Academic literature on the topic 'Cosmetic active ingredients'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cosmetic active ingredients.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cosmetic active ingredients"
Siahaan, Evi Amelia, Agusman, Ratih Pangestuti, Kyung-Hoon Shin, and Se-Kwon Kim. "Potential Cosmetic Active Ingredients Derived from Marine By-Products." Marine Drugs 20, no. 12 (November 24, 2022): 734. http://dx.doi.org/10.3390/md20120734.
Full textRoniawati, Irna, Norisca Aliza Putriana, Adinda Naswa Putri, and Yuniar Alfain Nur’aini. "Review: Saffron’s Activity as an Active Ingredient in Cosmetics." Indonesian Journal of Pharmaceutics 3, no. 2 (November 3, 2021): 74. http://dx.doi.org/10.24198/idjp.v3i2.34876.
Full textPagels, Fernando, Cíntia Almeida, Vitor Vasconcelos, and A. Catarina Guedes. "Cosmetic Potential of Pigments Extracts from the Marine Cyanobacterium Cyanobium sp." Marine Drugs 20, no. 8 (July 27, 2022): 481. http://dx.doi.org/10.3390/md20080481.
Full textPlainfossé, Hortense, Pauline Burger, Grégory Verger-Dubois, Stéphane Azoulay, and Xavier Fernandez. "Design Methodology for the Development of a New Cosmetic Active Based on Prunus domestica L. Leaves Extract." Cosmetics 6, no. 1 (January 29, 2019): 8. http://dx.doi.org/10.3390/cosmetics6010008.
Full textMorais, Tiago, João Cotas, Diana Pacheco, and Leonel Pereira. "Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients?" Cosmetics 8, no. 1 (January 15, 2021): 8. http://dx.doi.org/10.3390/cosmetics8010008.
Full textAMBERG, NORA. "SUSTAINABILITY BACKROUND OF PRODUCING AND SELECTING COSMETICS, WITH SPECIAL PRECAUTIONS FOR PRODUCT INSTRUMENTS." sj-economics scientific journal 31, no. 4 (December 30, 2018): 411–23. http://dx.doi.org/10.58246/sjeconomics.v31i4.79.
Full textDuprat-de-Paule, Sébastien, Jérôme Guilbot, Alicia Roso, Sophie Cambos, and Aurélie Pierre. "Augmented bio-based lipids for cosmetics." OCL 25, no. 5 (August 8, 2018): D503. http://dx.doi.org/10.1051/ocl/2018036.
Full textFerreira, Marta Salvador, Diana I. S. P. Resende, José M. Sousa Lobo, Emília Sousa, and Isabel F. Almeida. "Marine Ingredients for Sensitive Skin: Market Overview." Marine Drugs 19, no. 8 (August 17, 2021): 464. http://dx.doi.org/10.3390/md19080464.
Full textZillich, O. V., U. Schweiggert-Weisz, P. Eisner, and M. Kerscher. "Polyphenols as active ingredients for cosmetic products." International Journal of Cosmetic Science 37, no. 5 (March 16, 2015): 455–64. http://dx.doi.org/10.1111/ics.12218.
Full textCoimbra, Sara Cabanas, Inês Sousa-Oliveira, Inês Ferreira-Faria, Diana Peixoto, Miguel Pereira-Silva, Ankita Mathur, Kiran D. Pawar, et al. "Safety Assessment of Nanomaterials in Cosmetics: Focus on Dermal and Hair Dyes Products." Cosmetics 9, no. 4 (August 8, 2022): 83. http://dx.doi.org/10.3390/cosmetics9040083.
Full textDissertations / Theses on the topic "Cosmetic active ingredients"
Mattiasson, Johanna. "Method development of an in vitro vertical Franz diffusion cell system to assess permeation of cosmetic active ingredients." Thesis, Uppsala universitet, Institutionen för kemi - Ångström, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414205.
Full textSilva, Diana Patrícia Pinto da. "Nanopartículas lipídicas: aplicações cosméticas." Master's thesis, [s.n.], 2013. http://hdl.handle.net/10284/4484.
Full textTendo em conta a sua composição e as vantagens que apresentam, as nanopartículas lipídicas têm sido amplamente aplicadas em cosmetologia, existindo atualmente vários produtos comercializados. Deste modo, a análise das potencialidades destes sistemas para novas aplicações cosméticas é essencial. Neste trabalho é efetuada uma revisão bibliográfica relativa aos diferentes produtos cosméticos contendo nanopartículas lipídicas, quer estes se encontrem em fase de estudo ou já disponíveis no mercado. Na primeira parte do trabalho é feita uma breve introdução acerca da estrutura da pele, da definição de produtos cosméticos e das suas principais caraterísticas e aplicações. Na segunda parte são descritos os sistemas de nanopartículas lipídicas, tendo em conta as suas caraterísticas estruturais, diferentes aplicações em cosmetologia e são dados exemplos dos produtos cosméticos existentes no mercado. According to their composition and advantages, lipid nanoparticles have been widely applied in cosmetology, and there are several products that can be found on the market nowadays. Therefore, the analysis of the potential of these new systems for cosmetic applications is essential. In this work is performed a literature review about the diverse cosmetic products containing lipid nanoparticles, whether they are in clinical trials or already in the market. In the first part, a brief introduction regarding the structure of the skin, the definition of cosmetic products, their main characteristics and applications are presented. In the second part are described the lipid nanoparticles systems, considering their structural characteristics, different applications in cosmetology and are given some examples of the cosmetic products that are already on the market.
Santos, Cláudia Maria Pereira dos. "Nanoencapsulação de ingredientes activos em cosmetologia." Master's thesis, [s.n.], 2012. http://hdl.handle.net/10284/3737.
Full textA aplicação de produtos cosméticos na pele apresenta limitações, devido sobretudo à dificuldade dos ingredientes activos em atravessarem o estrato córneo. Por outro lado, é importante garantir que estes não atinjam a circulação geral. Neste sentido, várias estratégias têm sido desenvolvidas e investigadas para contornar o problema, designadamente, o uso de nanossistemas para encapsular e vectorizar os ingredientes activos. A nanoencapsulação de ingredientes activos em cosmetologia tem sido descrita como promissora, devido às vantagens que apresenta para as substâncias encapsuladas: (i) aumento da estabilidade; (ii) libertação controlada; (iii) direccionamento para locais específicos; (iv) promoção da penetração cutânea. Adicionalmente, o uso de nanossistemas por si só permite obter efeitos benéficos ao nível da pele: (i) manutenção da integridade da barreira cutânea; (ii) aumento da eficácia e tolerância dos filtros solares à superfície; (iii) obtenção de produtos mais atractivos do ponto de vista estético. Este trabalho tem como objectivo efectuar uma revisão bibliográfica relativa à nanoencapsulação de ingredientes activos em cosmetologia. Inicialmente é efectuada uma abordagem relativa à anatomia e histologia da pele. De seguida, são descritos os diversos nanossistemas com aplicações em cosmetologia, indicando-se as suas vantagens e limitações. Os resultados publicados nos últimos anos pela comunidade científica, bem como as preparações actualmente existentes no mercado e as perspectivas futuras desta aplicação são referidos. The application of cosmetics on the skin shows some drawbacks, mainly because of limitations of the active ingredients to cross the stratum corneum barrier. On the other hand, is important to assure that these substances do not reach systemic circulation. Therefore, several strategies have been developed in order to circumvent the problem, namely, the use of nanosystems for the encapsulation and target the active ingredients. The nanoencapsulation of cosmetic active ingredients have been described as very promising, because of the advantages that presents for the encapsulated substances: (i) improved stability; (ii) controlled release; (iii) local target; (iv) skin penetration enhancement. Moreover, the use of empty nanosystems exerts skin benefits: (i) improvement of barrier integrity; (ii) promotion of the efficacy and tolerability of sun filters; (iii) achievement of more esthetic attractive products.
Westfall, Alexandra. "Evaluation of the Efficacy of Anthocyanins as Biologically Active Ingredients in Lipstick Formulations." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429170218.
Full textRuivo, Adriana Pessoa. "Envelhecimento cutâneo: fatores influentes, ingredientes ativos e estratégias de veiculação." Master's thesis, [s.n.], 2014. http://hdl.handle.net/10284/4413.
Full textO envelhecimento é um processo de degradação progressiva e diferencial que ocorre em todos os órgãos e desta forma a pele não lhe fica indiferente. O envelhecimento cutâneo pode ser intrínseco ou cronológico, aquele que surge com a idade influenciado por fatores genéticos, ou extrínseco ou actínico aquele que surge influenciado por fatores externos tal como o tabaco, poluição, hábitos de vida e predominantemente, a radiação solar (fotoenvelhecimento). Surgem, com a idade, alterações bioquímicas que conduzem a manifestações clínicas ao nível cutâneo, como rugas, aumento de espessura, pigmentações, entre outras. Algumas dessas alterações, encontram-se ao nível das funções do sistema imunitário, dos anexos cutâneos, da reparação do DNA e também do balanço de espécies oxidantes e antioxidantes surgindo geralmente stress oxidativo, estas por serem cumulativas agravam e antecipam o processo de envelhecimento. Existem, atualmente, alguns ingredientes e metodologias eficazes na melhoria de sinais de envelhecimento, designadamente, as vitaminas A, E e C, coenzima Q10, retinoides, compostos fitoterápicos como os alfa-hidroxi-ácidos (AHA), ou derivados da soja. No que respeita a metodologias, existem igualmente algumas com eficácia comprovada como os peeling’s químicos, o botox ou toxina botulínica, os fillers ou preenchimentos. Sendo esta uma área em constante investigação, existem analogamente, muitos estudos em desenvolvimento, havendo algumas novidades neste âmbito, principalmente ao nível de ingredientes ativos, destacando-se os péptidos. Relativamente a veículos, geralmente, são produtos em forma de emulsão (cremes, por exemplo), existindo já novidades nesse âmbito como, por exemplo, as nano e micropartículas, lipossomas, nano e microemulsões e as ciclodextrinas. O presente trabalho pretende elucidar e abordar todos os pontos supramencionados, de forma pormenorizada auxiliando a uma melhor compreensão do envelhecimento cutâneo. Aging is a process of gradual and differential degradation that occurs in all organs and the skin is not different. Skin aging can be intrinsic or chronological, one that comes with age influenced by genetics, or extrinsic or actinic that appears influenced by external factors such as tobacco, pollution, lifestyle and solar radiation (Photoaging), predominantly. Aging increases modified processes that lead to visual clinical changes in the skin such as wrinkles, increased thickness, and pigmentation among others. These changes occur in the immune system, skin appendages, DNA repair and also in the balance of oxidant and antioxidant species that generally causes oxidative stress. These processes are cumulative, and that worsens and anticipates the aging process. Currently, there are some ingredients and effective methodologies that improve signs of aging, notably, vitamins A, C and E, coenzyme Q10, retinoids, herbal compounds such as alpha hydroxy acids (AHA) and soy products. Regarding to methods, there are also some with proven efficacy such as: chemical peels, botulinum toxin and fillers. Aging cosmetics is an area of constant research, there are similarly many studies in development, with some news in this field, especially in terms of active ingredients, like peptides. Vehicles are usually in the form of emulsion products (creams, for example), and may include, for example, nano and microparticles, liposomes, nano and microemulsions and cyclodextrins. The present work aims to elucidate and review all the above in detail for a better understanding of aging cosmetic science.
Janvier, Xavier. "Etude de l'effet d'un polluant atmosphérique (NO2) sur le microbiote cutané Dialog between skin and its microbiota : Emergence of "Cutaneous bacterial endocrinology" Deleterious effects of an air pollutant on a selection of commensal skin bacterial strains, potential contributor to dysbiosis Response of a commensal skin bacterium to nitrogen oxides (NOx), air pollutants : potential tools for testing anti-pollution active cosmetic ingredient effectiveness Draft genome sequence of the commensal strain Corynebacterium tuberculostearicum CIP 102622 isolated from human skin Draft genome sequences of four commensal strains of Staphylococcus and Pseudomonas isolated from healthy human skin." Thesis, Normandie, 2021. http://www.theses.fr/2021NORMR007.
Full textNitrogen dioxide (NO2), as the second most deadly air pollutant in Europe, is one of the most of concern for human health according to the European Environment Agency. It is notably known to be responsible for cardiovascular and respiratory diseases and also contributes to skin aging and atopic dermatitis. Host endogenous factors such as the cutaneous microbiota are also involved in this pathology, which is common in urban and suburban areas. Indeed, many skin pathologies are correlated to an imbalance (dysbiosis) of the bacterial microbiota, an essential player in the preservation of skin homeostasis. However, it is strongly presumed that the effect of pollutants on the skin involves direct mechanisms of action but also an indirect mechanism linked to the alteration of the cutaneous microbiota by the pollutant. Consequently, it is relevant to address the effect of gaseous NO2 (gNO2) on the cutaneous microbiota. This thesis aims to assess the physiological, morphological and molecular impact of gNO2 on commensal bacterial strains of representative species of the cutaneous microbiota (Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus capitis, Pseudomonas fluorescens, Corynebacterium tuberculostearicum). Depending on the species, different responses to gNO2-generated nitrosative stress were thus highlighted as well as a higher tolerance to gNO2 for some of them. This work therefore suggests that gNO2 could contribute to the formation of a dysbiotic state of the cutaneous microbiota and participate in the pollutant indirect action on the skin
Hu, Keng-ming, and 胡耿銘. "The properties of carbon paste electrode used for transdermal absorption studies of active ingredient in cosmetics." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/92024301255374218156.
Full text嘉南藥理科技大學
化妝品科技研究所
96
The ultimate purpose of this research is to develop a on-line electrochemical analysis system used for in-situ transdermal absorption studied for cosmetics. The manufacturing and performance analysis of electrode which is the key component in electrochemical analysis are the main scope in this study. Compared to platinum electrode, the cost of materials used for fabricating carbon electrode is much lower. Therefore, this study is focused on the manufacturing process and performance analysis of carbon electrode. The effect of conductive carbon content on the activity of electrode was studied. Electrochemical Impedance Spectroscopy(EIS) was used to characterize the electrode. Cyclic Voltammetry(CV) was used to analysis the response of the electrode to K3[Fe(CN)6] and vitamin C and its derivatives which are the common active ingredient of in cosmetics. The effect of supporting electrolyte’s concentration on response current was also studied. The polarization resistance and capacity of the carbon electrode obtained from electrochemical impedance analysis show good reproducibility. The response of self-made carbon electrode to K3[Fe(CN)6] shows well redox behavior and the responses to ascorbic acid, magnesium ascorbyl phosphate and ascorbyl glucoside show competent linear relation to the concentration of the analyte in the range of 5.0x10-2~1.0x10-4 M with correlation coefficient higher than 0.9988. Furthermore, the response of carbon electrode to ascorbic acid has the highest sensitivity than it to ascorbyl glucoside and the response to magnesium ascorbyl phosphate got the lowest sensitivity among these three vitamin C related substances. In summary, the self-made carbon electrode in this study shows good stability and competent reproducible response to analyte. The applicable concentration range for active ingredient in cosmetics can be established by analyzing the linear relation and sensitivity of the response to the analyte. It is promising that there are great potential for the utilization of this electrode in the developing of on-line electrochemical in-situ transdermal absorption analysis system. The test and research result found the carbon electrode of manufacture, make use of the Electrochemical Impedance Spectroscopy method to get characteristic parameters, such as...etc, representability the carbon electrode of manufacture have fairly good and stability. And analysis result of Cyclic Voltammetry method have rather consistent and stability at different contained respondence of redox.As for analyze the often used active ingredient - vitamin C and its derivatives, we found concentrations of within the scope of, its respond of value of line relationship factor,all reaches 0.9988 above, simultaneously at vitamin C, vitamin C phosphoric acid magnesium and the vitamin C glucose between the vitamin C have the highest sensitivity,vitamin C glucose secondly, the vitamin C phosphoric acid magnesium lowest. Summary above result, this research of the carbon electrode have an equal, moreover analysis respondence of redox with fairly good reproducibility and stability,to utilize the electrode analyze sensitivity of samples and line relation of samples respond that we can build up a scope of detected with electrode application in the active ingredient,therefore applies this electrode establishment electrochemical the on-line and in-situ absorbed system through the skin that should have a good development potential.
Books on the topic "Cosmetic active ingredients"
Cosmetically active ingredients: Recent advances. Carol Stream, Ill: Allured Books, 2011.
Find full textKozlowski, Angela C. Biologically active ingredients: Demonstrating their mechanisms and proof of efficacy. Carol Stream, IL: Allured Pub Corp, 2009.
Find full textDelivery systems for cosmetic active ingredients. Southborough, Mass: Drug and Market Development Publications, 1999.
Find full textCosmeceuticals: Active Skin Treatment (C&t Ingredient Resource). Allured Publishing Corporation, 2005.
Find full textBook chapters on the topic "Cosmetic active ingredients"
Kristmundsdóttir, Thórdís, and Skúli Skúlason. "Lipids as Active Ingredients in Pharmaceuticals, Cosmetics and Health Foods." In Lipids and Essential Oils as Antimicrobial Agents, 151–77. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470976623.ch7.
Full textStiger-Pouvreau, Valérie, and Fabienne Guerard. "Bio-Inspired Molecules Extracted from Marine Macroalgae: A New Generation of Active Ingredients for Cosmetics and Human Health." In Blue Biotechnology, 709–46. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527801718.ch22.
Full textMetcalfe, C., and T. Causer. "The Inside Story – The Science Behind Active Ingredients." In Discovering Cosmetic Science, 225–61. The Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/bk9781782624721-00225.
Full textWiechers, Johann W. "Optimizing Skin Delivery of Active Ingredients From Emulsions." In Delivery System Handbook for Personal Care and Cosmetic Products, 409–36. Elsevier, 2005. http://dx.doi.org/10.1016/b978-081551504-3.50025-0.
Full textNunes, Maria Antónia, Francisca Rodrigues, and Maria Beatriz P. P. Oliveira. "Grape Processing By-Products as Active Ingredients for Cosmetic Proposes." In Handbook of Grape Processing By-Products, 267–92. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-809870-7.00011-9.
Full textYosipovitch, Gil. "Active Ingredients in Cosmetic PreparationsCONTENTSOverviewNaturally occurring substances extracted from animal tissuesPlant extractsAromatic oilsVitaminsCommon foodstuffsSome additional comments." In Series in Cosmetic and Laser Therapy, 131–42. Informa Healthcare, 2009. http://dx.doi.org/10.3109/9781616310004.016.
Full textSaxena, Shweta, Sweta Prakash, and Sadhna Panday. "Crop Improvement Technology With Lawsonia inermis." In Green Chemistry for the Development of Eco-Friendly Products, 200–210. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-9851-1.ch010.
Full text"Process Engineering in Cosmetics to Utilize Active Ingredients." In Cosmeceuticals and Active Cosmetics, 623–32. CRC Press, 2005. http://dx.doi.org/10.1201/noe0824759438-43.
Full text"Ellagic Acid: A New Skin-Whitening Active Ingredient." In Handbook of Cosmetic Science and Technology, 489–94. CRC Press, 2001. http://dx.doi.org/10.1201/9780824741396-42.
Full textLeffingwell, John. "Cooling Ingredients and Their Mechanism of Action." In Handbook of Cosmetic Science and Technology, Third Edition, 661–75. CRC Press, 2009. http://dx.doi.org/10.1201/b15273-66.
Full textConference papers on the topic "Cosmetic active ingredients"
Tsyganova, Irina Vladimirovna, Tatyana Vasilievna Ilyina, and Victoria Alexandrovna Ermolaeva. "DEVELOPMENT OF TECHNOLOGY FOR THE PRODUCTION OF COSMETIC BALM BASED ON NATURAL CARROT ROOT EXTRACT." In Themed collection of papers from Foreign International Scientific Conference «Trends in the development of science and Global challenges» Ьу НNRI «National development» in cooperation with AFP. December 2022. Crossref, 2023. http://dx.doi.org/10.37539/man5.2022.17.57.002.
Full textBoka, V.-I., S. Athanasopoulou, E. Spanidi, E. Beletsiotis, G. Lagiopoulos, and K. Gardikis. "Bee Products in Cosmetic Industry: Propolis Extract a Potent “microbiome friendly” Active Ingredient." In GA – 70th Annual Meeting 2022. Georg Thieme Verlag KG, 2022. http://dx.doi.org/10.1055/s-0042-1759145.
Full textStella, A., F. Bonnier, L. Miloudi, A. Tfayli, F. Yvergnaux, E. Munnier, and C. Tauber. "Minimum volume Constrained non-negative matrix factorization applied to the monitoring of active cosmetic ingredient into the skin in Raman imaging." In 10th International Conference on Pattern Recognition Systems (ICPRS-2019). Institution of Engineering and Technology, 2019. http://dx.doi.org/10.1049/cp.2019.0245.
Full textBerechet, Mariana Daniela, Demetra Simion, Rodica Roxana Constantinescu, Maria Stanca, and Cosmin Andrei Alexe. "Active Principles in Basil Essential Oil – Ocimum basilicum L. Cotton Linings with Antibacterial Properties." In The 9th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2022. http://dx.doi.org/10.24264/icams-2022.ii.3.
Full textKonrade, Daiga, and Kriss Spalvins. "Extraction of bioactives from pumpkin by-products and determination of their antioxidant activity." In Research for Rural Development 2022 : annual 28th international scientific conference proceedings. Latvia University of Life Sciences and Technologies, 2022. http://dx.doi.org/10.22616/rrd.28.2022.016.
Full textMarchand, Regis, Catherine Kern, Remi Laville, and Alicia Roso. "Eco-designed Virgin Coriander Seed Oil: A Food Supplement Solution to Soothe Sensitive Skin." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/skve8239.
Full text