Contents
Academic literature on the topic 'Corticothérapie – Complications (médecine)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Corticothérapie – Complications (médecine).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Corticothérapie – Complications (médecine)"
Chargui, Soumaya, Anis Haris, Imene Bourkhis, Samira Azzabi, Amia Ben Hassine, and Ezeddine Abderrahim. "Syndrome d’activation macrophagique d’origine infectieuse : une série des cas de l’hôpital Charles Nicolle, en Tunisie." Annales Africaines de Medecine 15, no. 1 (January 30, 2022): e4470-e4480. http://dx.doi.org/10.4314/aamed.v15i1.8.
Full textGerfaud-Valentin, Mathieu, Jean-Christophe Richard, Maxime Fauter, Pascal Sève, and Yvan Jamilloux. "Maladie de Still de l’adulte : que doit savoir le réanimateur ?" Médecine Intensive Réanimation, September 2, 2020. http://dx.doi.org/10.37051/mir-00034.
Full textDissertations / Theses on the topic "Corticothérapie – Complications (médecine)"
Versapuech, Julie. "Les hémangiomes périorbitaires : étude de 46 cas." Bordeaux 2, 2000. http://www.theses.fr/2000BOR23046.
Full textRouzé, Anahita. "Impact de l'infection par SARS-CoV-2 sur l'épidémiologie des infections respiratoires bactériennes et des aspergilloses pulmonaires invasives chez les patients de réanimation sous ventilation mécanique." Electronic Thesis or Diss., Université de Lille (2022-....), 2024. https://pepite-depot.univ-lille.fr/ToutIDP/EDBSL/2024/2024ULILS017.pdf.
Full textObjectives: The CoVAPid project aimed to study the impact of SARS-CoV-2 infection on the epidemiology of bacterial and fungal respiratory infections in critically ill patients requiring mechanical ventilation (MV). Three entities were analyzed: early bacterial pulmonary infections, bacterial ventilator-associated lower respiratory tract infections (VA-LRTI) including ventilator-associated pneumonia (VAP) and ventilator-associated tracheobronchitis (VAT), and invasive pulmonary aspergillosis (IPA). The main objectives were to compare the prevalence of early bacterial pulmonary infection between patients admitted for COVID-19 and influenza, to compare the incidence of VA-LRTI among patients admitted for COVID-19, influenza, or other reasons than viral pneumonia, to compare the prevalence of early bacterial pulmonary infection and the incidence of VA-LRTI between patients from the 1st and 2nd pandemic waves of COVID-19, to determine the impact of VAP on mortality in patients with COVID-19, to assess the effect of corticosteroid therapy on the incidence of VAP in patients with COVID-19, and to compare the incidence of IPA between patients with COVID-19 and influenza. Methods: This was a retrospective observational multicenter European cohort involving 36 centers. Adult patients under MV for more than 48 hours were consecutively included and divided into four groups according to their ICU admission cause: COVID-19 (1st and 2nd wave, influenza, and others. Results: A total of 2172 patients were included. The prevalence of bacterial pulmonary infections within 48 hours following intubation was significantly lower in COVID-19 patients (9.7%) compared to those admitted for influenza (33.6%, adjusted odds ratio (OR) 0.23, 95% confidence interval 0.16-0.33). The incidence of VA-LRTI was significantly higher in COVID-19 patients (50.5%) compared to those admitted for influenza (30.3%, adjusted sub-hazard ratio (sHR) 1.6 (1.26-2.04)) and those without viral infection (25.3%, sHR 1.7 (1.20-2.39)), with a significantly higher incidence of VAP in the COVID-19 group compared to the other two groups. The prevalence of early infection significantly increased between the 1st and 2nd wave (9.7 vs 14.9%, adjusted OR 1.52 (1.04-2.22)), as did the incidence of VAP (36 vs 44.8%; adjusted sHR 1.37 (1.12-1.66)). VAP was associated with a significant increase in 28-day mortality in COVID-19 patients (adjusted HR of 1.65 (1.11-2.46)), which was not observed in patients admitted for influenza and without viral infection. However, no significant difference in the heterogeneity of the association between VAP and mortality was observed among the three study groups. The relationship between corticosteroid exposure and the incidence of VAP was not statistically significant (p=0.082 for the overall effect), despite a varying risk of VAP over time since the initiation of treatment. Finally, the incidence of putative IPA (defined by the AspICU algorithm) was significantly lower in the COVID-19 group compared to the influenza group (2.5% vs 6%, cause-specific adjusted HR 3.29 (1.53-7.02)). Conclusion: The CoVAPid project highlighted a lower prevalence of early bacterial pulmonary infections in COVID-19 patients compared to those with influenza, with a significant increase between the 1st and 2nd pandemic wave. The incidence of VAP was higher in COVID-19 patients, compared to patients admitted for influenza or without viral infection at admission, and significantly increased between the 1st and 2nd wave. In COVID-19 patients, corticosteroid therapy had no significant effect on the incidence of VAP, and the occurrence of VAP was associated with a significant increase in 28-day mortality. The incidence of IPA was lower among patients with COVID-19 than those with influenza
Tijani, Omolara Khadijat. "Glucocorticoids and Intracrine Cortisol Metabolism in human Islets : Impact on Glucose Stimulated Insulin secretion." Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILS061.
Full textExcessive glucocorticoid (GC) exposure, as seen in patients receiving GC therapy, can lead to β-cell dysfunction and diabetes in up to 40% of the cases. In obesity, increased local cortisol exposure due to altered metabolism contributes to diabetes onset. High doses of GCs like dexamethasone (DEX) are known to inhibit glucose-stimulated insulin secretion (GSIS), but the effects of lower doses and other GCs, such as hydrocortisone (HC) and prednisone (PRED), remain underexplored. The enzyme 5α-reductase type 1 (SRD5A1) is a crucial enzyme for GC degradation, modulating their bioavailability. Inhibition or knockout of SRD5A1 is associated with impaired insulin sensitivity and increased diabetes risk. This first part of my thesis investigates the impact of “low therapeutic” doses of PRED (equivalent to 5 to 10 mg administrated orally) and other GCs on glucose stimulated insulin secretion (GSIS). We showed that PRED significantly decreases GSIS, with DEX having a worse effect compared to PRED and HC. BMI, age, or sex do not significantly influence the direct impact of PRED on insulin secretion. The second part of the work aimed to characterize GC metabolism in human islets. SRD5A1 is the only A-ring reductase expressed in islets, and its expression, along with HSD11B1, is localized within the β-cells of human islets. We demonstrated evidence of intracrine metabolism of cortisol in intact primary human islets cultured under dynamic experimental settings. Expression data reveals significantly diminished expression of both HSD11B1 and SRD5A1 in T2D donors compared to normoglycemic donors. The last part aimed to provide proof of concept that decreased cortisol bioavailability via the overexpression of SRD5A1 in human islets mitigates the inhibitory effect of GCs on GSIS. SR5DA1 overexpression attenuated the impact of HC on the first phase of insulin secretion, but not the PRED impact. To conclude, even at low doses, GCs impair GSIS. The decrease in SRD5A1 expression in islets may contribute to the development of diabetes in metabolic context. SRD5A1 overexpression protects against the deleterious impact of cortisol on GSIS, providing additional evidence to support the enzyme's role in local cortisol overexposure and the development of diabetes. However, increasing SRD5A1 activity may not be an effective approach to protect against metabolic complications induced by GC therapy. Other aspects of β-cell function, especially cell viability, need to be studied. Moreover, the potential benefits of SRD5A1 in modulating insulin resistance and fatty liver disease should be investigated. These further studies will provide more insight into the potential of SRD5A1 as a therapeutic target