Journal articles on the topic 'Core-shell Nanomaterials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Core-shell Nanomaterials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Arici, Elif, Dieter Meissner, F. Schäffler, and N. Serdar Sariciftci. "Core/shell nanomaterials in photovoltaics." International Journal of Photoenergy 5, no. 4 (2003): 199–208. http://dx.doi.org/10.1155/s1110662x03000333.
Full textRibeiro, Mota, Júnior, Lima, Fechine, Denardin, Carbone, Bloise, Mele, and Mazzetto. "Nanomaterials Based on Fe3O4 and Phthalocyanines Derived from Cashew Nut Shell Liquid." Molecules 24, no. 18 (September 9, 2019): 3284. http://dx.doi.org/10.3390/molecules24183284.
Full textTsamos, Dimitris, Athina Krestou, Maria Papagiannaki, and Stergios Maropoulos. "An Overview of the Production of Magnetic Core-Shell Nanoparticles and Their Biomedical Applications." Metals 12, no. 4 (March 31, 2022): 605. http://dx.doi.org/10.3390/met12040605.
Full textSepahvand, R., S. Alihosseini, M. Adeli, and P. Sasanpour. "Fullerene-Gold Core-Shell Structures and Their Self-Assemblies." International Journal of Nanoscience 16, no. 02 (January 24, 2017): 1650029. http://dx.doi.org/10.1142/s0219581x16500290.
Full textZhang, Xiao-kai, Lei Xia, Xue Li, and Lian-dong Liu. "Preparation and spectral properties of CuSe/ZnSe core-shell nanomaterials." Europhysics Letters 136, no. 2 (October 1, 2021): 26001. http://dx.doi.org/10.1209/0295-5075/136/26001.
Full textLoghina, Liudmila, Maksym Chylii, Anastasia Kaderavkova, Stanislav Slang, Petr Svec, Jhonatan Rodriguez Pereira, Bozena Frumarova, Miroslav Cieslar, and Miroslav Vlcek. "Highly Efficient and Controllable Methodology of the Cd0.25Zn0.75Se/ZnS Core/Shell Quantum Dots Synthesis." Nanomaterials 11, no. 10 (October 5, 2021): 2616. http://dx.doi.org/10.3390/nano11102616.
Full textRakgalakane, B. P., and M. J. Moloto. "Aqueous Synthesis and Characterization of CdSe/ZnO Core-Shell Nanoparticles." Journal of Nanomaterials 2011 (2011): 1–6. http://dx.doi.org/10.1155/2011/514205.
Full textMallick, Sadhucharan, Kshitij RB Singh, Vanya Nayak, Jay Singh, and Ravindra Pratap Singh. "Potentialities of core@shell nanomaterials for biosensor technologies." Materials Letters 306 (January 2022): 130912. http://dx.doi.org/10.1016/j.matlet.2021.130912.
Full textKalambate, Pramod K., Dhanjai, Zhimei Huang, Yankai Li, Yue Shen, Meilan Xie, Yunhui Huang, and Ashwini K. Srivastava. "Core@shell nanomaterials based sensing devices: A review." TrAC Trends in Analytical Chemistry 115 (June 2019): 147–61. http://dx.doi.org/10.1016/j.trac.2019.04.002.
Full textWang, Lingyan, Hye-Young Park, Stephanie I.-Im Lim, Mark J. Schadt, Derrick Mott, Jin Luo, Xin Wang, and Chuan-Jian Zhong. "Core@shell nanomaterials: gold-coated magnetic oxide nanoparticles." Journal of Materials Chemistry 18, no. 23 (2008): 2629. http://dx.doi.org/10.1039/b719096d.
Full textKumar, K. Santhosh, Vijay Bhooshan Kumar, and Pradip Paik. "Recent Advancement in Functional Core-Shell Nanoparticles of Polymers: Synthesis, Physical Properties, and Applications in Medical Biotechnology." Journal of Nanoparticles 2013 (March 25, 2013): 1–24. http://dx.doi.org/10.1155/2013/672059.
Full textIqbal, W., M. Mekki, W. Rehman, B. Shahzad, U. Anwar, S. Mahmood, and Md E. Talukder. "Electrical properties of TiO2/CO3O4 core/shell nanoparticles synthesized by sol-gel method." Digest Journal of Nanomaterials and Biostructures 18, no. 1 (April 20, 2023): 403–10. http://dx.doi.org/10.15251/djnb.2023.181.403.
Full textChen, Liyu, Binbin Huang, Xuan Qiu, Xi Wang, Rafael Luque, and Yingwei Li. "Seed-mediated growth of MOF-encapsulated Pd@Ag core–shell nanoparticles: toward advanced room temperature nanocatalysts." Chemical Science 7, no. 1 (2016): 228–33. http://dx.doi.org/10.1039/c5sc02925b.
Full textSingh, Haobijam Johnson, and Ambarish Ghosh. "Harnessing magnetic dipole resonance in novel dielectric nanomaterials." Nanoscale 10, no. 34 (2018): 16102–6. http://dx.doi.org/10.1039/c8nr04666b.
Full textWerner, Wolfgang S. M., Martin Hronek, Michael Stöger Pollach, and Henryk Kalbe. "Characterisation of nanomaterials: XPS analysis of Core-Shell Nanoparticles." Journal of Surface Analysis 26, no. 2 (2019): 102–3. http://dx.doi.org/10.1384/jsa.26.102.
Full textO’Mullane, Anthony. "Realizing Solid Core/Liquid Shell Nanomaterials at Room Temperature." Matter 1, no. 1 (July 2019): 22–23. http://dx.doi.org/10.1016/j.matt.2019.06.006.
Full textFeng, Hao-peng, Lin Tang, Guang-ming Zeng, Yaoyu Zhou, Yao-cheng Deng, Xiaoya Ren, Biao Song, Chao Liang, Meng-yun Wei, and Jiang-fang Yu. "Core-shell nanomaterials: Applications in energy storage and conversion." Advances in Colloid and Interface Science 267 (May 2019): 26–46. http://dx.doi.org/10.1016/j.cis.2019.03.001.
Full textGuo, Qiang, Yongli Wan, Bingbing Hu, and Xitao Wang. "Carbon-nitride-based core–shell nanomaterials: synthesis and applications." Journal of Materials Science: Materials in Electronics 29, no. 23 (October 8, 2018): 20280–301. http://dx.doi.org/10.1007/s10854-018-0162-2.
Full textShaktawat, Sarita, Kshitij RB Singh, Sushma Thapa, Ranjana Verma, Jay Singh, and Ravindra Pratap Singh. "Optical characteristics and biosensing application of core@shell nanomaterials." Materials Letters: X 17 (March 2023): 100187. http://dx.doi.org/10.1016/j.mlblux.2023.100187.
Full textSun, Zhipeng, and Ruiying Wang. "Editorial: Core–Shell Nanostructures for Energy Storage and Conversion." Nanomaterials 13, no. 3 (February 1, 2023): 589. http://dx.doi.org/10.3390/nano13030589.
Full textHarish, Vancha, Devesh Tewari, Manish Gaur, Awadh Bihari Yadav, Shiv Swaroop, Mikhael Bechelany, and Ahmed Barhoum. "Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications." Nanomaterials 12, no. 3 (January 28, 2022): 457. http://dx.doi.org/10.3390/nano12030457.
Full textSoleyman, R., A. Pourjavadi, N. Masoud, and A. Varamesh. "Core–Shell γ-Fe2O3/SiO2/PCA/Ag-NPs Hybrid Nanomaterials as a New Candidate for Future Cancer Therapy." International Journal of Nanoscience 13, no. 01 (February 2014): 1450008. http://dx.doi.org/10.1142/s0219581x14500082.
Full textPing, He Mei, Yuan Zhi Chen, De Qian Zeng, Rui Xu, Hui Zhang Guo, Lai Sen Wang, and Dong Liang Peng. "Preparation of Gold-Nickel Phosphide Core-Shell Nanoparticles via a Facile Solution Method." Applied Mechanics and Materials 464 (November 2013): 64–68. http://dx.doi.org/10.4028/www.scientific.net/amm.464.64.
Full textLi, Wei, Ahmed Elzatahry, Dhaifallah Aldhayan, and Dongyuan Zhao. "Core–shell structured titanium dioxide nanomaterials for solar energy utilization." Chemical Society Reviews 47, no. 22 (2018): 8203–37. http://dx.doi.org/10.1039/c8cs00443a.
Full textGawande, Manoj B., Anandarup Goswami, Tewodros Asefa, Huizhang Guo, Ankush V. Biradar, Dong-Liang Peng, Radek Zboril, and Rajender S. Varma. "Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis." Chemical Society Reviews 44, no. 21 (2015): 7540–90. http://dx.doi.org/10.1039/c5cs00343a.
Full textWang, Feifan, Yanjie Huang, Zhigang Chai, Min Zeng, Qi Li, Yuan Wang, and Dongsheng Xu. "Photothermal-enhanced catalysis in core–shell plasmonic hierarchical Cu7S4microsphere@zeolitic imidazole framework-8." Chemical Science 7, no. 12 (2016): 6887–93. http://dx.doi.org/10.1039/c6sc03239g.
Full textVergnat, Virginie, Benoît Heinrich, Michel Rawiso, René Muller, Geneviève Pourroy, and Patrick Masson. "Iron Oxide/Polymer Core–Shell Nanomaterials with Star-like Behavior." Nanomaterials 11, no. 9 (September 21, 2021): 2453. http://dx.doi.org/10.3390/nano11092453.
Full textLiu, Hui, Yan Feng, and Jun Yang. "Core-Shell Au-Pt Nanoparticles and Nanodendrites for Methanol Oxidation Reaction." Advanced Materials Research 1142 (January 2017): 234–37. http://dx.doi.org/10.4028/www.scientific.net/amr.1142.234.
Full textWu, Wenling, Liuqing Yang, Suli Chen, Yanming Shao, Lingyun Jing, Guanghui Zhao, and Hua Wei. "Core–shell nanospherical polypyrrole/graphene oxide composites for high performance supercapacitors." RSC Advances 5, no. 111 (2015): 91645–53. http://dx.doi.org/10.1039/c5ra17036b.
Full textXia, Zhonghong, and Shaojun Guo. "Strain engineering of metal-based nanomaterials for energy electrocatalysis." Chemical Society Reviews 48, no. 12 (2019): 3265–78. http://dx.doi.org/10.1039/c8cs00846a.
Full textLiu, Yang, Shiqing Lu, and Haidong Yang. "One-step coating of Ni–Fe alloy outerwear on 1–3-dimensional nanomaterials by a novel technology." New Journal of Chemistry 45, no. 14 (2021): 6406–14. http://dx.doi.org/10.1039/d0nj05292b.
Full textPeriasamy, Arun Prakash, Rini Ravindranath, Prathik Roy, Wen-Ping Wu, Huan-Tsung Chang, Pitchaimani Veerakumar, and Shang-Bin Liu. "Carbon–boron core–shell microspheres for the oxygen reduction reaction." Journal of Materials Chemistry A 4, no. 33 (2016): 12987–94. http://dx.doi.org/10.1039/c6ta03684h.
Full textBa, Zhaojing, Yuansuo Zheng, Min Hu, Lei Fu, Yida He, Jing Wang, and Zhenxi Zhang. "Tunable color emission based on the activator shell thickness of multilayer core–shell nanoparticles under double NIR excitation." CrystEngComm 21, no. 28 (2019): 4175–83. http://dx.doi.org/10.1039/c9ce00708c.
Full textSheng, Qinglin, Yu Shen, Jian Zhang, and Jianbin Zheng. "Ni doped Ag@C core–shell nanomaterials and their application in electrochemical H2O2 sensing." Analytical Methods 9, no. 1 (2017): 163–69. http://dx.doi.org/10.1039/c6ay02196d.
Full textKim, Junhee, Sanghoon Jung, Han-Jung Kim, Yoonkap Kim, Chanyong Lee, Soo Min Kim, Donghwan Kim, and Yongseok Jun. "SiNW/C@Pt Arrays for High-Efficiency Counter Electrodes in Dye-Sensitized Solar Cells." Energies 13, no. 1 (December 27, 2019): 139. http://dx.doi.org/10.3390/en13010139.
Full textOkeil, Sherif, Sandeep Yadav, Michael Bruns, Alexander Zintler, Leopoldo Molina-Luna, and Jörg J. Schneider. "Photothermal catalytic properties of layered titanium chalcogenide nanomaterials." Dalton Transactions 49, no. 4 (2020): 1032–47. http://dx.doi.org/10.1039/c9dt03798e.
Full textOu, Jun, Weihua Zheng, Zhiyin Xiao, Yuping Yan, Xiujuan Jiang, Yong Dou, Ran Jiang, and Xiaoming Liu. "Core–shell materials bearing iron(ii) carbonyl units and their CO-release via an upconversion process." J. Mater. Chem. B 5, no. 41 (2017): 8161–68. http://dx.doi.org/10.1039/c7tb01434a.
Full textZhong, Yu, Fengming Wang, Chuangming Liang, Zeyi Guan, Bingshang Lu, Xin He, and Weijia Yang. "ZnO@MoS2 Core–Shell Heterostructures Enabling Improved Photocatalytic Performance." Applied Sciences 12, no. 10 (May 15, 2022): 4996. http://dx.doi.org/10.3390/app12104996.
Full textZhang, Bin, Xiaowei Zhao, Tianrui Dong, Aijuan Zhang, Xiao Zhang, Guang Han, and Xiaoyuan Zhou. "Structural Core-Shell beyond Chemical Homogeneity in Non-Stoichiometric Cu5FeS4 Nano-Icosahedrons: An in Situ Heating TEM Study." Nanomaterials 10, no. 1 (December 18, 2019): 4. http://dx.doi.org/10.3390/nano10010004.
Full textZhang, Zhen, Xiao-Lian Zhang, and Bin Li. "Mesoporous Silica-Coated Upconverting Nanorods for Singlet Oxygen Generation: Synthesis and Performance." Materials 14, no. 13 (June 30, 2021): 3660. http://dx.doi.org/10.3390/ma14133660.
Full textKnežević, Nikola Ž., and Jean-Olivier Durand. "Large pore mesoporous silica nanomaterials for application in delivery of biomolecules." Nanoscale 7, no. 6 (2015): 2199–209. http://dx.doi.org/10.1039/c4nr06114d.
Full textDhawan, Udesh, Ching-Li Tseng, Huey-Yuan Wang, Shin-Yun Hsu, Meng-Tsan Tsai, and Ren-Jei Chung. "Assessing Suitability of Co@Au Core/Shell Nanoparticle Geometry for Improved Theranostics in Colon Carcinoma." Nanomaterials 11, no. 8 (August 11, 2021): 2048. http://dx.doi.org/10.3390/nano11082048.
Full textKaur, Gagandeep, Swati Tanwar, Vishaldeep Kaur, Rathindranath Biswas, Sangeeta Saini, Krishna Kanta Haldar, and Tapasi Sen. "Interfacial design of gold/silver core–shell nanostars for plasmon-enhanced photocatalytic coupling of 4-aminothiophenol." Journal of Materials Chemistry C 9, no. 42 (2021): 15284–94. http://dx.doi.org/10.1039/d1tc03733a.
Full textWang, Yixuan, Hao Liu, Min Wu, Kai Wang, Yongming Sui, Zhaodong Liu, Siyu Lu, et al. "New-phase retention in colloidal core/shell nanocrystals via pressure-modulated phase engineering." Chemical Science 12, no. 19 (2021): 6580–87. http://dx.doi.org/10.1039/d1sc00498k.
Full textKhan, Shahid Ali, Sher Bahadar Khan, and Abdullah M. Asiri. "Core–shell cobalt oxide mesoporous silica based efficient electro-catalyst for oxygen evolution." New Journal of Chemistry 39, no. 7 (2015): 5561–69. http://dx.doi.org/10.1039/c5nj00521c.
Full textReaz, Mahmud, Ariful Haque, and Kartik Ghosh. "Synthesis, Characterization, and Optimization of Magnetoelectric BaTiO3–Iron Oxide Core–Shell Nanoparticles." Nanomaterials 10, no. 3 (March 20, 2020): 563. http://dx.doi.org/10.3390/nano10030563.
Full textKhunrugsa, Chirayu, and Montree Sawangphruk. "Enhancing Cycling Stability of NMC811 Li-Ion Batteries By Encapsulating with Nanomaterials." ECS Meeting Abstracts MA2022-01, no. 2 (July 7, 2022): 302. http://dx.doi.org/10.1149/ma2022-012302mtgabs.
Full textZhang, Xiao Li, Young Hwan Kim, and Young Soo Kang. "Synthesis and Properties of TiO2/ZnO Core/Shell Nanomaterials." Solid State Phenomena 119 (January 2007): 239–42. http://dx.doi.org/10.4028/www.scientific.net/ssp.119.239.
Full textLiu, Tong, Jingyi Fu, Dongxia Gou, Yanbo Hu, Qilong Tang, Jun Zhao, and Xiaohong Li. "Chitosan-Derived Magnetic Nanomaterials: Synthesis, Characterization, and Nitrite Adsorption in Water." Journal of Nanomaterials 2021 (August 18, 2021): 1–15. http://dx.doi.org/10.1155/2021/6420341.
Full textLee, Jong-tak, and Jae-Young Bae. "Synthesis and Characteristics of Double-Shell Mesoporous Hollow Silica Nanomaterials to Improve CO2 Adsorption Performance." Micromachines 12, no. 11 (November 19, 2021): 1424. http://dx.doi.org/10.3390/mi12111424.
Full text