Academic literature on the topic 'Cosmological phase transitions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cosmological phase transitions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cosmological phase transitions"
KIM, SANG PYO. "DYNAMICAL THEORY OF PHASE TRANSITIONS AND COSMOLOGICAL EW AND QCD PHASE TRANSITIONS." Modern Physics Letters A 23, no. 17n20 (June 28, 2008): 1325–35. http://dx.doi.org/10.1142/s0217732308027692.
Full textAthron, Peter, Csaba Balázs, and Lachlan Morris. "Supercool subtleties of cosmological phase transitions." Journal of Cosmology and Astroparticle Physics 2023, no. 03 (March 1, 2023): 006. http://dx.doi.org/10.1088/1475-7516/2023/03/006.
Full textBuckley, Matthew R., Peizhi Du, Nicolas Fernandez, and Mitchell J. Weikert. "Dark radiation isocurvature from cosmological phase transitions." Journal of Cosmology and Astroparticle Physics 2024, no. 07 (July 1, 2024): 031. http://dx.doi.org/10.1088/1475-7516/2024/07/031.
Full textHogan, C. J. "Gravitational radiation from cosmological phase transitions." Monthly Notices of the Royal Astronomical Society 218, no. 4 (February 1, 1986): 629–36. http://dx.doi.org/10.1093/mnras/218.4.629.
Full textMÉGEVAND, ARIEL. "GRAVITATIONAL WAVES FROM COSMOLOGICAL PHASE TRANSITIONS." International Journal of Modern Physics A 24, no. 08n09 (April 10, 2009): 1541–44. http://dx.doi.org/10.1142/s0217751x09044966.
Full textKurki-Suonio, H., and M. Laine. "Supersonic deflagrations in cosmological phase transitions." Physical Review D 51, no. 10 (May 15, 1995): 5431–37. http://dx.doi.org/10.1103/physrevd.51.5431.
Full textVachaspati, Tanmay. "Magnetic fields from cosmological phase transitions." Physics Letters B 265, no. 3-4 (August 1991): 258–61. http://dx.doi.org/10.1016/0370-2693(91)90051-q.
Full textDurrer, Ruth. "Gravitational waves from cosmological phase transitions." Journal of Physics: Conference Series 222 (April 1, 2010): 012021. http://dx.doi.org/10.1088/1742-6596/222/1/012021.
Full textAthron, Peter, Lachlan Morris, and Zhongxiu Xu. "How robust are gravitational wave predictions from cosmological phase transitions?" Journal of Cosmology and Astroparticle Physics 2024, no. 05 (May 1, 2024): 075. http://dx.doi.org/10.1088/1475-7516/2024/05/075.
Full textJinno, Ryusuke, Thomas Konstandin, Henrique Rubira, and Isak Stomberg. "Higgsless simulations of cosmological phase transitions and gravitational waves." Journal of Cosmology and Astroparticle Physics 2023, no. 02 (February 1, 2023): 011. http://dx.doi.org/10.1088/1475-7516/2023/02/011.
Full textDissertations / Theses on the topic "Cosmological phase transitions"
Ferreira, Pedro Tonnies Gil. "Observational consequences of cosmological phase transitions." Thesis, Imperial College London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338692.
Full textLarsson, Sebastian E. "Topological defects from cosmological phase transitions." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298309.
Full textAdams, Jennifer Anne. "Cosmological phase transitions : techniques and phenomenology." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306935.
Full textLilley, Matthew James. "Cosmological phase transitions and primordial magnetic fields." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621001.
Full textFaure, Rémi. "Neutrinos, cosmological phase transitions and the matter-antimatter asymmetry of the Universe." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP081.
Full textThe baryon asymmetry in our Universe is an unsolved problem in cosmology. A popular approach for explaining it is leptogenesis with sterile neutrinos, which are particles motivated in order to explain the masses of active neutrinos in the Standard Model. It is possible to include in these scenarios a cosmological phase transition which gives rise to the sterile neutrino masses. This idea is phenomenologically interesting, as such a phase transition could produce detectable gravitational waves. At the temperature T of the phase transition, sterile neutrinos acquire a mass M. Two mechanisms are considered. For non-relativistic sterile neutrinos M>T, deviating from equilibrium due to the phase transition, they will quickly decay and produce a lepton asymmetry. The rapidity of the phase transition allows a larger sterile neutrino population than in usual scenarios and enhances the created asymmetry. Numerical analyses describe the successful regions in parameter space for leptogenesis. For relativistic sterile neutrinos M
Dichtl, Maximilian. "Aspects of cosmological first order phase transitions : propagation of ultra-relativistic shells, heavy dark matter, and baryogenesis." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS181.
Full textFirst order phase transitions (PT) in the early universe happen via the nucleation of bubbles whose walls can expand at ultra-relativistic velocities. Interactions of the thermal bath at the wall produce particles which accumulate in shells at the wall. The shells evolve until they collide with those from neighboring bubbles. In this thesis we first study the evolution of these shells, including for the first time number changing interactions of the shell within itself and with the thermal bath. In particular, we calculate the rates of the dominant 3 → 2 scattering processes, and find they can be more important than all other processes considered in previous literature. We identify the regions of parameter space of the PT where the shells free stream, i.e. they have negligible interactions within themselves and with the bath. We then use these results to predict the rate and energy with which particles of opposite bubbles collide. We find that these particle collisions can reach scattering energies much larger than the scale of the PT, which in turn can be used to produce highly energetic particles or particles much heavier than the scale of the PT, realising a cosmological 'bubbletron'. As an example, we show that one can produce heavy dark matter with masses above 10^3 TeV for scales of the PT of around 10 MeV, and with masses above the GUT scale for scales of the PT above about 10^9 GeV. PTs with ultra-relativistic walls are also relevant for any other process relying on out-of-equilibrium particle production. If the interaction between particles in the shell also violates Baryon number, C, and CP, then all three Sakharov conditions are satisifed, and one can use these PTs to explain the baryon asymmetry of the universe. We do so by proposing a mechanism of baryogenesis from supercooled confining PTs. We also compute the gravitational wave signature due to the PT in all the above scenarios. We find they could be seen by pulsar timing arrays and gravitational wave interferometers like LISA and the Einstein Telescope, realizing a new link between these telescopes and the possible origin of dark matter and of the baryon asymmetry of the universe
Martin, Adrian Peter. "Cosmological phase transition phenomena." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389880.
Full textChowdhury, Talal Ahmed. "A Possible Link between the Electroweak Phase Transition and the Dark Matter of the Universe." Doctoral thesis, SISSA, 2014. http://hdl.handle.net/20.500.11767/3883.
Full textManning, Adrian Gordon. "Quantum Fields in Curved Spacetime with Cosmological and Gravitational Wave Implications." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/17804.
Full textScott, Pat. "Searches for Particle Dark Matter Dark stars, dark galaxies, dark halos and global supersymmetric fits /." Doctoral thesis, Stockholm : Department of Physics, Stockholm University, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-38221.
Full textAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Accepted. Paper 6: Submitted. Härtill 6 uppsatser.
Books on the topic "Cosmological phase transitions"
Nagasawa, Michiyasu. Cosmological phase transitions and evolution of topological defects. [S.l.]: University of Tokyo, 1993.
Find full textNational Aeronautics and Space Administration (NASA) Staff. Late Time Cosmological Phase Transitions 1: Particle Physics Models and Cosmic Evolution. Independently Published, 2018.
Find full textMaggiore, Michele. Stochastic backgrounds of cosmological origin. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198570899.003.0013.
Full textMaggiore, Michele. Gravitational Waves. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198570899.001.0001.
Full textLate time cosmological phase transition I: Particle physics models and cosmic evolution. Batavia, Ill: Fermi National Accelerator Laboratory, 1991.
Find full textBook chapters on the topic "Cosmological phase transitions"
Kolb, Edward W. "Cosmological Phase Transitions." In Gravitation in Astrophysics, 307–27. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1897-2_11.
Full textSchramm, David N. "Late-Time Cosmological Phase Transitions." In Primordial Nucleosynthesis and Evolution of Early Universe, 225–42. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3410-1_31.
Full textBoyanovsky, D., H. J. Vega, and M. Simionato. "Primordial magnetic fields from cosmological phase transitions." In The Early Universe and the Cosmic Microwave Background: Theory and Observations, 65–100. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-1058-0_5.
Full textBäuerle, C., Yu M. Bunkov, S. N. Fisher, and H. Godfrin. "The ‘Grenoble’ Cosmological Experiment." In Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions, 105–20. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4106-2_6.
Full textKhlopov, Maxim Yu, and Sergei G. Rubin. "High Density Regions from First-Order Phase Transitions." In Cosmological Pattern of Microphysics in the Inflationary Universe, 171–98. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2650-8_8.
Full textGoldenfeld, Nigel. "Dynamics of Cosmological phase transitions: What can we learn from condensed matter physics?" In Formation and Interactions of Topological Defects, 93–104. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1883-9_4.
Full textBunkov, Yu M. "“Aurore De Venise” — Cosmological Scenario of the A-B Phase Transition in Superfluid 3He." In Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions, 121–37. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4106-2_7.
Full textGouttenoire, Yann. "First-Order Cosmological Phase Transition." In Beyond the Standard Model Cocktail, 267–355. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11862-3_6.
Full textBecker, Jörg D., and Lutz Castell. "Ur Theory and Cosmological Phase Transition." In Time, Quantum and Information, 421–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-10557-3_29.
Full textStock, Reinhard. "Relativistic Nucleus-Nucleus Collisions and the QCD Matter Phase Diagram." In Particle Physics Reference Library, 311–453. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38207-0_7.
Full textConference papers on the topic "Cosmological phase transitions"
Quirós, Mariano. "Cosmological phase transitions and baryogenesis." In The sixth Mexican workshop on particles and fields. American Institute of Physics, 1998. http://dx.doi.org/10.1063/1.56628.
Full textRummukainen, Kari, Stephan J. Huber, Mark B. Hindmarsh, and David Weir. "Gravitational waves from cosmological first order phase transitions." In The 33rd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.251.0233.
Full textBoyanovsky, D. "Primordial Magnetic Fields from Out of Equilibrium Cosmological Phase Transitions." In MAGNETIC FIELDS IN THE UNIVERSE: From Laboratory and Stars to Primordial Structures. AIP, 2005. http://dx.doi.org/10.1063/1.2077205.
Full textRakic, Aleksandar, Dennis Simon, Julian Adamek, and Jens Niemeyer. "Cosmological first-order phase transitions beyond the standard inflationary scenario." In International Workshop on Cosmic Structure and Evolution. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.097.0007.
Full textDumin, Yu V. "ON THE INFLUENCE OF EINSTEIN–PODOLSKY–ROSEN EFFECT ON THE DOMAIN WALL FORMATION DURING THE COSMOLOGICAL PHASE TRANSITIONS." In Proceedings of the Tenth Lomonosov Conference on Elementary Particle Physics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704948_0037.
Full textRomero-Rodríguez, Alba. "Implications for first-order cosmological phase transitions and the formation of primordial black holes from the third LIGO-Virgo observing run." In The European Physical Society Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.398.0113.
Full textHWANG, W. Y. P. "SOME THOUGHTS ON THE COSMOLOGICAL QCD PHASE TRANSITION." In Statistical Physics, High Energy, Condensed Matter and Mathematical Physics - The Conference in Honor of C. N. Yang'S 85th Birthday. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812794185_0005.
Full textSinha, Bikash. "Relics of the Cosmological Quark-Hadron Phase Transition." In Proceedings of the Sixth International Workshop. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799814_0007.
Full textTawfik, A., and Shaaban Khalil. "Cosmological Consequences of QCD Phase Transition(s) in Early Universe." In THE DARK SIDE OF THE UNIVERSE: 4th International Workshop on the Dark Side of the Universe. AIP, 2009. http://dx.doi.org/10.1063/1.3131505.
Full textAderaldo, Vinicius Simoes, and Victor Goncalves. "Cosmological implications of the QCD phase transition in the Early Universe." In XV International Workshop on Hadron Physics. Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.408.0026.
Full textReports on the topic "Cosmological phase transitions"
Kolb, E. W. Cosmological phase transitions. Office of Scientific and Technical Information (OSTI), September 1986. http://dx.doi.org/10.2172/5086987.
Full textLindesay, James V., and H. Pierre Noyes. Evidence for a Cosmological Phase Transition on the TeVScale. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/878749.
Full text