Academic literature on the topic 'Core-hole-clock'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Core-hole-clock.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Core-hole-clock"

1

Feulner, P., F. Blobner, J. Bauer, R. Han, A. Kim, T. Sundermann, N. Müller, U. Heinzmann, and W. Wurth. "Ways to Spin Resolved Core-Hole-Clock Measurements." e-Journal of Surface Science and Nanotechnology 13 (2015): 317–23. http://dx.doi.org/10.1380/ejssnt.2015.317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Garcia-Basabe, Yunier, Denis Ceolin, Aldo J. G. Zarbin, Lucimara S. Roman, and Maria Luiza M. Rocco. "Ultrafast interface charge transfer dynamics on P3HT/MWCNT nanocomposites probed by resonant Auger spectroscopy." RSC Advances 8, no. 46 (2018): 26416–22. http://dx.doi.org/10.1039/c8ra04629h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Piancastelli, Maria Novella, Gildas Goldsztejn, Tatiana Marchenko, Renaud Guillemin, Rajesh K. Kushawaha, Loïc Journel, Stéphane Carniato, Jean-Pascal Rueff, Denis Céolin, and Marc Simon. "Core-hole-clock spectroscopies in the tender x-ray domain." Journal of Physics B: Atomic, Molecular and Optical Physics 47, no. 12 (June 10, 2014): 124031. http://dx.doi.org/10.1088/0953-4075/47/12/124031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Oropeza, Freddy E., Mariam Barawi, Elena Alfonso-González, Victor A. de la Peña O’Shea, Juan F. Trigo, Cecilia Guillén, Fernan Saiz, and Ignacio J. Villar-Garcia. "Understanding ultrafast charge transfer processes in SnS and SnS2: using the core hole clock method to measure attosecond orbital-dependent electron delocalisation in semiconducting layered materials." Journal of Materials Chemistry C 9, no. 35 (2021): 11859–72. http://dx.doi.org/10.1039/d1tc02866a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Li, Wei Chen, and Andrew Thye Shen Wee. "Charge transfer across the molecule/metal interface using the core hole clock technique." Surface Science Reports 63, no. 11 (November 2008): 465–86. http://dx.doi.org/10.1016/j.surfrep.2008.06.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zharnikov, Michael. "Probing charge transfer dynamics in self-assembled monolayers by core hole clock approach." Journal of Electron Spectroscopy and Related Phenomena 200 (April 2015): 160–73. http://dx.doi.org/10.1016/j.elspec.2015.05.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sundermann, T., N. Müller, U. Heinzmann, W. Wurth, J. Bauer, R. Han, A. Kim, D. Menzel, and P. Feulner. "A universal approach to spin selective core-hole-clock measurement demonstrated for Ar/Co(0001)." Surface Science 643 (January 2016): 190–96. http://dx.doi.org/10.1016/j.susc.2015.08.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Borges, B. G. A. L., L. S. Roman, and M. L. M. Rocco. "Femtosecond and Attosecond Electron Transfer Dynamics of Semiconductors Probed by the Core-Hole Clock Spectroscopy." Topics in Catalysis 62, no. 12-16 (July 5, 2019): 1004–10. http://dx.doi.org/10.1007/s11244-019-01189-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cao, Liang, Xing-Yu Gao, Andrew T. S. Wee, and Dong-Chen Qi. "Quantitative Femtosecond Charge Transfer Dynamics at Organic/Electrode Interfaces Studied by Core-Hole Clock Spectroscopy." Advanced Materials 26, no. 46 (April 1, 2014): 7880–88. http://dx.doi.org/10.1002/adma.201305414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Siqi, Taran Driver, Philipp Rosenberger, Elio G. Champenois, Joseph Duris, Andre Al-Haddad, Vitali Averbukh, et al. "Attosecond coherent electron motion in Auger-Meitner decay." Science 375, no. 6578 (January 21, 2022): 285–90. http://dx.doi.org/10.1126/science.abj2096.

Full text
Abstract:
In quantum systems, coherent superpositions of electronic states evolve on ultrafast time scales (few femtoseconds to attoseconds; 1 attosecond = 0.001 femtoseconds = 10 −18 seconds), leading to a time-dependent charge density. Here we performed time-resolved measurements using attosecond soft x-ray pulses produced by a free-electron laser, to track the evolution of a coherent core-hole excitation in nitric oxide. Using an additional circularly polarized infrared laser pulse, we created a clock to time-resolve the electron dynamics and demonstrated control of the coherent electron motion by tuning the photon energy of the x-ray pulse. Core-excited states offer a fundamental test bed for studying coherent electron dynamics in highly excited and strongly correlated matter.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Core-hole-clock"

1

RAVIKUMAR, ABHILASH. "Electronic, spin dependent conductive properties of modified graphene." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/170813.

Full text
Abstract:
Nella prima parte della ricerca che presentiamo abbiamo considerato l’eccitazione di stati elettronici profondi di molecole organiche adsorbite sul grafene. Per tali sistemi abbiamo dedotto l’induzione o la soppressione di un momento di dipolo magnetico relativo alla banda di valenza di molecole sulla scala temporale del femtosecondo. Abbiamo considerato tre molecole organiche, prototipi di diversi tipi di legame con la superficie: la Piridina, la cui interazione con il substrato di grafene è dovuta principalmente a forze di van der Waals, il radicale di Piridina che viceversa si lega alla superficie in maniera covalente e il radicale di Picolina, che rappresenta una situazione intermedia. In tutti e tre i sistemi abbiamo studiato le proprietà elettroniche sia dello stato fondamentale che di quello ottenuto eccitando lo stato 1s dell’atomo di azoto. Nel primo caso, mentre la molecola fisisorbita mostra uno stato fondamentale non-magnetico le simulazioni numeriche indicano che dopo l’eccitazione di un elettrone proveniente da un stato profondo i restanti elettroni di valenza rilassano in una configurazione polarizzata in spin. Il magnetismo indotto dipende dall’efficienza del trasferimento di carica dal grafene, sulla scala temporale del femtosecondo. Nel caso invece di una molecola chemisorbita, lo stato fondamentale del sistema è magnetico, in cui sono presenti due stati dipendenti dallo spin all’interno del gap di energia e localizzati sul sito di adsorbimento. Al contrario del caso precedente, l’eccitazione elettronica permette l’ibridazione del LUMO della molecola con gli stati del grafene all’interno del gap, risultando in una configurazione non-magnetica. Il passo successivo nella nostra analisi riguarda il legame tra il tempo di vita del trasferimento di carica in uno stato eccitato, creato a partire da livelli elettronici profondi di molecole adsorbite su grafene, e la modifica della struttura elettronica di tale interfaccia dovuta all’accoppiamento, di intensità variabile, con un substrato metallico. Abbiamo considerato la fotoemissione di un elettrone dallo stato 1s dell’azoto della molecola 1,10-bipiridina (C5H4N)2 adsorbita su un bilayer grafene/nickel(111) (BP/BLG/Ni) e su un substrato cresciuto per epitassia grafene/Ni(111) (BP/EG/Ni). Tramite simulazioni ab initio abbiamo osservato che il tempo caratteristico del trasferimento di carica durante il processo di eccitazione dipende fortemente dal tipo di interazione che si sviluppa tra il grafene ed il substrato di Ni sottostante. In entrambi i sistemi che abbiamo considerato, nello stato fondamentale il LUMO della molecola è fortemente accoppiato con la superficie. Nel caso del sistema BP/BLG/Ni, lo strato di grafene in contatto con il nickel è fortemente ibridizzato con il metallo, mentre lo strato superiore di grafene rimane sostanzialmente disaccoppiato. Il livello eccitato LUMO* della molecola ha la possibilità di ibridizzarsi con pochi livelli di grafene, intorno al punto di Dirac all’energia di Fermi. Per questo motivo il tempo di vita dello stato eccitato cresce significativamente (∼ 116 fs). Invece nel caso del sistema BP/EG/Ni la forte ibridizzazione del grafene con il sottostante substrato di nickel ne distorce significativamente la struttura elettronica, creando degli stati in prossimità del livello di Fermi. Questi livelli si possono accoppiare con il LUMO* della molecola, risultando in un tempo di vita sostanzialmente ridotto (∼ 33 fs). Abbiamo cercato delle conferme ai nostri risultati tramite misure sperimentali basate sul metodo della spettroscopia core-hole-clock. Il tempo caratteristico del trasferimento di carica che abbiamo ricavato è di ∼ 30 fs±5 fs per il sistema BP/BLG/Ni e ∼ 4 fs±1 fs per quello BP/EG/Ni. Questi risultati verificano le nostre previsioni teoriche, dimostrando l’effetto del substrato sulla dinamica del trasferimento di carica.
The first part of research we present is the adsorption of core-excited organic molecules on graphene. We predict the induction or suppression of magnetism in the valence shell of physisorbed and chemisorbed organic molecules on graphene occurring on the femtosecond time scale as a result of core level excitations. We consider three organic molecules: Pyridine - whose interaction with graphene is mainly facilitated by van der Waals forces, Picoline radical - an intermediate case where there is a strong van der Waals interaction of the pyridine π ring with graphene but a covalent bonding of the molecule and pyri-dine radical - where the interaction is mainly by covalent bonding, and study the ground state and N 1s core excited state electronic properties for these systems. For physisorbed molecules, where the interaction with graphene is dominated by van der Waals forces and the system is non-magnetic in the ground state, numeri- cal simulations based on density functional theory show that the valence electrons relax towards a spin polarized configuration upon excitation of a core-level electron. The magnetism depends on efficient electron transfer from graphene on the femtosecond time scale. On the other hand, when graphene is covalently functionalized, the system is magnetic in the ground state showing two spin dependent midgap states localized around the adsorption site. At variance with the physisorbed case upon core-level excitation, the LUMO of the molecule and the mid gap states of graphene hybridize and the relaxed valence shell is not magnetic anymore. Next we discuss the interplay between the charge transfer lifetime of core excited organic molecules adsorbed on graphene and the modification of its electronic structure by a variable coupling with a metal substrate. Nitrogen 1s core electron of 1,10- bipyridine (C5H4N)2 is photoexcited and adsorbed on bilayer graphene/nickel(111) (BP/BLG/Ni) and epitaxially grown graphene/Ni(111) (BP/EG/ Ni). We predict from first principle calculations that the charge transfer time of core excited molecules depend strongly on the coupling of graphene to the underlying Ni substrate. In the ground state, the LUMO of the molecule is quite strongly coupled with the substrate in both the cases (BP/BLG/Ni and BP/EG/Ni). In the case of BP/BLG/Ni, the layer of graphene in contact with nickel substrate strongly hybridizes but the upper layer of graphene remains fairly decoupled. The excited molecular LUMO* finds very few states of graphene close to the Dirac point at the Fermi level to hybridize with. This leads to a decoupled molecular LUMO* and the lifetime increases significantly (∼ 116 fs). But in the case of BP/EG/Ni, the strong hybridization of graphene with the underlying nickel substrate significantly distorts the electronic structure of graphene generating states close to the Fermi level. The LUMO* of the molecule strongly couples with these states resulting in a substantially smaller lifetime (∼ 33 fs). We also find experimental evidence to confirm this trend by performing core-hole-clock spectroscopy. The resonant charge transfer lifetime we find is ∼ 30 fs±5 fs for the BP/BLG/Ni and ∼ 4 fs±1 fs for the BP/EG/Ni, thus clearly demonstrating the effect of substrate on the charge transfer dynamics of organic molecules on graphene.
APA, Harvard, Vancouver, ISO, and other styles
2

Pokapanich, Wandared. "Solvent–Solute Interaction : Studied by Synchrotron Radiation Based Photo and Auger Electron Spectroscopies." Doctoral thesis, Uppsala universitet, Yt- och gränsskiktsvetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-138749.

Full text
Abstract:
Aqueous solutions were studied using photoelectron and Auger spectroscopy, based on synchrotron radiation and a liquid micro-jet setup. By varying the photon energy in photoelectron spectra, we depth profiled an aqueous tetrabutylammonium iodide (TBAI) solution. Assuming uniform angular emission from the core levels, we found that the TBA+ ions were oriented at the surface with the hydrophobic butyl arms sticking into the liquid. We investigated the association between ions and their neighbors in aqueous solutions by studying the electronic decay after core ionization. The (2p)−1 decay of solvated K+ and Ca2+ ions was studied. The main features in the investigated decay spectra corresponded to two-hole final states localized on the ions. The spectra also showed additional features, related to delocalized two-hole final states with vacancies on a cation and a neighboring water molecule. These two processes compete, and by comparing relative intensities and using the known rate for the localized decay, we determined the time-scale for the delocalized process for the two ions. We compared to delocalized electronic decay processes in Na+, Mg2+, and Al3+, and found that they were slower in K+ and Ca2+, due to different internal decay mechanisms of the ions, as well as external differences in the ion-solute distances and interactions. In the O 1s Auger spectra of aqueous metal halide solutions, we observed features related to delocalized two-hole final states with vacancies on a water molecule and a neighboring solvated anion. The relative intensity of these feature indicated that the strength of the interaction between the halide ions and water correlated with ionic size. The delocalized decay was also used to investigate contact ion pair formation in high concentrated potassium halide solutions, but no concrete evidence of contact ion pairs was observed.
Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 726
APA, Harvard, Vancouver, ISO, and other styles
3

Sethuraman, Vijayalakshmi [Verfasser]. "Core-hole-clock spectroscopy : characterization of the method and dynamics of charge transfer at adsorbate metal interfaces / vorgelegt von Vijayalakshmi Sethuraman." 2007. http://d-nb.info/984866744/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Core-hole-clock"

1

Cao, Liang, Xing-Yu Gao, Andrew T. S. Wee, and Dong-Chen Qi. "Quantitative Femtosecond Charge Transfer Dynamics at Organic/Electrode Interfaces Studied by Core-Hole Clock Spectroscopy." In Synchrotron Radiation in Materials Science, 137–78. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527697106.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography