Academic literature on the topic 'Cosmic ray interactions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cosmic ray interactions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cosmic ray interactions"

1

Slavatinsky, S. A. "High-energy cosmic-ray interactions." Il Nuovo Cimento C 19, no. 6 (November 1996): 991–98. http://dx.doi.org/10.1007/bf02508141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schultz, Ludolf. "Cosmic ray interactions in meteorites." Meteoritics 27, no. 4 (September 1992): 325. http://dx.doi.org/10.1111/j.1945-5100.1992.tb00213.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ostapchenko, S. S. "Models for cosmic ray interactions." Czechoslovak Journal of Physics 56, S1 (September 2006): A149—A159. http://dx.doi.org/10.1007/s10582-006-0151-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

WEBB, G. M., A. ZAKHARIAN, M. BRIO, and G. P. ZANK. "Wave interactions in magnetohydrodynamics, and cosmic-ray-modified shocks." Journal of Plasma Physics 61, no. 2 (February 1999): 295–346. http://dx.doi.org/10.1017/s0022377898007399.

Full text
Abstract:
Multiple-scales perturbation methods are used to study wave interactions in magnetohydrodynamics (MHD), in one Cartesian space dimension, with application to cosmic-ray-modified shocks. In particular, the problem of the propagation and interaction of short wavelength MHD waves, in a large-scale background flow, modified by cosmic rays is studied. The wave interaction equations consist of seven coupled evolution equations for the backward and forward Alfvén waves, the backward and forward fast and slow magnetoacoustic waves and the entropy wave. In the linear wave regime, the waves are coupled by wave mixing due to gradients in the background flow, cosmic-ray squeezing instability effects, and damping due to the diffusing cosmic rays. In the most general case, the evolution equations also contain nonlinear wave interaction terms due to Burgers self wave steepening for the magnetoacoustic modes, resonant three wave interactions, and mean wave field interaction terms. The form of the wave interaction equations in the ideal MHD case is also discussed. Numerical simulations of the fully nonlinear cosmic ray MHD model equations are compared with spectral code solutions of the linear wave interaction equations for the case of perpendicular, cosmic-ray-modified shocks. The solutions are used to illustrate how the different wave modes can be generated by wave mixing, and the modification of the cosmic ray squeezing instability due to wave interactions. It is shown that the Alfvén waves are coupled to the magnetoacoustic and entropy waves due to linear wave mixing, only in background flows with non-zero field aligned electric current and/or vorticity (i.e. if B·∇×B≠0 and/or B·∇×u≠0, where B and u are the magnetic field induction and fluid velocity respectively).
APA, Harvard, Vancouver, ISO, and other styles
5

Ostapchenko, S. "Hadronic Interactions at Cosmic Ray Energies." Nuclear Physics B - Proceedings Supplements 175-176 (January 2008): 73–80. http://dx.doi.org/10.1016/j.nuclphysbps.2007.10.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lipari, Paolo. "Cosmic ray astrophysics and hadronic interactions." Nuclear Physics B - Proceedings Supplements 122 (July 2003): 133–48. http://dx.doi.org/10.1016/s0920-5632(03)80370-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Маурчев, Евгений, Evgeniy Maurchev, Юрий Балабин, and Yuriy Balabin. "RUSCOSMIC — the new software toolbox for detailed analysis of cosmic ray interactions with matter." Solar-Terrestrial Physics 2, no. 4 (February 2, 2017): 3–10. http://dx.doi.org/10.12737/24269.

Full text
Abstract:
At present, cosmic ray (CR) physics uses a considerable variety of methods for studying CR characteristics of both primary and secondary fluxes. Experimental methods make the main contribution, using various types of detectors, but numerical methods increasingly complement it due to the active development in computer technology. This approach provides researchers with the most extensive information about details of the process or phenomenon and allows us to make the most competent conclusions. This paper presents a concept of the RUSCOSMIC © software package based on the GEANT4 toolkit and representing a range of different numerical models for studying CR propagation through medium of different systems (radiation detectors, Earth’s atmosphere). The obtained results represent response functions of the main radiation detectors as well as some typical characteristics of secondary CR fluxes. Comparative results also show the operation of the module verification of calculations with experimental data.
APA, Harvard, Vancouver, ISO, and other styles
8

Hudson, Hugh S., Alec MacKinnon, Mikolaj Szydlarski, and Mats Carlsson. "Cosmic ray interactions in the solar atmosphere." Monthly Notices of the Royal Astronomical Society 491, no. 4 (December 17, 2019): 4852–56. http://dx.doi.org/10.1093/mnras/stz3373.

Full text
Abstract:
ABSTRACT High-energy particles enter the solar atmosphere from Galactic or solar coronal sources, and produce ‘albedo’ emission from the quiet Sun that is now observable across a wide range of photon energies. The interaction of high-energy particles in a stellar atmosphere depends essentially upon the joint variation of the magnetic field and plasma density, which heretofore has been characterized parametrically as P ∝ Bα with P the gas pressure and B the magnitude of the magnetic field. We re-examine that parametrization by using a self-consistent 3D MHD model (Bifrost) and show that this relationship tends to P ∝ B3.5 ± 0.1 based on the visible portions of the sample of open-field flux tubes in such a model, but with large variations from point to point. This scatter corresponds to the strong meandering of the open-field flux tubes in the lower atmosphere, which will have a strong effect on the prediction of the emission anisotropy (limb brightening). The simulations show that much of the open flux in coronal holes originates in weak-field regions within the granular pattern of the convective motions seen in the simulations.
APA, Harvard, Vancouver, ISO, and other styles
9

Klein, Spencer R. "Muon Production in Relativistic Cosmic-Ray Interactions." Nuclear Physics A 830, no. 1-4 (November 2009): 869c—872c. http://dx.doi.org/10.1016/j.nuclphysa.2009.10.128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wibig, Tadeusz. "Ultra high-energy cosmic ray proton interactions." Physics Letters B 678, no. 1 (July 2009): 60–64. http://dx.doi.org/10.1016/j.physletb.2009.06.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cosmic ray interactions"

1

Stassinakis, Argyrios. "A study of the atmospheric neutrino flavour content using the Soudan 2 detector." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Choi, HyoJeong. "Cosmic-ray interactions in charged-couple devices in the DMTPC 4-shooter detector." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/84390.

Full text
Abstract:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 47-48).
The Dark Matter Time Projection Chamber (DMTPC) is a low pressure (CF 4) detector that measures the two-dimensional vector direction of nuclear recoils, and it aims to directly detect dark matter. This paper explores cosmic ray interactions with the four charge-coupled devices (CCDs) of the 4-shooter detector, the largest existing prototype detector in the DMTPC project, by looking at surface runs at MIT with detector voltages off. Through this, the depth of the depletion region of each CCD is found, which can be further used in understanding not only background rejection but also in understanding the relationship between measured CCD counts and energy deposited in the detector.
by HyoJeong Choi.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
3

Porter, Troy Anthony. "Signatures of the propagation of primary and secondary cosmic ray electrons and positrons in the galaxy." Title page, table of contents and abstract only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09php848.pdf.

Full text
Abstract:
Includes bibliographical references (8 p.) Examines some of the consequences of the acceleration and production, and propagation, of high energy electrons and positrons in the Galaxy. In particular, predictions are made of the diffuse photon signals arising from the interactions of electrons and positrons with gas, low energy photons, and the galactic magnetic field during their transport in the Galaxy.
APA, Harvard, Vancouver, ISO, and other styles
4

Stever, Samantha Lynn. "Characterisation and modelling of the interaction between sub-Kelvin bolometric detectors and cosmic rays." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS009/document.

Full text
Abstract:
Nous avons étudié l'effet des rayons cosmiques dans les détecteurs en utilisant un bolomètre de germanium composite NTD à basse température, et une source de particules alpha comme source générique d'impulsions. Nous avons caractérisé ce bolomètre en constatant que la forme de son impulsion était due à la combinaison de sa réponse impulsionnelle (la somme de deux exponentielles doubles), et des effets liés à la position découlant de la thermalisation des phonons balistiques en phonons thermiques dans son absorbeur. Nous avons établi un schéma décrivant la forme de l'impulsion dans ce bolomètre en comparant une impulsion mathématique générique à une seconde description basée sur la physique thermique. Nous constatons que la thermalisation des phonons balistiques, suivie de la diffusion thermique, jouent un rôle important dans la forme de l'impulsion, en parallèle avec le couplage électrothermique et les effets électriques dépendant de la température. Nous avons modélisé les impulsions en observant que leur comportement peut être reproduit en tenant compte de la réflexion de phonons balistiques sur le bord de l’absorbeur, avec un couplage thermique fort au capteur central du bolomètre. Compte tenu de ces résultats, nous étudions également les effets des rayons cosmiques sur l’instrument Athena X-Ray Integral Field Unit (X-IFU), en produisant des timelines simulées et en testant la hausse de la valeur moyenne de la température (RMS) sur la plaquette du détecteur. Nous montrons que le flux thermique attendu des rayons cosmiques est au même ordre de grandeur que le maximum autorisé ΔTRMS ce qui constitue une menace sur le budget de la résolution énergétique de l'instrument
We have studied the effect of cosmic rays in detectors using a composite NTD germanium bolometer at low temperatures and an alpha particle source as a generic source of pulses. We have characterised this bolometer, finding that its pulse shape is due to a combination of its impulse response function (the sum of two double exponentials), and position-dependent effects arising from thermalisation of ballistic phonons into thermal phonons in its absorber. We have derived a scheme for describing the pulse shape in this bolometer, comparing a generic mathematical pulse shape with a second description based on thermal physics. We find that ballistic phonon thermalisation, followed by thermal diffusion, play a significant role in the pulse shape, along with electro-thermal coupling and temperature-dependent electrical effects. We have modelled the pulses, finding that their behaviour can be reproduced accounting for ballistic phonon reflection off the absorber border, with a strong thermal coupling to the bolometer’s central sensor. With these findings, we also investigate the effects of cosmic rays on the Athena X-Ray Integral Field Unit (X-IFU), producing simulated timelines and testing the average RMS temperature increase on the detector wafer, showing that the expected cosmic ray thermal flux is within the same order of magnitudeas the maximum allowed ΔTRMS, posing a threat to the instrument’s energy resolution budget
APA, Harvard, Vancouver, ISO, and other styles
5

Itow, Y. "Verification of hadron interaction models of cosmic rays at 10**17 eV by the LHCf experiment." American Institite of Physics, 2008. http://hdl.handle.net/2237/12228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Karczynski, Adam Michael. "Measuring Hydraulic Conductivity of Variably-Saturated Soils at the Hectometer Scale Using Cosmic-Ray Neutrons." Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/323446.

Full text
Abstract:
Hydraulic conductivity of variably-saturated soils is critical to understanding processes at the land surface. Yet measuring it over an area comparable to the resolution of land-surface models is fraught because of its strong spatial and temporal variations, which render point measurements nearly useless. We derived unsaturated hydraulic conductivity at the horizontal scale of hectometers and the vertical scale of decimeters by analyzing trends in soil moisture measured using the cosmic-ray neutron method. The resulting effective hydraulic conductivity remains close to its value at saturation over approximately half of the saturation range and then plummets. It agrees with the aggregate of 36 point measurements near saturation, but becomes progressively higher at lower water contents; the difference is potentially reconcilable by upscaling of point measurements. This study shows the feasibility of the cosmic-ray method, highlights the importance of measurement scale, and provides a route toward better understanding of land-surface processes.
APA, Harvard, Vancouver, ISO, and other styles
7

Heinze, Jonas. "Ultra-high-energy cosmic-ray nuclei and neutrinos in models of gamma-ray bursts and extragalactic propagation." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21386.

Full text
Abstract:
Utrahochenergetische kosmische Strahlung (ultra-high-energy cosmic rays -- UHECR) besteht aus ionisierten Atomkernen mit den höchsten Teilchenergien, die je gemessen wurden. Zwar wurden die Quellen von UHECRs noch nicht eindeutig identifiziert, doch gibt es deutliche Anzeichen, dass sie extragalaktisch sind. Um die Beobachtungen zu interpretieren, wird ein Modell der Wechselwirkungen mit Photofeldern sowohl in der Quelle als auch während der extragalaktischen Propagation benötigt. Bei diesen Wechselwirkungen werden sekundäre Neutrinos erzeugt. Diese Dissertation behandelt Modelle der Quellen von UHECRs und die damit verbundene Produktion von Neutrinos sowohl in den Quellen als auch während der Propagation. Dafür wurde ein neuer Code, PriNCe, für die Propagation von UHECRs entwickelt. Dieser Code wird in einem umfangreichen Parameterscan für ein generisches Quellenmodell angewendet, welches mit dem Spektralindex, der maximalen Rigidität, der kosmologischen Quellenverteilung und der chemischen Komposition als freie Parameter definiert ist. Dabei wird der Einfluss von verschiedenen Photodisintegrations- und Luftschauermodellen auf die erwarteten Eigenschaften der Quellen demonstriert. Der Fluss kosmogenischer Neutrinos, der sich daraus robust vorhersagen lässt, liegt außerhalb der Reichweite aller derzeit geplanten Neutrinodetektoren. GRBs als mögliche Quellen von UHECRs werden im Multi-Collision Internal-Shock Modell simuliert, welches die Abhängigkeit der Strahlungsprozesse von den verschiedenen Dissipationsradien im Plasmajet berücksichtigt. Für dieses Modell wird der Effekt demonstriert, den verschiedene Annahmen über die anfängliche Verteilung des Plasmajets und das hydrodynamische Modell auf die resultierende UHECR- und Neutrinosstrahlung haben. Für den Gammastrahlenblitz GRB170817A, welcher zusammen mit einem Gravitationswellensignal beobachtet wurde, werden Vorhersagen für den Neutrinofluss und ihre Abhängigkeit vom Beobachtungswinkel gemacht.
Ultra-high-energy cosmic rays (UHECRs) are the most energetic particles observed in the Universe. While the astrophysical sources of UHECRs have not yet been uniquely identified, there are strong indications for an extragalactic origin. The interpretation of the observations requires both simulations of UHECR acceleration and energy losses inside the source environment as well as interactions during extragalactic propagation. Due to their extreme energies, UHECR will interact with photons in these environments, producing a flux of secondary neutrinos. This dissertation deals with models of UHECR sources and the accompanying neutrino production in the source environment and during extragalactic propagation. We have developed a new, computationally efficient code, PriNCe, for the extragalactic propagation of UHECR nuclei. The PriNCe code is applied for an extensive parameter scan of a generic source model that is described by the spectral index, the maximal rigidity, the cosmological source evolution and the injected mass composition. In this scan, we demonstrate the impact of different disintegration and air-shower models on the inferred source properties. A prediction for the expected flux of cosmogenic neutrinos is also derived. GRBs are discussed as specific UHECR source candidates in the multi-collision internal-shock model. This model takes the radiation from different radii in the GRB outflow into account. We demonstrate how different assumptions about the initial setup of the jet and the hydrodynamic collision model impact the production of UHECRs and neutrinos. Motivated by the multi-messenger observation of GRB170817A, we discuss the expected neutrino production from this GRB and its dependence on the observation angle. We show that the neutrino flux for this event is at least four orders of magnitude below the detection limit for different geometries of the plasma jet.
APA, Harvard, Vancouver, ISO, and other styles
8

Phan, Vo Hong Minh. "Cosmic ray interaction in molecular environment." Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7070.

Full text
Abstract:
De nombreuses évidences observationnelles parvenues de différentes expériences au début du 20e siècle ont révélé que la Terre est constamment bombardée par des rayons cosmiques, des particules de haute énergie d'origine extraterrestre. Étant donné que ces particules sont très énergétiques, on pense qu'elles pourraient pénétrer profondément dans les nuages moléculaires et ioniser les parties les plus denses de ces objets, où naissent de nouvelles étoiles. Cela signifie que les rayons cosmiques règlent le niveau d'ionisation qui contrôle non seulement la chimie des nuages moléculaires mais également le couplage entre le gaz et le champ magnétique qui soutient le nuage en contrastant la gravité pendant le processus de formation des étoiles. On remarque que les taux d'ionisation déduits des observations infrarouges et radio sont beaucoup plus importants que la valeur communément citée dans la littérature. Ce désaccord doit mener à une réévaluation du taux d'ionisation dans les nuages, d'un point de vue théorique. Cette tâche nécessite une meilleure compréhension du transport des rayons cosmiques dans les nuages et, plus important encore, la connaissance de la quantité de rayons cosmiques de basse énergie à différentes positions dans notre Galaxie. Le premier sujet a été étudié dans des documents pionniers des années 70 et 80, mais il pourrait y avoir de la place pour d'ultérieures améliorations. En ce qui concerne le deuxième, on a des connaissances récentes, du moins pour le milieu interstellaire local, grâce aux données des sondes Voyager. Il n'est cependant pas très clair si ces données pourraient être considérées comme des valeurs de référence pour la densité des rayons cosmiques de basse énergie dans l'ensemble de la Galaxie. L'objectif de ce travail est donc d'étudier la propagation des rayons cosmiques de basse énergie dans des environnements neutres et aussi de mieux interpréter les données d'observation du taux d'ionisation dans les nuages moléculaires isolés et ceux au voisinage des accélérateurs cosmiques, tels que les restes de supernova
It has been revealed by observational evidences from various experiments at the beginning of the 20th century that the Earth is constantly bombarded by cosmic rays, high-energy particles of extraterrestrial origin. Since these particles are very energetic, it is believed that they could penetrate deep into molecular clouds and ionize the densest parts of these objects where new stars are born. This means that cosmic rays regulate the level of ionization that controls not only the chemistry of molecular clouds but also the coupling between the gas and the magnetic field which support the cloud against gravity during the process of star formation. Interestingly, the ionization rates inferred from infrared and radio observations are much larger than the commonly quoted value in the literature. This calls for a reassessment from a theoretical point of view of the ionization rate in clouds. This task requires a better understanding of the transport of cosmic rays into clouds and, more importantly, the knowledge of the amount of low energy cosmic rays at different positions in our Galaxy. The former has been investigated in some of the pioneering papers in the seventies and eighties but there might be room for some improvements. The latter is known not too long ago at least for the local interstellar medium thanks to the data from the Voyager probes. It is, however, not very clear whether or not these data could be considered as reference values for the density of low energy cosmic rays in the entire Galaxy. The aim of this work is, therefore, to study the propagation of low energy cosmic rays in neutral environments and also to better interpret the observational data of the ionization rate in both isolated molecular clouds and the ones in the vicinity of cosmic accelerators like supernova remnants
APA, Harvard, Vancouver, ISO, and other styles
9

Herbst, Klaudia [Verfasser]. "Interaction of Cosmic Rays with the Earth's Magnetosphere and Atmosphere - Modeling the Cosmic Ray Induced Ionization and the Production of Cosmogenic Radionuclides / Klaudia Herbst." Kiel : Universitätsbibliothek Kiel, 2013. http://d-nb.info/1029981833/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Okon, Hiromichi. "X-ray Study on Supernova Remnants Interacting with Dense Clouds." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263456.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Cosmic ray interactions"

1

Dorman, Lev I. Cosmic Ray Interactions, Propagation, and Acceleration in Space Plasmas. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-5101-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

International, Symposium on Very High Energy Cosmic Ray Interactions (9th 1996 Karlsruhe Germany). Very High Energy Cosmic Ray Interactions: Proceedings of the 9th International Symposium on Very High Energy Cosmic Ray Interactions, Karlsruhe, Germany, 19-23 August 1996. [Netherlands]: North-Holland, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

France) International Symposium on Very High Energy Cosmic Ray Interactions (15th 2008 Paris. Very high energy cosmic ray interactions: Proceedings of the XV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2008) : Paris, France, 1-6 September 2008. Amsterdam: Elsevier, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

International Symposium on Very High Cosmic Ray Interactions (10th 1998 Laboratori Nazionali del Gran Sasso, Assergi, Italy). Very high energy cosmic ray interactions: Proceedings of the 10th International Symposium on Very High Energy Cosmic Ray Interactions, Laboratori Nazionali del Gran Sasso, Assergi, Italy, 12-17 July 1998. [Amsterdam]: North-Holland, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guzik, T. Gregory. [The systematic interpretation of cosmic ray data (the transport project)]. [Washington, DC: National Aeronautics and Space Administration, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cucinotta, Francis A. Description of alpha-nucleus interaction cross sections for cosmic ray shielding studies. Hampton, Va: Langley Research Center, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

International Symposium on Very High Energy Cosmic Ray Interactions (11th 2000 Campinas, São Paulo, Brazil). Very high energy cosmic ray interactions: Proceedings of the 11th International Symposium on Very High Energy Cosmic Ray Interactions : 'Gleb Wataghin' Institute of Physics, State University of Campinas, Campinas, Brazil, 17-21 July 2000. [Amsterdam, Netherlands]: North-Holland, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Abunina, Maria, Rolf Bütikofer, Karl-Ludwig Klein, Olga Kryakunova, Monica Laurenza, David Ruffolo, Danislav Sapundjiev, Christian T. Steigies, and Ilya Usoskin, eds. NMDB@Home 2020. Kiel: Universitätsverlag Kiel | Kiel University Publishing, 2021. http://dx.doi.org/10.38072/2748-3150/v1.

Full text
Abstract:
With the 'Proceedings of the 1st virtual symposium on cosmic ray studies with neutron detectors' launches the new open access series 'Cosmic ray studies with neutron detectors'. The volume comprises the papers presented at the online meeting held in July 2020. The contributions show that neutron detectors on the ground provide significant results for studying the interaction of galactic cosmic rays with magnetic fields in the heliosphere, for accelerating energetic particles, and for a growing number of applications, including geophysics and space weather. The easily accessible databases around the project 'Real-Time database for high resolution Neutron Monitor measurements' (NMDB) make the original data readily available to a large user community.
APA, Harvard, Vancouver, ISO, and other styles
9

Murzin, V. S. Fizika adronnykh prot͡s︡essov. Moskva: Ėnergoatomizdat, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

A search for muon neutrino to electron neutrino oscillations in the MINOS experiment. New York: Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cosmic ray interactions"

1

Stanev, Todor. "Cosmic ray interactions." In High Energy Cosmic Rays, 17–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-85148-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stanev, Todor. "Cosmic Ray Interactions." In High Energy Cosmic Rays, 17–44. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71567-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schlickeiser, Reinhard. "Interactions of Cosmic Ray Electrons." In Cosmic Ray Astrophysics, 73–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04814-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schlickeiser, Reinhard. "Interactions of Cosmic Ray Nuclei." In Cosmic Ray Astrophysics, 105–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04814-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prodanović, Tijana, and Aleksandra Ćiprijanović. "Cosmic-Ray Nucleosynthesis in Galactic Interactions." In Springer Proceedings in Physics, 417–20. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13876-9_79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yamakoshi, Kazuo. "Cosmic Ray Exposure Age Determinations of Cosmic Spherules from Marine Sediments." In Properties and Interactions of Interplanetary Dust, 179–81. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5464-9_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Biermann, P. L., S. Markoff, W. Rhode, and E. S. Seo. "Cosmic Ray Interactions in the Galactic Center Region." In Astrophysical Sources of High Energy Particles and Radiation, 65–79. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0560-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chardonnet, P. "The Diffuse γ Ray from Cosmic Ray Interactions in the Galaxy." In The Gamma Ray Sky with Compton GRO and SIGMA, 135–45. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0067-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Silberberg, R., M. D. Leising, and R. J. Murphy. "Gamma-Ray Lines from Nucleosynthesis and from Cosmic-Ray and Solar-Flare Particle Interactions." In Cosmic Gamma Rays, Neutrinos, and Related Astrophysics, 289–319. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0921-2_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dorman, Lev I. "Variables Gamma Ray Sources, 2: Interactions of Galactic Cosmic Rays with Solar and Stellar Winds." In Astrophysical Sources of High Energy Particles and Radiation, 231–43. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0560-9_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cosmic ray interactions"

1

Engel, Ralph, Mariana Orellana, Matías M. Reynoso, Gabriela S. Vila, Carlos Javier Solano Salinas, Jose Bellido, David Wahl, and Oscar Saavedra. "High-energy cosmic ray interactions." In COSMIC RAYS AND ASTROPHYSICS: Proceedings of the 3rd School on Cosmic Rays and Astrophysics. AIP, 2009. http://dx.doi.org/10.1063/1.3141378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mazziotta, Mario Nicola, Pedro De la Torre Luque, Leonardo Di Venere, Alberto Fassò, Alfredo Ferrari, Francesco Loparco, Paola Sala, and Davide Serini. "Cosmic-ray interactions with the Sun." In 37th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.395.1321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Blazek, Jiri, Jakub Vicha, Jan Ebr, Ralf Ulrich, Tanguy Pierog, and Petr Travnicek. "Modified Characteristics of Hadronic Interactions." In 37th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.395.0441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vicha, Jakub, Alexey Yushkov, Dalibor Nosek, Petr Travnicek, and Eva Santos. "Testing Hadronic Interactions Using Hybrid Observables." In 36th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.358.0452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Knapp, J. "High-Energy Interactions and Extensive Air Showers." In 25th International Cosmic Ray Conference. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814529044_0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Manczak, Jerzy, Nafis Rezwan Khan-Chowdhury, Juan Jose Hernandez-Rey, Sergio Navas Concha, Michel Ageron, Sebastiano Aiello, Arnauld Albert, et al. "Neutrino non-standard interactions with theKM3NeT/ORCA detector." In 37th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.395.1165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Medhi, Abinash, Debajyoti Dutta, and MoonMoon Devi. "Scalar Non Standard Interactions at long baseline experiments." In 37th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.395.1225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Krause, Julian, Giovanni Morlino, and Stefano Gabici. "CRIME - cosmic ray interactions in molecular environments." In The 34th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.236.0518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cazon, Lorenzo. "Probing High-Energy Hadronic Interactions with Extensive Air Showers." In 36th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.358.0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khan Chowdhury, Nafis Rezwan, Tarak Thakore, Joao A. B. Coelho, Juan De Dios Zornoza, and Sergio Navas. "Sensitivity to Non-Standard Interactions (NSI) with KM3NeT-ORCA." In 36th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.358.0931.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Cosmic ray interactions"

1

Aguayo Navarrete, Estanislao, Richard T. Kouzes, Austin S. Ankney, John L. Orrell, Timothy J. Berguson, and Meredith D. Troy. Cosmic Ray Interactions in Shielding Materials. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1025678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aguayo Navarrete, Estanislao, John L. Orrell, and Richard T. Kouzes. Monte Carlo Simulations of Cosmic Rays Hadronic Interactions. Office of Scientific and Technical Information (OSTI), April 2011. http://dx.doi.org/10.2172/1022429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tagliapietra, Luca, Piero Neuhold, John Adlish, Enrico Mainardi, and Riccardo Surrente. RNA Detection in air by means of Cosmic Rays interactions. Cornell University, August 2020. http://dx.doi.org/10.47410/bhf.2020.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography