To see the other types of publications on this topic, follow the link: Copper vapour.

Journal articles on the topic 'Copper vapour'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Copper vapour.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Evtushenko, Gennadii S., I. D. Kostyrya, V. B. Sukhanov, Viktor F. Tarasenko, and D. V. Shiyanov. "Peculiarities of pumping of copper vapour and copper bromide vapour lasers." Quantum Electronics 31, no. 8 (August 31, 2001): 704–8. http://dx.doi.org/10.1070/qe2001v031n08abeh002030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lyabin, Nikolai A., and M. A. Kazaryan. "Copper and gold vapour lasers." Quantum Electronics 31, no. 6 (June 30, 2001): 564. http://dx.doi.org/10.1070/qe2001v031n06abeh013096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Becker, R., J. Weiß, A. Devi, and R. A. Fischer. "Chemical vapour deposition of copper using copper(II) alkoxides." Le Journal de Physique IV 11, PR3 (August 2001): Pr3–569—Pr3–575. http://dx.doi.org/10.1051/jp4:2001372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Riyves, R. B., V. A. Kelman, Y. V. Zhmenyak, Y. O. Shpenik, and S. P. Ulusova. "Copper-vapour laser with silver additive." Applied Physics B 80, no. 7 (May 3, 2005): 865–69. http://dx.doi.org/10.1007/s00340-005-1806-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nasibov, A. S., N. N. Mel'nik, I. V. Ponomarev, S. V. Romanko, S. B. Topchii, A. N. Obraztsov, M. Yu Bashtanov, and A. A. Krasnovskii. "Copper and gold vapour lasers for spectroscopy." Quantum Electronics 28, no. 5 (May 31, 1998): 403–5. http://dx.doi.org/10.1070/qe1998v028n05abeh001236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sukhanov, V. B., V. F. Fedorov, F. A. Gubarev, V. O. Troitskii, and Gennadii S. Evtushenko. "Capacitive-discharge-pumped copper bromide vapour laser." Quantum Electronics 37, no. 7 (July 31, 2007): 603–4. http://dx.doi.org/10.1070/qe2007v037n07abeh013605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zoolfakar, Ahmad Sabirin, Muhammad Zamharir Ahmad, Rozina Abdul Rani, Jian Zhen Ou, Sivacarendran Balendhran, Serge Zhuiykov, Kay Latham, Wojtek Wlodarski, and Kourosh Kalantar-zadeh. "Nanostructured copper oxides as ethanol vapour sensors." Sensors and Actuators B: Chemical 185 (August 2013): 620–27. http://dx.doi.org/10.1016/j.snb.2013.05.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mane, Anil U., and S. A. Shivashankar. "Atomic layer chemical vapour deposition of copper." Materials Science in Semiconductor Processing 7, no. 4-6 (January 2004): 343–47. http://dx.doi.org/10.1016/j.mssp.2004.09.094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gabay, S., P. Blau, M. Lando, I. Druckman, Z. Horvitz, Y. Yfrah, I. Hen, E. Miron, and I. Smilanski. "Stabilization of high-power copper vapour laser." Optical and Quantum Electronics 23, no. 4 (1991): S485—S492. http://dx.doi.org/10.1007/bf00619644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sinha, S., K. Dasgupta, K. G. Manohar, S. Kundu, and L. G. Nair. "Self-defocusing of light in copper vapour." Applied Physics B: Lasers and Optics 64, no. 6 (June 1, 1997): 667–70. http://dx.doi.org/10.1007/s003400050231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Maruyama, T., and Y. Ikuta. "Copper thin films prepared by chemical vapour deposition from copper dipivalylmethanate." Journal of Materials Science 28, no. 20 (October 1993): 5540–42. http://dx.doi.org/10.1007/bf00367827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hamdi, Abderrahmane, Chohdi Amri, Rachid Ouertani, Elhadj Dogheche, and Hatem Ezzaouia. "Enhancement of both optical and catalytic activity of copper-decorated porous silicon micro-particles." European Physical Journal Applied Physics 93, no. 3 (March 2021): 30402. http://dx.doi.org/10.1051/epjap/2021200380.

Full text
Abstract:
To the best of our knowledge, this study is the first to investigate the effect of chemical vapour etching (CVE) combined with copper decoration on both the optical and catalytic activities of silicon micro-particles (SiμPs). After exposure to acid vapours emanating from a hot solution of hydrogen fluoride/nitric acid (HF/HNO3), scanning electron microscope images of the treated powder show the formation of a porous, sponge-like structure on the sidewalls of SiμPs. Fourier transmission infra-red analysis shows the appearance of hydride bonds related to the formation of the porous structure. X-ray diffraction measurements and Raman spectroscopy show the good crystallinity of the samples. The strong photoluminescence properties of the obtained porous SiμPs (pSiμPs) reveal that the vapour etching process generated silicon nanocrystals within these particles. In this work, we have investigated the catalytic activity of copper nanoparticles (CuNPs) loaded on the surface of pSiμPs, in order to reduce the toxic compound 4-nitrophenol to 4-aminophenol. The results show excellent catalytic performance in very short times (less than 1 min).
APA, Harvard, Vancouver, ISO, and other styles
13

Hassan, Iman A., Ivan P. Parkin, Sean P. Nair, and Claire J. Carmalt. "Antimicrobial activity of copper and copper(i) oxide thin films deposited via aerosol-assisted CVD." J. Mater. Chem. B 2, no. 19 (2014): 2855–60. http://dx.doi.org/10.1039/c4tb00196f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Maruyama, T., and T. Shirai. "Copper thin films prepared by chemical vapour deposition from copper (II) acetylacetonate." Journal of Materials Science 30, no. 21 (November 1995): 5551–53. http://dx.doi.org/10.1007/bf00351572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Nookaraju, B. Ch, B. Hemanth Sai, K. V. N. S. Himakar, N. Limba Reddy, and N. Sateesh. "Experimental investigations and optimization of process parameters of meshed-wick heat pipe." E3S Web of Conferences 184 (2020): 01026. http://dx.doi.org/10.1051/e3sconf/202018401026.

Full text
Abstract:
Heat pipes are used to transfer heat, which are hollow cylindrical shape device filled with small amount of working fluid, which can change its phase. The rate of heat transfer in heat pipes compared to normal heat exchanging devices is more. Depending on the applications of heat transfer various heat pipes are being designed. Methanol fluid is used with 50% fill ratio. It is made of copper with outer diameter of 15.88mm and inner diameter of 14.88mm. It consists of a screen mesh made of copper powder inside it with thickness of 0.5mm. Due to heat input methanol changes its phase from liquid to vapor. The vapor loses its heat and changes its phase back to liquid in the condenser. At the condenser section the vapour gives up it heat and changes its phase from vapour to liquid. The screen mesh assists the flow of condensed working fluid through capillary action. Optimized the results by “Taguchi method” using “Minitab software”. The Thermal analysis was done with the optimum conditions, which were obtained as a result from the optimization method by Ansys Fluent software. Then finally compared the thermal parameters obtained from experiments with the Thermal analysis result. It is found the maximum heat transfer rate is optimized using meshed wick heat pipe conditions.
APA, Harvard, Vancouver, ISO, and other styles
16

Sharma, Satish, Chetan Nirkhe, Sushama Pethkar, and Anjali A. Athawale. "Chloroform vapour sensor based on copper/polyaniline nanocomposite." Sensors and Actuators B: Chemical 85, no. 1-2 (June 2002): 131–36. http://dx.doi.org/10.1016/s0925-4005(02)00064-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Karpukhin, Vyacheslav T., and Mikhail M. Malikov. "Experimental study of multipass copper vapour laser amplifiers." Quantum Electronics 38, no. 12 (December 31, 2008): 1121–26. http://dx.doi.org/10.1070/qe2008v038n12abeh013778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Livingstone, E. S., and A. Maitland. "A low temperature, segmented metal, copper vapour laser." Journal of Physics E: Scientific Instruments 22, no. 1 (January 1989): 63. http://dx.doi.org/10.1088/0022-3735/22/1/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Nehmadi, M., Z. Kramer, Y. Ifrah, and E. Miron. "Magnetic pulse compression for a copper vapour laser." Journal of Physics D: Applied Physics 22, no. 1 (January 14, 1989): 29–34. http://dx.doi.org/10.1088/0022-3727/22/1/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Varagnolo, Silvia, Jaemin Lee, Houari Amari, and Ross A. Hatton. "Selective deposition of silver and copper films by condensation coefficient modulation." Materials Horizons 7, no. 1 (2020): 143–48. http://dx.doi.org/10.1039/c9mh00842j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Stassin, Timothée, Sabina Rodríguez-Hermida, Benedikt Schrode, Alexander John Cruz, Francesco Carraro, Dmitry Kravchenko, Vincent Creemers, et al. "Vapour-phase deposition of oriented copper dicarboxylate metal–organic framework thin films." Chemical Communications 55, no. 68 (2019): 10056–59. http://dx.doi.org/10.1039/c9cc05161a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

WINKLER, C., A. CAREW, R. RAVAL, J. LEDIEU, and R. McGRATH. "SCALING PARAMETERS FOR GOLD AND COPPER CLUSTER GROWTH ON AN ALUMINA SINGLE CRYSTAL SURFACE." Surface Review and Letters 08, no. 06 (December 2001): 693–97. http://dx.doi.org/10.1142/s0218625x01001634.

Full text
Abstract:
The growth of gold and copper nanoparticles on a γ- Al 2 O 3 single crystal surface has been investigated using LEED and STM. The clusters were grown on the sample by exposing the substrate to a metal vapour. The particle size distributions are determined as a function of the metal vapour dosage and, furthermore, the Volmer–Weber growth mechanism and a semi-log scaling law are deduced from these data.
APA, Harvard, Vancouver, ISO, and other styles
23

Tong, Lihang, Liteng Ren, Ao Fu, Defa Wang, Lequan Liu, and Jinhua Ye. "Copper nanoparticles selectively encapsulated in an ultrathin carbon cage loaded on SrTiO3 as stable photocatalysts for visible-light H2 evolution via water splitting." Chemical Communications 55, no. 86 (2019): 12900–12903. http://dx.doi.org/10.1039/c9cc05228c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Klyuchareva, S. V., I. V. Ponomarev, S. B. Topchiy, A. E. Pushkareva, and Yu N. Andrusenko. "Treatment of seborrheic keratosis with a copper vapour laser." Vestnik dermatologii i venerologii 95, no. 3 (October 2, 2019): 25–33. http://dx.doi.org/10.25208/0042-4609-2019-95-3-25-33.

Full text
Abstract:
Aim: to assess the efficacy and side-effect risk of the surgical treatment of seborrheic k eratosis (SK) using a copper vapour laser (CVL).Patients and methods. 3980 patients (1214 men and 2766 women aged 20 to 78 years) suffering from SK were treated using a CVL (Yakhroma-Med model, Russian producer) equipped with a laser pen and a scanning nozzle. The laser treatment was performed without anaesthesia in one to four sessions. During the treatment procedure, the following radiation parameters were applied: wavelengths ranging from 511 to 578 nm (in the ratio of 3 to 2), an average power of 0.6–1.2 W and an exposure duration ranging from 0.2 to 0.4 s. The diameter of the light spot on the skin surface was 1 mm. The follow-up observation lasted 24 months.Results. The computer simulation of tissue heating by CVL and other laser systems showed that CVL is an optimal treatment choice for seborrheic keratosis in terms of the energy deposition depth. According to our clinical data and the results of computer simulation, the CVL is established to be the safest and the most effective for seborrheic keratosis treatment.
APA, Harvard, Vancouver, ISO, and other styles
25

Norman, John A. T., David A. Roberts, Arthur K. Hochberg, Paul Smith, Gary A. Petersen, John E. Parmeter, Chris A. Apblett, and Thomas R. Omstead. "Chemical additives for improved copper chemical vapour deposition processing." Thin Solid Films 262, no. 1-2 (June 1995): 46–51. http://dx.doi.org/10.1016/0040-6090(94)05808-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hampden-Smith, Mark J., and Toivo T. Kodas. "Chemical vapour deposition of copper from (hfac)CuL compounds." Polyhedron 14, no. 6 (March 1995): 699–732. http://dx.doi.org/10.1016/0277-5387(94)00401-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Karpukhin, Vyacheslav T., Yu B. Konev, and Mikhail M. Malikov. "Investigation of the summation of copper-vapour laser frequencies." Quantum Electronics 28, no. 9 (September 30, 1998): 788–92. http://dx.doi.org/10.1070/qe1998v028n09abeh001327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bokhan, P. A., P. P. Gugin, and D. E. Zakrevskii. "Copper bromide vapour laser excited by an electron beam." Quantum Electronics 46, no. 9 (September 28, 2016): 782–86. http://dx.doi.org/10.1070/qel16127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Monga, Jagdish C. "Dichroic Beam-splitters for High-power Copper Vapour Lasers." Journal of Modern Optics 39, no. 11 (November 1992): 2265–75. http://dx.doi.org/10.1080/09500349214552291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

SOMYOS, KUNACHAK, KULAPRADITHAROM BOONCHU, KUNACHAKR SOMSAK, LEELAUDOMNITI PANADDA, and J. LEOPAIRUT. "Copper vapour laser treatment of cafe-au-lait macules." British Journal of Dermatology 135, no. 6 (December 1996): 964–68. http://dx.doi.org/10.1046/j.1365-2133.1996.d01-1103.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Arlantsev, S. V., Boris L. Borovich, V. V. Buchanov, E. I. Molodykh, S. I. Zavorotnyi, and N. I. Yurchenko. "Copper vapour laser pumped by a relativistic electron beam." Quantum Electronics 24, no. 11 (November 30, 1994): 953–58. http://dx.doi.org/10.1070/qe1994v024n11abeh000219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Buchanov, V. V., M. A. Kazaryan, E. I. Molodykh, and V. A. Shcheglov. "Feasibility of constructing a cw copper vapour-flow laser." Quantum Electronics 24, no. 11 (November 30, 1994): 959–62. http://dx.doi.org/10.1070/qe1994v024n11abeh000220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Dolgaev, Sergei I., A. A. Lyalin, Aleksandr V. Simakin, and Georgii A. Shafeev. "Etching of sapphire assisted by copper-vapour laser radiation." Quantum Electronics 26, no. 1 (January 31, 1996): 65–68. http://dx.doi.org/10.1070/qe1996v026n01abeh000590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Cheng, Cheng. "Plasma kinetics mechanisms of an optimized copper vapour laser." Journal of Physics D: Applied Physics 33, no. 10 (May 4, 2000): 1169–78. http://dx.doi.org/10.1088/0022-3727/33/10/306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lewis, R. R. "The operating regime of longitudinal discharge copper vapour lasers." Optical and Quantum Electronics 23, no. 4 (1991): S493—S512. http://dx.doi.org/10.1007/bf00619645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Coutts, D. W., M. D. Ainsworth, and J. A. Piper. "Efficient green/yellow conversion of copper vapour laser output." Optics Communications 75, no. 3-4 (March 1990): 301–6. http://dx.doi.org/10.1016/0030-4018(90)90536-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Semaltianos, N. G., J. L. Pastol, and P. Doppelt. "Copper chemical vapour deposition on organosilane-treated SiO2 surfaces." Applied Surface Science 222, no. 1-4 (January 2004): 102–9. http://dx.doi.org/10.1016/j.apsusc.2003.08.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Barcena, Jorge, Jon Maudes, Javier Coleto, Juan L. Baldonedo, and Jose M. Gomez de Salazar. "Microstructural study of vapour grown carbon nanofibre/copper composites." Composites Science and Technology 68, no. 6 (May 2008): 1384–91. http://dx.doi.org/10.1016/j.compscitech.2007.11.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ashley, Simon, Stephen G. Brooks, Helena Wright, Adurrazzak A. Gehani, and Michael R. Rees. "Acute effects of a copper vapour laser on atheroma." Lasers in Medical Science 6, no. 1 (March 1991): 23–27. http://dx.doi.org/10.1007/bf02042642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Horton, J. Hugh, Johann Rasmusson, Joseph G. Shapter, and Peter R. Norton. "Article." Canadian Journal of Chemistry 76, no. 11 (November 1, 1998): 1559–63. http://dx.doi.org/10.1139/v98-124.

Full text
Abstract:
The adsorption of the organometallic compounds bis(hexafluoroacetylacetonato)zinc(II) (Zn(hfac)2) and bis(hexafluoroacetylacetonato)nickel(II) (Ni(hfac)2) on the surface of Si(111)-7×7 were studied by a combination of scanning tunnelling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). These compounds are analogues of the compound bis(hexafluoroacetylacetonato)copper(II), which is an important precursor for the chemical vapour deposition of copper that we have previously studied. Both XPS and STM results indicate that the Zn(hfac)2 is adsorbed intact on the surface, and remains intact on the surface at temperatures up to 300 K. The XPS shows a transition from a physisorbed state to a chemisorbed state at temperatures between 160 and 300 K. At higher temperatures Zn(hfac)2 decomposed to form Zn and fluorocarbon fragments. The metal component diffused into the substrate. The Ni(hfac)2 complex could not be successfully adsorbed on the Si surface: it was shown that this was due to decomposition of the molecule in the vapour phase, probably due to the higher temperatures needed to evaporate this relatively involatile compound.Key words: scanning tunnelling microscopy, chemical vapour deposition, zinc, copper.
APA, Harvard, Vancouver, ISO, and other styles
41

Ji, Dali, Xinyue Wen, Tobias Foller, Yi You, Fei Wang, and Rakesh Joshi. "Chemical Vapour Deposition of Graphene for Durable Anticorrosive Coating on Copper." Nanomaterials 10, no. 12 (December 14, 2020): 2511. http://dx.doi.org/10.3390/nano10122511.

Full text
Abstract:
Due to the excellent chemical inertness, graphene can be used as an anti-corrosive coating to protect metal surfaces. Here, we report the growth of graphene by using a chemical vapour deposition (CVD) process with ethanol as a carbon source. Surface and structural characterisations of CVD grown films suggest the formation of double-layer graphene. Electrochemical impedance spectroscopy has been used to study the anticorrosion behaviour of the CVD grown graphene layer. The observed corrosion rate of 8.08 × 10−14 m/s for graphene-coated copper is 24 times lower than the value for pure copper which shows the potential of graphene as the anticorrosive layer. Furthermore, we observed no significant changes in anticorrosive behaviour of the graphene coated copper samples stored in ambient environment for more than one year.
APA, Harvard, Vancouver, ISO, and other styles
42

Augusto, Paulo A., Teresa Castelo-Grande, Domingos Barbosa, and Angel M. Estévez. "Designing Cryogenic Vapour-Cooled Current Leads." Defect and Diffusion Forum 273-276 (February 2008): 40–45. http://dx.doi.org/10.4028/www.scientific.net/ddf.273-276.40.

Full text
Abstract:
Constructing a new device we had to design some vapour-cooled current leads. This current leads are made of Low-Tc material connected with copper wires and some parts of High-Tc material. Its design is calculated keeping in mind the heat transfer by diffusion to a vapour-cooled stream that surrounds the conductive materials. The design and the calculations performed to achieve it, and also the background theory of the heat diffusion applied in this part of the device will be described.
APA, Harvard, Vancouver, ISO, and other styles
43

SEMYANNIKOV, P. P., T. V. BASOVA, V. M. GRANKIN, and I. K. IGUMENOV. "Vapour pressure of some phthalocyanines." Journal of Porphyrins and Phthalocyanines 04, no. 03 (April 2000): 271–77. http://dx.doi.org/10.1002/(sici)1099-1409(200004/05)4:3<271::aid-jpp205>3.0.co;2-4.

Full text
Abstract:
Mass spectrometric studies of the composition of the gaseous phase under solid compounds of free phthalocyanine ( H 2 Pc ) and its complexes with aluminium ( AlClPc , AlFPc , ( AlPc )2 O ) and copper ( CuPc ) were performed in the temperature range up to 700 °C. It has been shown that the phthalocyanines sublime in the form of monomers, excluding one aluminium complex. All phthalocyanines under investigation sublime without thermal decomposition until 700 °C. The vapour pressure of these phthalocyanines was determined as a function of temperature by the Knudsen effusion method, in which the rate of effusion of the equilibrium vapour through a small orifice was measured. The thermodynamic parameters of the sublimation process for phthalocyanies were calculated.
APA, Harvard, Vancouver, ISO, and other styles
44

Batenin, V. M., V. T. Karpukhin, M. M. Malikov, A. S. Averyushkin, M. A. Kazaryan, N. A. Lyabin, and R. A. Zakharyan. "The induction pumping of Coaxial Lasers on Self-Terminating Transitions." Alternative Energy and Ecology (ISJAEE), no. 16-18 (September 11, 2018): 98–112. http://dx.doi.org/10.15518/isjaee.2018.16-18.098-112.

Full text
Abstract:
The paper presents the results of the numerical simulations of pumping a copper vapour laser by a repetitively pulsed induction (electrodeless) discharge. We have investigated the version of the laser with an annular discharge volume formed by two coaxial cylinders. Such coaxial chamber is shown to be more appropriate for the induction pumping than the conventional cylindrical chamber. In the first case, higher coupling factors in the transformercoupled circuit of the induction discharge as well as rather high curl electric field are achieved. Moreover, from the ecological point of view, the coaxial chamber appears to be safer for the surrounding personnel in terms of their exposure to electromagnetic radiation. The present work briefly presents the physical model of the laser which describes the dynamics of the plasma parameters, the kinetics of the inverse population of the working levels for the laser on self terminating transitions as well as the development of the induction radiation. The paper also presents the electrical equations describing the simplest source of electrical pump pulses. The thermal characteristics of the working medium are estimated and the design calculations of the chamber are performed. The numerical experiments have found that, in contrast to the case of a conventional copper vapour laser with aperiodic discharge, in the regarded versions of the copper vapour laser the pump pulse is realized as a train of high-frequency damped oscillations. The analysis of the physical processes occurring in the plasma of the high-frequency discharge is carried out. The pulsed behaviour of the Joule heat power is shown to release results in pronounced pulsations of the electron temperature. This fact, however, does not significantly affect the operation of the laser on self-terminating transitions. In the optimal pumping regimes, subtle oscillations are merely observed for the inverse population of the copper atom working levels and for the intensity in the radiation pulse. High output laser characteristics achieved in the numerical simulations demonstrate the potential for efficient pumping of the copper vapour laser using the inductive method which is new for such lasers.
APA, Harvard, Vancouver, ISO, and other styles
45

Wu, Ke, Samuel P. Douglas, Gaowei Wu, Alexander J. MacRobert, Elaine Allan, Caroline E. Knapp, and Ivan P. Parkin. "A rugged, self-sterilizing antimicrobial copper coating on ultra-high molecular weight polyethylene: a preliminary study on the feasibility of an antimicrobial prosthetic joint material." Journal of Materials Chemistry B 7, no. 20 (2019): 3310–18. http://dx.doi.org/10.1039/c9tb00440h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Sahu, G. K., A. Majumder, R. A. Patankar, V. K. Mago, and K. B. Thakur. "On-line characterisation of copper vapour evolution from linear vapour source generated using strip electron beam." Journal of Physics: Conference Series 114 (May 1, 2008): 012038. http://dx.doi.org/10.1088/1742-6596/114/1/012038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Bukhanovsky, Viktor, Mykola Rudnytsky, Mykola Grechanyuk, Minakova Minakova, and Chengyu Zhang. "Vapour-phase condensed composite materials based on copper and carbon." Materiali in tehnologije 50, no. 4 (August 12, 2016): 523–30. http://dx.doi.org/10.17222/mit.2015.057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Mattevi, Cecilia, Hokwon Kim, and Manish Chhowalla. "A review of chemical vapour deposition of graphene on copper." J. Mater. Chem. 21, no. 10 (2011): 3324–34. http://dx.doi.org/10.1039/c0jm02126a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

WALKER, E. P., P. H. BUTLER, J. W. PICKERING, W. A. DAY, R. FRASER, and C. N. HALEWYN. "Histology of port wine stains after copper vapour laser treatment." British Journal of Dermatology 121, no. 2 (August 1989): 217–23. http://dx.doi.org/10.1111/j.1365-2133.1989.tb01801.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Polunin, Yu P., and Nikolai A. Yudin. "Control of the radiation parameters of a copper vapour laser." Quantum Electronics 33, no. 9 (September 30, 2003): 833–35. http://dx.doi.org/10.1070/qe2003v033n09abeh002508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography