Academic literature on the topic 'Cosmic rays; Gamma rays'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cosmic rays; Gamma rays.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cosmic rays; Gamma rays"

1

Osborne, J. L., A. W. Wolfendale, and L. Zhang. "Soft X-rays and cosmic gamma-rays." Monthly Notices of the Royal Astronomical Society 276, no. 2 (September 15, 1995): 409–16. http://dx.doi.org/10.1093/mnras/276.2.409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

KUSENKO, ALEXANDER. "COSMIC CONNECTIONS: FROM COSMIC RAYS TO GAMMA RAYS, COSMIC BACKGROUNDS AND MAGNETIC FIELDS." Modern Physics Letters A 28, no. 02 (January 20, 2013): 1340001. http://dx.doi.org/10.1142/s0217732313400014.

Full text
Abstract:
Combined data from gamma-ray telescopes and cosmic-ray detectors have produced some new surprising insights regarding intergalactic and galactic magnetic fields, as well as extragalactic background light. We review some recent advances, including a theory explaining the hard spectra of distant blazars and the measurements of intergalactic magnetic fields based on the spectra of distant sources. Furthermore, we discuss the possible contribution of transient galactic sources, such as past gamma-ray bursts and hypernova explosions in the Milky Way, to the observed flux of ultrahigh-energy cosmic-rays nuclei. The need for a holistic treatment of gamma rays, cosmic rays, and magnetic fields serves as a unifying theme for these seemingly unrelated phenomena.
APA, Harvard, Vancouver, ISO, and other styles
3

Dermer, C. D., and G. Powale. "Gamma rays from cosmic rays in supernova remnants." Astronomy & Astrophysics 553 (April 26, 2013): A34. http://dx.doi.org/10.1051/0004-6361/201220394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Van Der Walt, D. J., and A. W. Wolfendale. "Gamma rays and the origin of cosmic rays." Space Science Reviews 47, no. 1-2 (March 1988): 1–45. http://dx.doi.org/10.1007/bf00223236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Szabelski, J., D. J. van der Walt, J. Wdowczyk, and A. W. Wolfendale. "Gamma rays and the origin of cosmic rays." Advances in Space Research 9, no. 12 (January 1989): 129–41. http://dx.doi.org/10.1016/0273-1177(89)90320-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Levinson, Amir. "Probing Cosmic Accelerators Using VHE Gamma Rays and UHE Cosmic Rays." Nuclear Physics A 827, no. 1-4 (August 2009): 561c—566c. http://dx.doi.org/10.1016/j.nuclphysa.2009.05.123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Diehl, Roland, Dieter H. Hartmann, and Nikos Prantzos. "Gamma rays from cosmic radioactivities." Meteoritics & Planetary Science 42, no. 7-8 (August 2007): 1145–57. http://dx.doi.org/10.1111/j.1945-5100.2007.tb00566.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Trubnikov, B. A. "Cosmic rays and gamma-ray bursts." Uspekhi Fizicheskih Nauk 167, no. 3 (1997): 345. http://dx.doi.org/10.3367/ufnr.0167.199703k.0345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xinyu, Chi, Charles Dahanayake, Jerzy Wdowczyk, and Arnold W. Wolfendale. "Cosmic gamma rays from collapsing cosmic strings." Astroparticle Physics 1, no. 2 (March 1993): 239–43. http://dx.doi.org/10.1016/0927-6505(93)90024-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

INOUE, SUSUMU, MASAHIRO NAGASHIMA, TAKERU K. SUZUKI, and WAKO AOKI. "COSMIC RAYS AND GAMMA-RAYS IN LARGE-SCALE STRUCTURE." Journal of The Korean Astronomical Society 37, no. 5 (December 1, 2004): 447–54. http://dx.doi.org/10.5303/jkas.2004.37.5.447.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cosmic rays; Gamma rays"

1

Richardson, K. M. "Gamma rays, cosmic rays and local molecular clouds." Thesis, Durham University, 1988. http://etheses.dur.ac.uk/942/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gabici, Stefano. "Gamma ray astronomy and the origin of galactic cosmic rays." Habilitation à diriger des recherches, Université Paris-Diderot - Paris VII, 2011. http://tel.archives-ouvertes.fr/tel-00719791.

Full text
Abstract:
Diffusive shock acceleration operating at expanding supernova remnant shells is by far the most popular model for the origin of galactic cosmic rays. Despite the general consensus received by the model, an unambiguous and conclusive proof of the supernova remnant hypothesis is still missing. In this context, the recent developments in gamma ray astronomy provide us with precious insights into the problem of the origin of galactic cosmic rays, since production of gamma rays is expected both during the acceleration of cosmic rays at supernova remnant shocks and during their subsequent propagation in the interstellar medium. In particular, the recent detection of a number of supernova remnants at TeV energies nicely fits with the model, but it still does not constitute a conclusive proof of it, mainly due to the difficulty of disentangling the hadronic and leptonic contributions to the observed gamma ray emission. The main goal of my research is to search for an unambiguous and conclusive observational test for proving (or disproving) the idea that supernova remnants are the sources of galactic cosmic rays with energies up to (at least) the cosmic ray knee. Our present comprehension of the mechanisms of particle acceleration at shocks and of the propagation of cosmic rays in turbulent magnetic fields encourages beliefs that such a conclusive test might come from future observations of supernova remnants and of the Galaxy in the almost unexplored domain of multi-TeV gamma rays.
APA, Harvard, Vancouver, ISO, and other styles
3

Pinzke, Anders. "Gamma-Ray Emission from Galaxy Clusters : DARK MATTER AND COSMIC-RAYS." Doctoral thesis, Stockholms universitet, Fysikum, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-42453.

Full text
Abstract:
The quest for the first detection of a galaxy cluster in the high energy gamma-ray regime is ongoing, and even though clusters are observed in several other wave-bands, there is still no firm detection in gamma-rays. To complement the observational efforts we estimate the gamma-ray contributions from both annihilating dark matter and cosmic-ray (CR) proton as well as CR electron induced emission. Using high-resolution simulations of galaxy clusters, we find a universal concave shaped CR proton spectrum independent of the simulated galaxy cluster. Specifically, the gamma-ray spectra from decaying neutral pions, which are produced by CR protons, dominate the cluster emission. Furthermore, based on our derived flux and luminosity functions, we identify the galaxy clusters with the brightest galaxy clusters in gamma-rays. While this emission is challenging to detect using the Fermi satellite, major observations with Cherenkov telescopes in the near future may put important constraints on the CR physics in clusters. To extend these predictions, we use a dark matter model that fits the recent electron and positron data from Fermi, PAMELA, and H.E.S.S. with remarkable precision, and make predictions about the expected gamma-ray flux from nearby clusters. In order to remain consistent with the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures for cold dark matter halos. In addition, we find comparable levels of gamma-ray emission from CR interactions and dark matter annihilations without Sommerfeld enhancement.
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Accepted.
APA, Harvard, Vancouver, ISO, and other styles
4

Rengifo, Gonzáles Javier. "Disentangling atmospheric cascades started by gamma rays from cosmic rays with CORSIKA." Master's thesis, Pontificia Universidad Católica del Perú, 2017. http://tesis.pucp.edu.pe/repositorio/handle/123456789/8716.

Full text
Abstract:
En este trabajo buscamos un método para diferenciar entre lluvias de partículas producidas por rayos cósmicos y por rayos gamma a energías de TeV, utilizando simulaciones CORSIKA. Este método intenta resolver el problema que existe en la búsqueda de señales de rayos gamma medidos por diversos experimentos frente a un fondo de flujo dominante de hadrones. Los resultados de este trabajo pueden aplicarse al estudio de Explosiones de Rayos Gamma (GRBs). Los GRBs emiten fotones muy energéticos, que al interactuar con la atmósfera terrestre, producen una gran cascada electromagnética de partículas secundarias, las cuales son detectables. El procedimiento sería simular eventos producidos por fotones, la señal, y protones, el fondo, que son las partículas más abundantes de los rayos cósmicos. Extraemos varios parámetros de los perfiles longitudinales de las lluvias de partículas, caracterizando las lluvias simuladas. Algunos de los parámetros de ajuste más importantes son el m_aximo de lluvia (Xmax), el ancho de la lluvia FWHM, el parámetro de asimetría, el número máximo de partículas Nmax y el comienzo de lluvia XStart. Existen diferentes experimentos utilizando tanques Cherenkov de agua y detectores de fluorescencia que pueden medir estos parámetros de las lluvias. Hemos probado dos métodos. El primero se basa en cortes simples, mientras que el segundo se basa en un análisis multivariado utilizando el paquete TMVA, que mejora los cortes individuales. El primer método se aplicó a las energías simuladas separadas de 102, 103, 104 y 105 GeV para encontrar cortes adecuados. Encontramos que Xmax, FWHM, Xstart y Nmax dependen de la energía. Posteriormente aplicamos estos cortes dependientes de la energía y otros cortes fijos a una muestra realista, que consiste en 104 eventos de señales (fotones) y 106 eventos de fondo (protones) que cubren un rango de energía de 102 a 105 GeV con diferentes espectros. Además, se introdujo un error en la energía simulada para simular la eficiencia de reconstrucción de energía de un detector. El resultado obtenido deja 54% eventos de señal y 12% eventos de fondo. Aplicando el análisis multivariado TMVA, encontramos que el método Boosted Decision Trees (BDT) era el mejor para distinguir la señal del fondo. El resultado para una eficiencia de señal similar fue 0:7% de eventos de fondo. Por último, utilizando cortes más estrictos en la BDT para mejorar la significancia, el resultado fue 1 evento de fotón por cada 1000 eventos de protón. Dada la proporción de flujo inicial, significa una capacidad de rechazo de fondo de 103. Por lo tanto, la viabilidad de la separación gamma/hadrón requiere una mejora adicional.
In this work we search for a method to differentiate between particle showers produced by cosmic rays and by gamma rays at TeV energies, using CORSIKA simulations. This method tries to solve the dominant hadron flux background problem when looking for gamma-ray signals measured by different experiments. The results of this work can be applied to the study of Gamma-Ray Bursts (GRBs). GRBs emit very energetic photons, which after interacting in the Earth's atmosphere, produce a large detectable electromagnetic cascade of secondary particles. The procedure will be to simulate events produced by photons, the signal, and protons, the most abundant cosmic-ray background. We extract several parameters from fitting particle air-shower longitudinal profiles, characterizing the simulated showers. Some of the most important _t parameters are the shower maximum (Xmax), the width of the shower FWHM, the asymmetry parameter, the maximum number of particles Nmax and the shower start Xstart. There are different experiments using water Cherenkov tanks and fluorescence detectors which can measure these shower parameters. We tested two methods. The first relies on simple cuts, while the second is based on a multivariate analysis using the TMVA package, which improves individual cuts. The first method was applied to single simulated energies of 102, 103, 104 and 105 GeV to find adequate cuts. We found that Xmax, FWHM, Xstart and Nmax depend on the energy. Later we applied these energy-dependent cuts and other fixed cuts to a realistic sample, which consists of 104 signal events (photons) and 106 background events (protons) covering an energy range from 102 to 105 GeV with different spectra. Moreover, we introduced an energy smearing to simulate a detector energy reconstruction efficiency. The obtained result leaves 54% signal events and 12% background events. Applying the multivariate analysis TMVA, we found that the Boosted Decision Trees (BDT) method was the best for distinguishing signal from background. The result for a similar signal efficiency was 0:7% of background events. Finally using tighter cuts on the BDT to improve the significance results in 1 photon event for every 1000 protons. Given the initial ux proportion, it means a 103 background rejection capability. Thus the feasibility of gamma/hadron separation requires further improvement.
Trabajo de investigación
APA, Harvard, Vancouver, ISO, and other styles
5

Lacki, Brian Cameron. "Cosmic Rays in Star-Forming Galaxies." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1313437011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

吳文謙 and Man-him Ng. "Searching for gamma-ray signals form pulsars and periodic signals fromthe galactic gamma-ray sources." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31213509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ng, Man-him. "Searching for gamma-ray signals form pulsars and periodic signals from the galactic gamma-ray sources /." Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19667942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chadwick, Mary Paula. "Very high energy cosmic gamma rays from radio and X-ray pulsars." Thesis, Durham University, 1987. http://etheses.dur.ac.uk/6720/.

Full text
Abstract:
This thesis is concerned with the detection of very high energy cosmic gamma-rays from isolated pulsars and X-ray binary sources using the atmospheric Cerenkov technique. A general introduction to gamma ray detection techniques is followed by adscription of the properties of atmospheric Cerenkov radiation and a discussion of the principles of the atmospheric Cerenkov technique. The Mark I and Mark II gamma-ray telescopes operated in Dugway, Utah by the University of Durham between 1981 and 1984 are briefly described. There follows a discussion of the results from observations at many different wavelengths of Cygnus X-3. This object was observed by the Durham group between 1981 and 1983 in Dugway Utah and also in Durham during autumn 1985. The detection in the Dugway data of the 4.8 hr X-ray period and the possible detection of a19.2 day intensity variation are considered. The discovery of a 12.59 ms pulsar in data taken on Cygnus X-3 in 1983 is described. Evidence is presented which suggests this periodicity is also present at a weaker level in earlier data and also in the data taken in Durham in 1985.Results from observations of PSR1937+21 , PSR1953+29and six radio pulsars , are presented. The design and construction of the Mark III telescope, now operating in Narrabri , N.S.W. , is described in detail. Preliminary results from observations with the Mark III telescope of three objects, LMC X-4, the Vela pulsar and CentaurusX-3, are presented, with particular reference to periodicities inherent in the sources. An observation of the supernova in the Large Magellanic Cloud is discussed. A brief discussion of the mechanisms by which V.H.E. gamma-rays may be produced in isolated pulsars and X-ray binary pulsars is given, followed by a description of the future prospects for the Mark III and Mark IV telescopes.
APA, Harvard, Vancouver, ISO, and other styles
9

James, Kory T. "High energry gamma-ray source search with SPASE-2." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 65 p, 2007. http://proquest.umi.com/pqdweb?did=1397914891&sid=16&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Giller, Graham L. "The construction and analysis of a whole-sky map using underground muons." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386589.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Cosmic rays; Gamma rays"

1

Shapiro, Maurice M., and John P. Wefel, eds. Cosmic Gamma Rays, Neutrinos, and Related Astrophysics. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0921-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

International Workshop on Extremely High Energy Cosmic Rays (2001 ICRR Kashiwa Campus, Japan). Proceedings of the International Workshop on Extremely High Energy Cosmic Rays: Experiments, theories and future direction, March 22-23, 2001 ICRR Kashiwa Campus, Japan. Edited by Teshima Masahiro 1958-, Sokolsky Pierre, Minowa M, and Nihon Butsuri Gakkai. Tokyo, Japan: Physical Society of Japan, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Astrophysics, International School of Cosmic-Ray. Towards the millennium in astrophysics: Problems and prospects : International School of Cosmic-Ray Astrophysics, 10th course, Erice, Italy, 16-23 June 1996. Singapore: World Scientific, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1915-, Shapiro Maurice M., Stanev Todor, and Wefel J. P, eds. Astrophysics at ultra-high energies: International School of Cosmic Ray Astrophysics, 15th course, Erice, Italy, 20-27 June 2006. Singapore: World Scientific, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Very high energy cosmic gamma radiation: A crucial window on the extreme universe. New Jersey: World Scientific, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aharonian, Felix A. Very high energy cosmic gamma radiation: A crucial window on the extreme universe. Singapore ; River Edge, NJ: World Scientific, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stecker, Floyd W. Photodisintegration of ultrahigh energy cosmic rays: A new determination. Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

CHERBS, (1997 Snowmass Colo ). Conference on the High Energy Radiation Background in Space: Workshop record. Piscataway, NJ: IEEE, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

CHERBS (1997 Snowmass, Colo.). Conference on the High Energy Radiation Background in Space. Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kieda, David B. (David Basil) and Gondolo P, eds. Proceedings of the 2009 Snowbird Particle Astrophysics and Cosmology Workshop (SNOWPAC 2009): Proceedings of a workshop held at Snowbird, Utah, USA, 1-7 February 2009. San Francisco, Calif: Astronomical Society of the Pacific, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cosmic rays; Gamma rays"

1

Moskalenko, Igor V., Andrew W. Strong, and Olaf Reimer. "Diffuse Gamma Rays." In Cosmic Gamma-Ray Sources, 279–310. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2256-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fernández Barral, Alba. "Cosmic Rays and Gamma-Ray Astrophysics." In Extreme Particle Acceleration in Microquasar Jets and Pulsar Wind Nebulae with the MAGIC Telescopes, 3–16. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97538-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zdziarski, Andrzej A., and Roland Svensson. "X-Rays and Gamma-Rays at Cosmological Distances." In Physical Processes in Hot Cosmic Plasmas, 383–94. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0545-0_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stanev, Todor. "High energy neutrino and gamma-ray astronomy." In High Energy Cosmic Rays, 269–313. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-85148-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stanev, Todor. "High Energy Neutrino and Gamma-Ray Astronomy." In High Energy Cosmic Rays, 281–332. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71567-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hurley, K. "Cosmic Gamma-Ray Bursts." In Cosmic Gamma Rays, Neutrinos, and Related Astrophysics, 337–79. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0921-2_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

White, R. S. "Gamma Rays from Supernova 1987A." In Cosmic Rays, Supernovae and the Interstellar Medium, 167–76. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3158-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

de Cea del Pozo, E., D. F. Torres, and A. Y. Rodríguez Marrero. "Diffusion of Cosmic-Rays and Gamma-Ray Sources." In Astrophysics and Space Science Proceedings, 397. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11250-8_97.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Reimer, Olaf. "Clusters of Galaxies at High Energy Gamma-Rays." In Cosmic Gamma-Ray Sources, 261–78. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2256-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dogiel, V. A. "The Cosmic-Ray Halo: Insight from Gamma Rays and Cosmic-Ray Observations." In The Interstellar Disk-Halo Connection in Galaxies, 175–86. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3228-2_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cosmic rays; Gamma rays"

1

Lipari, Paolo. "Cosmic rays observations and gamma rays." In HIGH ENERGY GAMMA-RAY ASTRONOMY: 6th International Meeting on High Energy Gamma-Ray Astronomy. Author(s), 2017. http://dx.doi.org/10.1063/1.4968895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ahlers, Markus. "The cosmic triad: Cosmic rays, gamma-rays and neutrinos." In 5TH INTERNATIONAL WORKSHOP ON ACOUSTIC AND RADIO EEV NEUTRINO DETECTION ACTIVITIES: ARENA 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4807556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rachen, Jörg P., and P. Mészáros. "Cosmic rays and neutrinos from gamma-ray bursts." In GAMMA-RAY BURSTS. ASCE, 1998. http://dx.doi.org/10.1063/1.55402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Paul, Jacques. "X RAYS AND GAMMA RAYS FROM SPACE OBSERVATIONS." In 25th International Cosmic Ray Conference. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814529044_0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Altamirano, A., G. Navarra, Carlos Javier Solano Salinas, Jose Bellido, David Wahl, and Oscar Saavedra. "Detectors of Cosmic Rays, Gamma Rays, and Neutrinos." In COSMIC RAYS AND ASTROPHYSICS: Proceedings of the 3rd School on Cosmic Rays and Astrophysics. AIP, 2009. http://dx.doi.org/10.1063/1.3141349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rando, Riccardo. "Gamma rays: direct observations." In 36th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.358.0029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, L., X. Chi, A. W. Wolfendale, and M. R. Issa. "Gamma rays and the origin of cosmic rays." In The second Compton symposium. AIP, 1994. http://dx.doi.org/10.1063/1.45642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jones, Lawrence W. "Results from GAMMA." In C2CR07: COLLIDERS TO COSMIC RAYS. AIP, 2007. http://dx.doi.org/10.1063/1.2775896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Donato, Fiorenza. "Cosmic rays and the diffuse gamma-ray emission." In 7th International Fermi Symposium. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.312.0134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Scarsi, Livio. "Gamma ray bursts and extreme energy cosmic rays." In WORKSHOP ON OBSERVING GIANT COSMIC RAY AIR SHOWERS FROM >1020 eV Particles from Space. ASCE, 1998. http://dx.doi.org/10.1063/1.56132.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Cosmic rays; Gamma rays"

1

Poirier, J. Calculation of Atmospheric Muons from Cosmic Gamma Rays. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/839832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Murase, Kohta, Kunihito Ioka, Shigehiro Nagataki, and Takashi Nakamura. High Energy Neutrinos and Cosmic-Rays From Low-Luminosity Gamma-Ray Bursts? Office of Scientific and Technical Information (OSTI), July 2006. http://dx.doi.org/10.2172/886791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tajima, T., and Y. Takahashi. Laboratory laser acceleration and high energy astrophysics: {gamma}-ray bursts and cosmic rays. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/674811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Roesler, Stefan. Distributions of Secondary Muons at Sea Level from Cosmic Gamma Rays Below 10 TeV. Office of Scientific and Technical Information (OSTI), July 2001. http://dx.doi.org/10.2172/787214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fasso, Alberto. A Monte Carlo Calculation of Muon Flux at Ground Level from Primary Cosmic Gamma Rays. Office of Scientific and Technical Information (OSTI), August 1999. http://dx.doi.org/10.2172/10509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pohl, M., Aous A. Abdo, A. Atoyan, Matthew G. Baring, John Francis Beacom, R. Blandford, Y. Butt, et al. Section on Supernova Remnants and Cosmic Rays of the White Paper on the Status and Future of Ground-Based Gamma-Ray Astronomy. Office of Scientific and Technical Information (OSTI), November 2011. http://dx.doi.org/10.2172/1029164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lipkin, H. J. Gamma rays for pedestrians. Office of Scientific and Technical Information (OSTI), May 1987. http://dx.doi.org/10.2172/6474138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chapline, George F., Andrew M. Glenn, Les F. Nakae, Iwona Pawelczak, Neal J. Snyderman, Steven A. Sheets, and Ron E. Wurtz. Time-Correlated Particles Produced by Cosmic Rays. Office of Scientific and Technical Information (OSTI), May 2015. http://dx.doi.org/10.2172/1251035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aguayo Navarrete, Estanislao, John L. Orrell, and Richard T. Kouzes. Monte Carlo Simulations of Cosmic Rays Hadronic Interactions. Office of Scientific and Technical Information (OSTI), April 2011. http://dx.doi.org/10.2172/1022429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moskalenko, I. V. Hadronic Gamma Rays from Supernova Remnants. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/908759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography