphasizing the essential linoleic acid (C18: 2n6). Then, acidolysis reactions were carried out, aiming at the selection of the fatty acid and the biocatalyst. For the grape oil, values of degree of incorporation (ID,%) ranging from 23.62±1.34 to 34.53±0.05% were obtained. The best results were obtained using C10:0 as fatty acid and Lipozyme RM IM lipase (34.53 ± 0.05%). For cotton oil, the best ID results were also obtained using C10 and Lipozyme RM IM lipase (36.63 ± 0.23%), and ID ranged from 22.92 ± 4.35 to 36.63 ± 0.23%. Finally, an experiment planning (DCCR) was carried out, which evaluated the influence of molar ratio and temperature on the degree of incorporation, observing that only molar ratio had a significant influence on the degree of incorporation. In relation to the fixed bed acidolysis reactions, these were conducted using 1 hour spatial time, and the maximum ID was around 35% for both oils. Conclusion: in view of the above, it was possible to synthesize MLM type dietary triglycerides from the grape and cottonseed oils, using batch and fixed bed reactors.
CNPq: 446371/2014-9
MANISHA. "AN EXPERIMENTAL ANALYSIS OF SOLAR ASSISTED BIO DIESEL PRODUCTION FROM COTTON SEED OIL." Thesis, 2016. http://dspace.dtu.ac.in:8080/jspui/handle/repository/15218.
Full textRibeiro, Maria de Fátima Pereira. "Monitoring transesterification reaction of cotton-seed oil using viscosity measurements for biodiesel production." Master's thesis, 2018. http://hdl.handle.net/10316/98140.
Full textO principal objetivo deste trabalho é relacionar a viscosidade do biodiesel com a conversão da reação de transesterificação. Fixando as condições de operação, a reação de transesterificação foi parada em diferentes tempos de reação com ácido sulfúrico e gelo e de seguida regista-se a viscosidade da mistura durante alguns minutos até que esta estabilize. Verifica-se que a quantidade de ácido usada em nada está relacionada com a conversão da reação de transesterificação. A quantidade de ácido usada não para a reação, mas sim torna-a mais lenta e leva a curvas que relacionam a viscosidade com o tempo de medição com menos erros associados. De cada experiência é formada uma mistura de duas camadas imiscíveis, a parte do biodiesel (camada superior) e a do glicerol (camada inferior). De cada reação e retirada uma pequena amostra da camada superior para análise. É possível relacionar a viscosidade com o tempo de reação através de um modelo do tipo logarítmico. Numa segunda faze as amostras coletadas seguem para análise onde é possível fazer uma caracterização do biodiesel em diferentes fases da reação. Através das curvas padrão desenhadas recorrendo ao free acid methylesters vulgarmente encontrados na transesterificação de óleo de algodão é possível fazer uma análise quantitativa do biodiesel presente em cada amostra. O componente que se encontra em mais quantidade no óleo de algodão é o Lenoleato. Tal é provado pelos resultados obtidos pela integração manual relacionada com os tempos de retenção de cada padrão usado. Recorrendo à integração manual dos picos registados pelo HPLC procede-se a uma análise qualitativa das amostras. Através destas análises verifica-se uma relação entre a viscosidade da reação, o tempo e a concentração de FAME’s nas amostras. Assim sendo é provado que sabendo a viscosidade é possível saber a conversão da reação num dado período do tempo escolhido. É ainda possível ver diferenças, em termos visuais, as amostras feitas. Quanto maior for o tempo de reação mais límpida se torna a camada superior da mistura que é associada ao biodiesel formado. Pode ainda provar-se que a relação entre a percentagem de Triglicéridos presentes nas amostras e a sua viscosidade. Quanto maior for a quantidade de TG na amostra maior será a sua viscosidade. Por ultimo na análise cinética da reação foram estudadas duas ordens diferentes, primeira e segunda. Vê-se que a de segunda ordem apresenta um comportamento mais semelhante com os pontos experimentais apesar de que os erros associados a medições e considerações nesta etapa estarem sempre presentes.
The main objective of the work presented is to connect biodiesel viscosity with transesterification conversion. For the same operating conditions transesterification reaction was stopped in different times during the reaction with sulfuric acid and ice then, viscosity measure of the mixture was taken during a few minutes until t reaches a stable value. It is safe to say that the acid quantity used to stop the reaction is not related to transesterification conversion. The acid added to the mixture does not stop the reaction, it only turns it slower in order to take all the necessary measures. When a higher amount of acid is added the reaction becomes slower and the errors obtained from the measures are lower. From each experience, a two immiscible layer mixture is formed, the biodiesel part (upper layer) and the glycerol layer (lower part). A sample of the upper layer is taken from each experience for further analysis. It is possible to adjust the viscosity measured with reaction time by using a logarithmic model type. On a second step of the project, the samples collected go to analyses where it is possible to make a full characterization of the biodiesel in different steps. Recurring to the pattern curves made from the free acid methyl esters usually, present in the transesterification of cottonseed oil it is possible to make a quantitative analysis of the biodiesel present in every sample. Using manual integration of the peaks given by the HPLC analysis it is also possible to make a qualitative analysis. The main compound of the cotton-seed oil is Linoleic acid. This is proven by the results obtained from the manual integration associated with the patterns retention times. With the results from the manual integration of the chromatograms peaks, it is performed a qualitative analysis of the samples.From these experiences is it verified a common relation between viscosity, reaction time and FAME concentration in the samples. Therefore, it is proved that by knowing the viscosity of the mixture at a certain time during the reaction it is possible to know the conversion at the same time. It is also possible to see the visual differences between the samples made. For higher reaction times the upper layer from the resulting reaction becomes more clear. The upper layer is associated with the biodiesel produced. It is also possible to prove a clear relation between the TG percentage presented in the samples and it’s viscosity. For samples with more TG it viscosity is also higher. It was also performed a kinetics evaluation for two different orders, first and second. It is possible to note that the second order behavior seems to cover the lab results in a better way. It is also important to notice that the errors on the part of the project are always present.
Books on the topic "COTTEN SEED OIL"
Cohen, Timothy M. Survey of cotton gin and oil seed trash disposal practices and preferences in the western U.S. [Las Cruces, N.M.]: New Mexico State University, Agricultural Experiment Station, 1992.
Find full textInstitute of Economic and Market Research., ed. Status and prospects of selected oils and oilseeds in India: Safflower, niger, cotton seed, coconut, palm oil, rice bran, linseed, castor, tree oils. New Delhi: Institute of Economic & Market Research, 1993.
Find full textCommons, Canada Parliament House of. Bill: An act respecting the Dominion Cotton Mills Company (Limited). Ottawa: S.E. Dawson, 2003.
Find full textCommons, Canada Parliament House of. Bill: An act respecting the Dominion [Oil] Pipe Line and Manufacturing Company. Ottawa: S.E. Dawson, 2003.
Find full textCanada. Parliament. House of Commons. Bill: An act to amend the General inspection act so as to provide a grade for flax seed. Ottawa: S.E. Dawson, 2003.
Find full textCommons, Canada Parliament House of. Bill: An act to incorporate the Canadian Lo[an] and Investment Company. Ottawa: S.E. Dawson, 2003.
Find full textCommons, Canada Parliament House of. Bill: An act to incorporate the Quebec [and] New Brunswick Railway Company. Ottawa: S.E. Dawson, 2003.
Find full textCommons, Canada Parliament House of. Bill: An act to supervise and control th[e] warehousing, inspecting and weig[h]ing of grain in Manitoba and th[e] North-west Territories. Ottawa: S.E. Dawson, 2003.
Find full textCommons, Canada Parliament House of. Bill: An act to incorporate the St. Clair River Railway Bridge and Tunnel Company. Ottawa: I.B. Taylor, 2002.
Find full textCommons, Canada Parliament House of. Bill: An act to incorporate the Holiness Mov[e]ment (or Church) in Canada. Ottawa: S.E. Dawson, 2003.
Find full textBook chapters on the topic "COTTEN SEED OIL"
Senthilkumar, G., S. Lakshmi Sankar, and M. Purusothaman. "Testing the Engine Performance with Cotton Seed Oil Biodiesel." In Recent Advances in Manufacturing, Automation, Design and Energy Technologies, 921–26. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4222-7_100.
Full textde Oliveira Filho, Josemar Gonçalves, Mirella Romanelli Vicente Bertolo, Gabrielle Victoria Gautério, Giovana Maria Navarro de Mendonça, Ailton Cesar Lemes, and Mariana Buranelo Egea. "Bioactive Phytochemicals from Cotton (Gossypium hirsutum) Seed Oil Processing By-products." In Reference Series in Phytochemistry, 1–16. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63961-7_8-1.
Full textde Oliveira Filho, Josemar Gonçalves, Mirella Romanelli Vicente Bertolo, Gabrielle Victoria Gautério, Giovana Maria Navarro de Mendonça, Ailton Cesar Lemes, and Mariana Buranelo Egea. "Bioactive Phytochemicals from Cotton (Gossypium hirsutum) Seed Oil Processing By-products." In Reference Series in Phytochemistry, 139–54. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-91381-6_8.
Full textHegde, Ramakrishna N., and B. Jagadeesh. "Engine Performance and Emission Studies with Cotton Seed—Simarouba and Cotton Seed—Mahua Oil Blends as a Partial Replacement Biofuel." In Lecture Notes in Mechanical Engineering, 125–35. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5996-9_10.
Full textRupesh, S., Chris Ben Xavier, and Christy Thomas Sani. "Effect of Operating Parameters on Biodiesel Yield from Transesterification of Cotton Seed Oil." In Green Energy and Technology, 477–84. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2279-6_41.
Full textDevi, Nirmala, Amrit Puzari, and Parineeta Das. "Cotton (Bombax ceiba) Seed Oil: Applications in the Synthesis of Polymer Resins and Blends." In Encyclopedia of Green Materials, 1–9. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4921-9_121-1.
Full textDas, Parineeta, Amrit Puzari, and Nirmala Devi. "Cotton (Bombax ceiba) Seed Oil: Applications in the Synthesis of Polymer Resins and Blends." In Encyclopedia of Green Materials, 1–9. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-16-4921-9_121-2.
Full textNallamothu, Ramesh Babu, Nallamothu Anantha Kamal, Nallamothu Seshu Kishan, Injeti Nanaji Niranjan Kumar, and Basava Venkata Appa Rao. "Effect of Multiple Injection Strategy on Combustion of Cotton Seed Oil Biodiesel in CRDI Diesel Engine." In Lecture Notes in Mechanical Engineering, 107–19. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1124-0_9.
Full textLee, Ivan C., Adam Gamson, and Jonathan Mitchell. "High-Performance Thin Layer Chromatography and Raman Microscopy of Cotton and Other Seed Oils." In Physical Methods in Food Analysis, 1–16. Washington, DC: American Chemical Society, 2013. http://dx.doi.org/10.1021/bk-2013-1138.ch001.
Full textOza, Suvik, Pravin Kodgire, and Surendra Singh Kachhwaha. "Analysis of RSM Method for Optimization of Ultrasound-Assisted KOH Catalyzed Biodiesel Production from Waste Cotton-Seed Cooking Oil." In Applied Mathematical Modeling and Analysis in Renewable Energy, 132–48. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003159124-9.
Full textConference papers on the topic "COTTEN SEED OIL"
Ayomani, M. A. E., J. M. C. Hansadi, and S. Wijayapala. "Investigating the Ability to Transfer Antimicrobial Properties of Neem Seed Oil to Cotton Knitted Fabrics." In 2018 Moratuwa Engineering Research Conference (MERCon). IEEE, 2018. http://dx.doi.org/10.1109/mercon.2018.8421903.
Full textKumaravelu, C., A. Ravi, A. Gopal, and Jayshil Joshi. "Estimation of oil content of single cotton seed using NIR spectrometer by area under curve method." In 2017 Trends in Industrial Measurement and Automation (TIMA). IEEE, 2017. http://dx.doi.org/10.1109/tima.2017.8064798.
Full textMurali Krishna, B., and J. M. Mallikarjuna. "Renewable Biodiesel From CSO: A Fuel Option for Diesel Engines." In ASME 2006 International Solar Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/isec2006-99051.
Full textB, Prabakaran. "Influence of Butanol and Nano Titanium Oxide into Non Edible Cotton Seed Oil Biodiesel on the Performance of CI Engine." In SAE Powertrains, Fuels & Lubricants Meeting. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2020-01-2134.
Full textTurdiboyev, Abduvali, Urolboy Khaliknazarov, Dilmurod Akbarov, Musodilla Kholiyarov, Sokhiba Abdullaeva, and Tuxtasin Butaev. "Study on the energy efficiency issues in extracting fat and oils from cotton seeds." In 2ND INTERNATIONAL CONFERENCE ON ENERGETICS, CIVIL AND AGRICULTURAL ENGINEERING 2021 (ICECAE 2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0112950.
Full textСулейменова, Мария Шаяхметовна, and Алтынайым Сейфулақызы Турдалиева. "INFLUENCE OF EMULSIFIERS ON THE STABILITY OF EMULSIONS." In Технические и естественные науки: сборник избранных статей по материалам Международной научной конференции (Санкт-Петербург, Апрель 2022). Crossref, 2022. http://dx.doi.org/10.37539/tns302.2022.93.49.004.
Full textGnanasikamani, Balaji, Sureshkumar K, and Cheralathan Marimuthu. "Experimental Investigation on CO2 Reduction in Exhaust Gases of CI Engine Fuelled with Blend of Cotton Seed Oil Methyl Ester and Diesel." In International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2018. http://dx.doi.org/10.4271/2018-28-0035.
Full textSujak, Subiyakto, and Dwi Adi Sunarto. "Effectiveness of Botanical Insecticide Mixture of Neem Seed Extract and Citronella Oil Against Cotton Bollworm (Helicoverpa armigera Hubner) and Armyworm (Spodoptera litura Fabricius)." In International Conference and the 10th Congress of the Entomological Society of Indonesia (ICCESI 2019). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/absr.k.200513.031.
Full textFilintas, Agathos, Aikaterini Nteskou, Persefoni Katsoulidi, Asimina Paraskebioti, and Marina Parasidou. "Rainfed and Supplemental Irrigation Modelling 2D GIS Moisture Rootzone Mapping on Yield and Seed Oil of Cotton (Gossypium hirsutum) Using Precision Agriculture and Remote Sensing." In EFITA International Conference. Basel Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/engproc2021009037.
Full textElkelawy, Medhat, Hagar Bastawissi, S. Chandra Sekar, K. Karuppasamy, N. Vedaraman, Karuppiah Sathiyamoorthy, and Ravishankar Sathyamurthy. "Numerical and Experimental Investigation of Ethyl Alcohol as Oxygenator on the Combustion, Performance, and Emission Characteristics of Diesel/Cotton Seed Oil Blends in Homogenous Charge Compression Ignition Engine." In International Powertrains, Fuels & Lubricants Meeting. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2018. http://dx.doi.org/10.4271/2018-01-1680.
Full textReports on the topic "COTTEN SEED OIL"
Monetary Policy Report - July 2022. Banco de la República, October 2022. http://dx.doi.org/10.32468/inf-pol-mont-eng.tr3-2022.
Full text