Academic literature on the topic 'Cosmological phase transition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cosmological phase transition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cosmological phase transition"
KIM, SANG PYO. "DYNAMICAL THEORY OF PHASE TRANSITIONS AND COSMOLOGICAL EW AND QCD PHASE TRANSITIONS." Modern Physics Letters A 23, no. 17n20 (June 28, 2008): 1325–35. http://dx.doi.org/10.1142/s0217732308027692.
Full textAthron, Peter, Csaba Balázs, and Lachlan Morris. "Supercool subtleties of cosmological phase transitions." Journal of Cosmology and Astroparticle Physics 2023, no. 03 (March 1, 2023): 006. http://dx.doi.org/10.1088/1475-7516/2023/03/006.
Full textBoeckel, Tillmann, Simon Schettler, and Jürgen Schaffner-Bielich. "The cosmological QCD phase transition revisited." Progress in Particle and Nuclear Physics 66, no. 2 (April 2011): 266–70. http://dx.doi.org/10.1016/j.ppnp.2011.01.017.
Full textHWANG, W.-Y. P. "SOME THOUGHTS ON THE COSMOLOGICAL QCD PHASE TRANSITION." International Journal of Modern Physics A 23, no. 30 (December 10, 2008): 4757–77. http://dx.doi.org/10.1142/s0217751x08042845.
Full textHWANG, W.-Y. P. "DARK MATTER AND COSMOLOGICAL QCD PHASE TRANSITION." Modern Physics Letters A 22, no. 25n28 (September 14, 2007): 1971–85. http://dx.doi.org/10.1142/s0217732307025200.
Full textMorikawa, M. "Cosmological Inflation as a Quantum Phase Transition." Progress of Theoretical Physics 93, no. 4 (April 1, 1995): 685–709. http://dx.doi.org/10.1143/ptp/93.4.685.
Full textMatsuda, Tomohiro. "Cosmological perturbations from an inhomogeneous phase transition." Classical and Quantum Gravity 26, no. 14 (June 26, 2009): 145011. http://dx.doi.org/10.1088/0264-9381/26/14/145011.
Full textBhattacharyya, Abhijit, Jan-e. Alam, Sourav Sarkar, Pradip Roy, Bikash Sinha, Sibaji Raha, and Pijushpani Bhattacharjee. "Cosmological QCD phase transition and dark matter." Nuclear Physics A 661, no. 1-4 (December 1999): 629–32. http://dx.doi.org/10.1016/s0375-9474(99)85104-5.
Full textBödeker, D., W. Buchmüller, Z. Fodor, and T. Helbig. "Aspects of the cosmological electroweak phase transition." Nuclear Physics B 423, no. 1 (July 1994): 171–96. http://dx.doi.org/10.1016/0550-3213(94)90569-x.
Full textJinno, Ryusuke, Thomas Konstandin, Henrique Rubira, and Isak Stomberg. "Higgsless simulations of cosmological phase transitions and gravitational waves." Journal of Cosmology and Astroparticle Physics 2023, no. 02 (February 1, 2023): 011. http://dx.doi.org/10.1088/1475-7516/2023/02/011.
Full textDissertations / Theses on the topic "Cosmological phase transition"
Martin, Adrian Peter. "Cosmological phase transition phenomena." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389880.
Full textManning, Adrian Gordon. "Quantum Fields in Curved Spacetime with Cosmological and Gravitational Wave Implications." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/17804.
Full textFerreira, Pedro Tonnies Gil. "Observational consequences of cosmological phase transitions." Thesis, Imperial College London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338692.
Full textLarsson, Sebastian E. "Topological defects from cosmological phase transitions." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298309.
Full textAdams, Jennifer Anne. "Cosmological phase transitions : techniques and phenomenology." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306935.
Full textLilley, Matthew James. "Cosmological phase transitions and primordial magnetic fields." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621001.
Full textSiebert, Julien. "Statistical mechanics of the self-gravitating gases." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/hal-00009142.
Full textTavares, Romulo Ferreira. "Produção de oscillons durante restaurações e quebras espontâneas de simetrias." Universidade do Estado do Rio de Janeiro, 2013. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=8775.
Full textNa natureza há vários fenômenos envolvendo transições de fase com quebra ou restauração de simetrias. Tipicamente, mudanças de fase, são associadas com uma quebra ou restauração de simetria, que acontecem quando um determinado parâmetro de controle é variado, como por exemplo temperatura, densidade, campos externos, ou de forma dinâmica. Essas mudanças que os sistemas sofrem podem levar a formação de defeitos topológicos, tais como paredes de domínios, vórtices ou monopolos magnéticos. Nesse trabalho estudamos particularmente mudanças de fase associadas com quebras ou restaurações dinâmicas de simetria que estão associadas com formação ou destruição de defeitos do tipo paredes de domínio em modelos de campos escalares com simetria discreta. Nesses processos dinâmicos com formação ou destruição de domínios, estudamos a possibilidade de formação de estruturas do tipo oscillons, que são soluções não homogêneas e instáveis de campo, mas que podem concentrar nelas uma quantidade apreciável de energia e terem uma vida (duração) suficientemente grande para serem de importância física. Estudamos a possibilidade de formação dessas soluções em modelos de dois campos escalares interagentes em que o sistema é preparado em diferentes situações, com a dinâmica resultante nesses sistemas estudada numa rede discreta.
In nature there are several phenomena involving phase transitions with symmetries breaking or restoration. Typically,the phase state changes associated with a break or a restoration of the sistem's symmetry, that occur when a particular control parameter is varied, such as as temperature, density, external fields or dynamically. These systems undergo changes which can lead to formation of defects, such as domain walls, vortices or magnetic monopoles. In this work we study particularly phase changes, breaks or restorations, associated with dynamic symmetry that are associated with the formation or destruction of defects, as domain walls in models of scalar fields with discrete symmetry. In these dynamical processes with formation or destruction of domains we studied the possibility of forming oscilons type structures, which are not homogeneous and unstable field solutions, but can concentrate there in an appreciable amount of energy and have a lifetime (duration) large enough to have physical importance. We study the possibility of formation of oscillon kind solutions in models with scalar fields interacting in which the system is prepared for different situations, with the resulting dynamics of these systems studied in a discrete lattice.
Roque, Victor Raphael de Castro Mourão. "Simulações hidrodinâmicas relativísticas da transição de fase cosmológica quark-hadron." reponame:Repositório Institucional da UFABC, 2015.
Find full textTese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Física, 2015.
Durante sua expansão inicial e consequente resfriamento o Universo passou por diversas transições. Uma delas, conhecida como transição de fase da QCD, prevista pelo modelo cosmológico padrão e pela física de partículas, ocorreu por volta de 10 s após o Big Bang, em temperaturas da ordem de 150-200MeV, atuou em quarks e gluôns inicialmente em estado quasi-livre confinando-os em hádrons. A maneira na qual esse processo se deu, pode ter gerado inúmeras implicações nas fases subsequentes e relíquias a serem observadas atualmente. Com o intuito de entender esse processo, resolvemos numericamente as equações de Euler no contexto da relatividade restrita com um código numérico multidimensional desenvolvido durante o trabalho, baseado no método de diferença finita com esquemas de alta ordem para os casos hidrodinâmicos newtoniano e relativístico. Nele empregamos métodos de reconstrução espacial no espaço característico de até sétima ordem, três diferentes separadores de fluxo e esquemas Runge-Kutta de alta estabilidade de terceira e quarta ordem para evolução temporal. Para implementação do caso multidimensional, utilizamos o método "dimensionally unsplit". Os primeiros trabalhos a respeito dessa época partiam do pressuposto que a transição era de primeira ordem e faziam uma análise semi-analítica da nucleação e colisão entre bolhas hadrônicas. Nesses trabalhos era conjecturado que a turbulência criada por esses mecanismos teria um perfil Komolgorov, ou alguma variação, e a partir disso calculava a radiação gravitacional produzida. Contudo resultados obtidos pelos grandes experimentos de colisão de íons pesados no RHIC e LHC, cuja condições geradas possuem algumas similaridades àquelas esperadas no Universo Primordial e nos cálculos feitos pela colaboração Wuppertal-Budapest com teoria da QCD na rede sugerem que, pelos parâmetros provenientes do modelo padrão, essa transição foi analítica, caracterizada por uma transformação suave entre as fases. Nesse cenário, não há mecanismos intrínsecos da transição que possam transferir energias para as escalas maiores para produzir e manter a turbulência no fluido,formando assim espectro diferente dos analisados trabalhos anteriores e consequentemente uma outra evolução do plasma primordial. Através de análises estatísticas e espectrais, propusemos entender a dinâmica de iii um fluido primordial que passa por um transição analítica, estudando a geração de ondas gravitacionais geradas a partir da evolução de um fluido com estado inicial formado por distribuições randômicas de temperatura e velocidade e comparando-as com a curva de sensibilidade do eLISA/NGO. Procuramos entender também como a presença da instabilidade de Kelvin-Helmholtz bidimensional engatilhada a partir das flutuações provenientes de outras eras pode ter influenciado no crescimento de perturbações e da turbulência e suas consequências para o espectro da radiação gravitacional.
During its initial expansion and cooling, the Universe passed through several transitions. One of them, know as QCD phase transition occurred around 10 s after the Big Bang, at a temperature of the order of 150-200MeV, confining quarks and gluons that were initially in a quasi-free state into hadrons. The study of this transition is important for understanding the evolution of the Universe, because depending of the manner in which this process took place, we can expect several types of consequences for the subsequent phases as well as different observable relics. In order to understand this process, we solved numerically the Euler equations in the frame of special relativity with a multi-dimensional numerical code developed during the work, based on the finite differences method with high order schemes. We used spatial reconstruction methods in the characteristic space up to seventh order, three different flux-split and Runge-Kutta schemes of high stability of third and fourth order for time evolution. To implement the multidimensional case, we use the dimensionally unsplit method. Most of previous studies on this topic were based on the assumption of a first order transition. Several studies focused on a semi-analytical analysis of the nucleation, growth and collision of bubbles and their relation to the generation of gravitational waves. In these works it was conjectured that the turbulence created by such mechanisms would have a Komolgorov slope, or some variation of it, and from it the gravitational radiation was estimated. However results obtained in large heavy ion collision experiments at RHIC and LHC, whose conditions have some similarities to those expected in the Early Universe, and calculations made by the Wuppertal-Budapest collaboration with Lattice QCD suggest that, with parameters from the standard cosmological model, the transition it is a crossover characterized by a smooth transformation between phases. In this scenario, no intrinsic mechanisms of the transition could transfer the energy to larger scales to produce and maintain turbulence in the fluid, thereby generating a different spectrum of previous work and therefore another evolution of the primordial plasma. Using statistical and spectral analysis, we study the dynamics of a primordial fluid passing through an analytic transition. We study the gravitational waves generated from the motion of a fluid with an initial state consisting of random distributions of temperature and velocity and compare the results with the sensitivity curve of the eLISA/NGO. We also investigate how the presence of the Kelvin-Helmholtz instability may have influenced the growth of perturbations and turbulence and analyze its consequences for the spectrum of gravitational radiation.
Scott, Pat. "Searches for Particle Dark Matter Dark stars, dark galaxies, dark halos and global supersymmetric fits /." Doctoral thesis, Stockholm : Department of Physics, Stockholm University, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-38221.
Full textAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Accepted. Paper 6: Submitted. Härtill 6 uppsatser.
Books on the topic "Cosmological phase transition"
Nagasawa, Michiyasu. Cosmological phase transitions and evolution of topological defects. [S.l.]: University of Tokyo, 1993.
Find full textLate time cosmological phase transition I: Particle physics models and cosmic evolution. Batavia, Ill: Fermi National Accelerator Laboratory, 1991.
Find full textMaggiore, Michele. Stochastic backgrounds of cosmological origin. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198570899.003.0013.
Full textNational Aeronautics and Space Administration (NASA) Staff. Late Time Cosmological Phase Transitions 1: Particle Physics Models and Cosmic Evolution. Independently Published, 2018.
Find full textMaggiore, Michele. Gravitational Waves. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198570899.001.0001.
Full textBook chapters on the topic "Cosmological phase transition"
Gouttenoire, Yann. "First-Order Cosmological Phase Transition." In Beyond the Standard Model Cocktail, 267–355. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11862-3_6.
Full textBecker, Jörg D., and Lutz Castell. "Ur Theory and Cosmological Phase Transition." In Time, Quantum and Information, 421–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-10557-3_29.
Full textBunkov, Yu M. "“Aurore De Venise” — Cosmological Scenario of the A-B Phase Transition in Superfluid 3He." In Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions, 121–37. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4106-2_7.
Full textKolb, Edward W. "Cosmological Phase Transitions." In Gravitation in Astrophysics, 307–27. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1897-2_11.
Full textStock, Reinhard. "Relativistic Nucleus-Nucleus Collisions and the QCD Matter Phase Diagram." In Particle Physics Reference Library, 311–453. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38207-0_7.
Full textSchramm, David N. "Late-Time Cosmological Phase Transitions." In Primordial Nucleosynthesis and Evolution of Early Universe, 225–42. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3410-1_31.
Full textBoyanovsky, D., H. J. Vega, and M. Simionato. "Primordial magnetic fields from cosmological phase transitions." In The Early Universe and the Cosmic Microwave Background: Theory and Observations, 65–100. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-1058-0_5.
Full textBäuerle, C., Yu M. Bunkov, S. N. Fisher, and H. Godfrin. "The ‘Grenoble’ Cosmological Experiment." In Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions, 105–20. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4106-2_6.
Full textKhlopov, Maxim Yu, and Sergei G. Rubin. "High Density Regions from First-Order Phase Transitions." In Cosmological Pattern of Microphysics in the Inflationary Universe, 171–98. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2650-8_8.
Full textGoldenfeld, Nigel. "Dynamics of Cosmological phase transitions: What can we learn from condensed matter physics?" In Formation and Interactions of Topological Defects, 93–104. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1883-9_4.
Full textConference papers on the topic "Cosmological phase transition"
HWANG, W. Y. P. "SOME THOUGHTS ON THE COSMOLOGICAL QCD PHASE TRANSITION." In Statistical Physics, High Energy, Condensed Matter and Mathematical Physics - The Conference in Honor of C. N. Yang'S 85th Birthday. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812794185_0005.
Full textSinha, Bikash. "Relics of the Cosmological Quark-Hadron Phase Transition." In Proceedings of the Sixth International Workshop. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799814_0007.
Full textTawfik, A., and Shaaban Khalil. "Cosmological Consequences of QCD Phase Transition(s) in Early Universe." In THE DARK SIDE OF THE UNIVERSE: 4th International Workshop on the Dark Side of the Universe. AIP, 2009. http://dx.doi.org/10.1063/1.3131505.
Full textAderaldo, Vinicius Simoes, and Victor Goncalves. "Cosmological implications of the QCD phase transition in the Early Universe." In XV International Workshop on Hadron Physics. Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.408.0026.
Full textQuirós, Mariano. "Cosmological phase transitions and baryogenesis." In The sixth Mexican workshop on particles and fields. American Institute of Physics, 1998. http://dx.doi.org/10.1063/1.56628.
Full textRummukainen, Kari, Stephan J. Huber, Mark B. Hindmarsh, and David Weir. "Gravitational waves from cosmological first order phase transitions." In The 33rd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.251.0233.
Full textBoyanovsky, D. "Primordial Magnetic Fields from Out of Equilibrium Cosmological Phase Transitions." In MAGNETIC FIELDS IN THE UNIVERSE: From Laboratory and Stars to Primordial Structures. AIP, 2005. http://dx.doi.org/10.1063/1.2077205.
Full textRakic, Aleksandar, Dennis Simon, Julian Adamek, and Jens Niemeyer. "Cosmological first-order phase transitions beyond the standard inflationary scenario." In International Workshop on Cosmic Structure and Evolution. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.097.0007.
Full textDumin, Yu V. "ON THE INFLUENCE OF EINSTEIN–PODOLSKY–ROSEN EFFECT ON THE DOMAIN WALL FORMATION DURING THE COSMOLOGICAL PHASE TRANSITIONS." In Proceedings of the Tenth Lomonosov Conference on Elementary Particle Physics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704948_0037.
Full textRomero-Rodríguez, Alba. "Implications for first-order cosmological phase transitions and the formation of primordial black holes from the third LIGO-Virgo observing run." In The European Physical Society Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.398.0113.
Full textReports on the topic "Cosmological phase transition"
Lindesay, James V., and H. Pierre Noyes. Evidence for a Cosmological Phase Transition on the TeVScale. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/878749.
Full textKolb, E. W. Cosmological phase transitions. Office of Scientific and Technical Information (OSTI), September 1986. http://dx.doi.org/10.2172/5086987.
Full text