Journal articles on the topic 'COPPER OXIDE NANOPARTICLE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'COPPER OXIDE NANOPARTICLE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Saif Hasan, Syed, Sanjay Singh, Rasesh Y. Parikh, Mahesh S. Dharne, Milind S. Patole, B. L. V. Prasad, and Yogesh S. Shouche. "Bacterial Synthesis of Copper/Copper Oxide Nanoparticles." Journal of Nanoscience and Nanotechnology 8, no. 6 (June 1, 2008): 3191–96. http://dx.doi.org/10.1166/jnn.2008.095.
Full textLiang, Septimus H., Shiliang Wang, and David B. Pedersen. "Adsorption of HCN onto Copper@Copper-Oxide Core–Shell Nanoparticle Systems." Adsorption Science & Technology 27, no. 4 (May 2009): 349–61. http://dx.doi.org/10.1260/026361709790252632.
Full textHanisha R, Hanisha R., Udayakumar R. Udayakumar R, Selvayogesh S. Selvayogesh S, Keerthivasan P. Keerthivasan P, and Gnanasekaran R. Gnanasekaran R. "Anti Fungal Activity of Green Synthesized Copper Nanoparticles Using Plant Extract of Bryophyllum Pinnatum (Lam.) and Polyalthia Longifolia (Sonn.) R." Biosciences Biotechnology Research Asia 20, no. 1 (March 30, 2023): 317–28. http://dx.doi.org/10.13005/bbra/3091.
Full textLakshmi, Augustine, Athisayaraj Emi Princess Prasanna, and Chinnapiyan Vedhi. "Synthesis, Characterisation and Capacitive Behaviour of Poly(3,4-ethylenedioxythiophene)-Copper Oxide Nanocomposites." Advanced Materials Research 678 (March 2013): 273–77. http://dx.doi.org/10.4028/www.scientific.net/amr.678.273.
Full textDyah Rifani, Nabila, Rebriarina Hapsari, Tyas Prihatiningsih, and Ali Khumaeni. "Synthesis, characterization, and antimicrobial properties of copper oxide nanoparticles produced by laser ablation method in chitosan solution." Journal of Applied Research and Technology, no. 2 (April 27, 2023): 196–204. http://dx.doi.org/10.22201/icat.24486736e.2023.21.2.1596.
Full textMohamed, HudaElslam, Unal Camdali, Atilla Biyikoglu, and Metin Aktas. "Enhancing the Performance of a Vapour Compression Refrigerator System Using R134a with a CuO/CeO2 Nano-refrigerant." Strojniški vestnik - Journal of Mechanical Engineering 68, no. 6 (June 22, 2022): 395–410. http://dx.doi.org/10.5545/sv-jme.2021.7454.
Full textSamuel Paul, Akintunde Sheyi, Iliya Daniel Bangu, Sani Idris Abubakar, and Muawiyya Muazu Muhammad. "Biological synthesis and characterization of copper oxide nanoparticles using aqueous Psidium guajava leave extract and study of antibacterial activity of the copper oxide nanoparticles on Escherichia coli and Staphylococcus aureus." World Journal of Advanced Research and Reviews 9, no. 1 (January 30, 2021): 114–20. http://dx.doi.org/10.30574/wjarr.2021.9.1.0513.
Full textCui, Wen Ying, Hyun Jin Yoo, Yun Guang Li, Changyoon Baek, and Junhong Min. "Electrospun Nanofibers Embedded with Copper Oxide Nanoparticles to Improve Antiviral Function." Journal of Nanoscience and Nanotechnology 21, no. 8 (August 1, 2021): 4174–78. http://dx.doi.org/10.1166/jnn.2021.19379.
Full textSaputra, Ferry, Boontida Uapipatanakul, Jiann-Shing Lee, Shih-Min Hung, Jong-Chin Huang, Yun-Chieh Pang, John Emmanuel R. Muñoz, Allan Patrick G. Macabeo, Kelvin H. C. Chen, and Chung-Der Hsiao. "Co-Treatment of Copper Oxide Nanoparticle and Carbofuran Enhances Cardiotoxicity in Zebrafish Embryos." International Journal of Molecular Sciences 22, no. 15 (July 31, 2021): 8259. http://dx.doi.org/10.3390/ijms22158259.
Full textBlinov, A. V., А. А. Gvozdenko, A. B. Golik, А. А. Blinova, K. S. Slyadneva, M. A. Pirogov, and D. G. Maglakelidze. "Synthesising Copper Oxide Nanoparticles and Investigating the Effect of Dispersion Medium Parameters on their Aggregate Stability." Herald of the Bauman Moscow State Technical University. Series Natural Sciences, no. 4 (103) (August 2022): 95–109. http://dx.doi.org/10.18698/1812-3368-2022-4-95-109.
Full textMerah, Abdelali, Abdenabi Abidi, Hana Merad, Noureddine Gherraf, Mostepha Iezid, and Abdelghani Djahoudi. "Comparative Study of the Bacteriological Activity of Zinc Oxide and Copper Oxide Nanoparticles." Acta Scientifica Naturalis 6, no. 1 (March 1, 2019): 63–72. http://dx.doi.org/10.2478/asn-2019-0009.
Full textCuevas, R., N. Durán, M. C. Diez, G. R. Tortella, and O. Rubilar. "Extracellular Biosynthesis of Copper and Copper Oxide Nanoparticles byStereum hirsutum, a Native White-Rot Fungus from Chilean Forests." Journal of Nanomaterials 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/789089.
Full textPodlesnov, E., M. G. Nigamatdianov, A. O. Safronova, and M. V. Dorogov. "Lithium Polymer Battery with PVDF-based Electrolyte Doped with Copper Oxide Nanoparticles: Manufacturing Technology and Properties." Reviews on advanced materials and technologies 3, no. 3 (2021): 27–31. http://dx.doi.org/10.17586/2687-0568-2021-3-3-27-31.
Full textJayakrishnan, Priyanga, Sirajunnisa Abdul Razack, Keerthana Sivanesan, Pavithra Sellaperumal, Geethalakshmi Ramakrishnan, Sangeetha Subramanian, and Renganathan Sahadevan. "A facile approach towards copper oxide nanoparticles synthesis using Spirulina platensis and assessment of its biological activities." Brazilian Journal of Biological Sciences 5, no. 10 (2018): 433–42. http://dx.doi.org/10.21472/bjbs.051020.
Full textDaigle, Jean-Christophe, and Jerome P. Claverie. "A Simple Method for Forming Hybrid Core-Shell Nanoparticles Suspended in Water." Journal of Nanomaterials 2008 (2008): 1–8. http://dx.doi.org/10.1155/2008/609184.
Full textSadabadi, Hamed, Adeleh Aftabtalab, Shirzad Zafarian, Shilpa Chakra, K. Venkateswara Rao, and Sarah Shaker. "Influence of Fuel and Condition in Combustion Synthesis on Properties of Copper (II) Oxide Nanoparticle." Advanced Materials Research 829 (November 2013): 152–56. http://dx.doi.org/10.4028/www.scientific.net/amr.829.152.
Full textJaber, Shaimaa Hamed. "Comparing study of CuO synthesized by biological and electrochemical methods for biological activity." Al-Mustansiriyah Journal of Science 30, no. 1 (August 15, 2019): 94. http://dx.doi.org/10.23851/mjs.v30i1.389.
Full textFreidoonimehr, Navid, Behnam Rostami, and Mohammad Mehdi Rashidi. "Predictor homotopy analysis method for nanofluid flow through expanding or contracting gaps with permeable walls." International Journal of Biomathematics 08, no. 04 (June 22, 2015): 1550050. http://dx.doi.org/10.1142/s1793524515500503.
Full textRajeshkumar, S., Soumya Menon, Venkat Kumar S, M. Ponnanikajamideen, Daoud Ali, and Kalirajan Arunachalam. "Anti-inflammatory and Antimicrobial Potential of Cissus quadrangularis-Assisted Copper Oxide Nanoparticles." Journal of Nanomaterials 2021 (December 27, 2021): 1–11. http://dx.doi.org/10.1155/2021/5742981.
Full textDutta, Biplab, Epsita Kar, Navonil Bose, and Sampad Mukherjee. "Significant enhancement of the electroactive β-phase of PVDF by incorporating hydrothermally synthesized copper oxide nanoparticles." RSC Advances 5, no. 127 (2015): 105422–34. http://dx.doi.org/10.1039/c5ra21903e.
Full textGu, Wei Bing, and Zheng Cui. "Intense Pulsed Light Sintering of Copper Nanoink for Conductive Copper Film." Applied Mechanics and Materials 748 (April 2015): 187–92. http://dx.doi.org/10.4028/www.scientific.net/amm.748.187.
Full textGhareeb, Ozdan Akram, and Samed Abduljabbar Ramadhan. "Prophylactic Efficacy of Silymarin upon Renal Dysfunction Induced by Copper Oxide Nanoparticle." Journal Healthcare Treatment Development, no. 36 (September 23, 2023): 29–38. http://dx.doi.org/10.55529/jhtd.36.29.38.
Full textJadidian, Reza, Hooshang Parham, Sara Haghtalab, and Razieh Asrarian. "Removal of Copper from Industrial Water and Wastewater Using Magnetic Iron Oxide Nanoparticles Modified with Benzotriazole." Advanced Materials Research 829 (November 2013): 742–46. http://dx.doi.org/10.4028/www.scientific.net/amr.829.742.
Full textRajapaksha, Piumie, Samuel Cheeseman, Stuart Hombsch, Billy James Murdoch, Sheeana Gangadoo, Ewan W. Blanch, Yen Truong, et al. "Antibacterial Properties of Graphene Oxide–Copper Oxide Nanoparticle Nanocomposites." ACS Applied Bio Materials 2, no. 12 (November 18, 2019): 5687–96. http://dx.doi.org/10.1021/acsabm.9b00754.
Full textSubashini, K., S. Prakash, and V. Sujatha. "Anticancer Activity of Copper Oxide Nanoparticles Synthesized from Brassia actinophylla Flower Extract." Asian Journal of Chemistry 31, no. 9 (July 31, 2019): 1899–904. http://dx.doi.org/10.14233/ajchem.2019.22035.
Full textSowbakkiyalakshmi B. and Kolanjinathan K. "Myconanosynthesis of Copper Oxide Nanoparticles from Talaromyces versatilis against Human Bacterial Pathogens." UTTAR PRADESH JOURNAL OF ZOOLOGY 44, no. 21 (October 12, 2023): 274–81. http://dx.doi.org/10.56557/upjoz/2023/v44i213699.
Full textChang, Ho, Chih Hung Lo, Tsing Tshih Tsung, Y. Y. Cho, D. C. Tien, Liang Chia Chen, and C. H. Thai. "Temperature Effect on the Stability of CuO Nanofluids Based on Measured Particle Distribution." Key Engineering Materials 295-296 (October 2005): 51–56. http://dx.doi.org/10.4028/www.scientific.net/kem.295-296.51.
Full textSreekala, G., Beevi A. Fathima, and B. Beena. "Adsorption of Lead (Ii) Ions by Ecofriendly Copper Oxide Nanoparticles." Oriental Journal of Chemistry 35, no. 6 (November 21, 2019): 1731–36. http://dx.doi.org/10.13005/ojc/350615.
Full textFreidoonimehr, Navid, Behnam Rostami, Mohammad Mehdi Rashidi, and Ebrahim Momoniat. "Analytical Modelling of Three-Dimensional Squeezing Nanofluid Flow in a Rotating Channel on a Lower Stretching Porous Wall." Mathematical Problems in Engineering 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/692728.
Full textPalanisamy, Karumalaiyan, Velayutham Gurunathan, and Jothilingam Sivapriya. "Ultrasonic Assisted Facile Synthesis of CuO Nanoparticles and Used as Insecticide for Mosquito Control." Asian Journal of Chemistry 35, no. 4 (2023): 986–90. http://dx.doi.org/10.14233/ajchem.2023.23962.
Full textKao, Mu Jung, Chih Hung Lo, Tsing Tshih Tsung, and Hong Ming Lin. "Development of Pressure Technique of Brake Nanofluids from an Arc Spray Nanoparticles Synthesis System." Materials Science Forum 505-507 (January 2006): 49–54. http://dx.doi.org/10.4028/www.scientific.net/msf.505-507.49.
Full textJournal, Baghdad Science. "Fabricated of Cu Doped ZnO Nanoparticles for Solar Cell Application." Baghdad Science Journal 15, no. 2 (June 4, 2018): 198–204. http://dx.doi.org/10.21123/bsj.15.2.198-204.
Full textMedvedeva, Xenia, Aleksandra Vidyakina, Feng Li, Andrey Mereshchenko, and Anna Klinkova. "Reductive and Coordinative Effects of Hydrazine in Structural Transformations of Copper Hydroxide Nanoparticles." Nanomaterials 9, no. 10 (October 11, 2019): 1445. http://dx.doi.org/10.3390/nano9101445.
Full textMsebawi, Muntadher Sabah, Zulkiflle Leman, Shazarel Shamsudin, Suraya Mohd Tahir, Che Nor Aiza Jaafar, Azmah Hanim Mohamed Ariff, Nur Ismarrubie Zahari, and Mohammed H. Rady. "The Effects of CuO and SiO2 on Aluminum AA6061 Hybrid Nanocomposite as Reinforcements: A Concise Review." Coatings 11, no. 8 (August 15, 2021): 972. http://dx.doi.org/10.3390/coatings11080972.
Full textHackett, Cannon, Mojtaba Abolhassani, Lauren F. Greenlee, and Audie K. Thompson. "Ultrafiltration Membranes Functionalized with Copper Oxide and Zwitterions for Fouling Resistance." Membranes 12, no. 5 (May 23, 2022): 544. http://dx.doi.org/10.3390/membranes12050544.
Full textParimala, Lakshmikanthan, and J. Santhanalakshmi. "Oxidative Degradation of Rhodamine B Catalysed by Copper Oxide Nanoparticles in Aqueous Medium." Advanced Materials Research 584 (October 2012): 267–71. http://dx.doi.org/10.4028/www.scientific.net/amr.584.267.
Full textWang, Qing, and Manel del Valle. "Sensors for the Determination of Organic Load (Chemical Oxygen Demand) Utilizing Copper/Copper Oxide Nanoparticle Electrodes." Proceedings 42, no. 1 (November 14, 2019): 63. http://dx.doi.org/10.3390/ecsa-6-06564.
Full textSalim, E., S. R. Bobbara, A. Oraby, and J. M. Nunzi. "Copper oxide nanoparticle doped bulk-heterojunction photovoltaic devices." Synthetic Metals 252 (June 2019): 21–28. http://dx.doi.org/10.1016/j.synthmet.2019.04.006.
Full textSemboshi, Satoshi, Yasuhiro Sakamoto, Hiroyuki Inoue, Akihiro Iwase, and Naoya Masahashi. "Electroforming of oxide-nanoparticle-reinforced copper-matrix composite." Journal of Materials Research 30, no. 4 (February 3, 2015): 521–27. http://dx.doi.org/10.1557/jmr.2014.401.
Full textParasuraman, Loganathan, Nirmal Peddisetty, and Ganesan Periyannagounder. "Radiation effects on an unsteady MHD natural convective flow of a nanofluid past a vertical plate." Thermal Science 19, no. 3 (2015): 1037–50. http://dx.doi.org/10.2298/tsci121208155p.
Full textYousif, Alyaa Muhsin. "Physiological Effects of Nanoparticles Prepared from Olive Leaf Extract and Copper Oxide on Strawberry Plants." South Asian Research Journal of Agriculture and Fisheries 5, no. 04 (July 19, 2023): 28–35. http://dx.doi.org/10.36346/sarjaf.2023.v05i04.001.
Full textLiu, Shao Hui, Yu Zhao, and Xu Ran. "Microstructure and Properties of Co@RGO/Cu Composites by One-Step In Situ Reduction Method." Materials Science Forum 993 (May 2020): 646–53. http://dx.doi.org/10.4028/www.scientific.net/msf.993.646.
Full textOh, Gyung-Hwan, Hyun-Jun Hwang, and Hak-Sung Kim. "Effect of copper oxide shell thickness on flash light sintering of copper nanoparticle ink." RSC Advances 7, no. 29 (2017): 17724–31. http://dx.doi.org/10.1039/c7ra01429e.
Full textArvand, Majid, Masoomeh Sayyar Ardaki, and Mohammad Ali Zanjanchi. "A new sensing platform based on electrospun copper oxide/ionic liquid nanocomposite for selective determination of risperidone." RSC Advances 5, no. 51 (2015): 40578–87. http://dx.doi.org/10.1039/c5ra02554k.
Full textLotfi, Mohamed, Rodolphe Heyd, Abderrahim Bakak, Abdellah Hadaoui, and Abdelaziz Koumina. "Experimental Measurements on the Thermal Conductivity of Glycerol-Based Nanofluids with Different Thermal Contrasts." Journal of Nanomaterials 2021 (September 6, 2021): 1–9. http://dx.doi.org/10.1155/2021/3190877.
Full textZizzo, John. "Toxicity effects of Cubic Cu2O nanoparticles on defecation rate and length in C. Elegans." Biomedical Research and Therapy 7, no. 10 (October 31, 2020): 4045–51. http://dx.doi.org/10.15419/bmrat.v7i10.639.
Full textSutunkova, Marina Petrovna, Larisa Ivanovna Privalova, Yuliya Vladimirovna Ryabova, Ilzira Amirovna Minigalieva, Anastasiya Valeryevna Tazhigulova, Alla Konstantinovna Labzova, Svetlana Vladislavovna Klinova, et al. "Comparative assessment of the pulmonary effect in rats to a single intratracheal administration of selenium or copper oxide nanoparticles." Toxicological Review 29, no. 6 (December 30, 2021): 39–46. http://dx.doi.org/10.36946/0869-7922-2021-29-6-39-46.
Full textStuder, Andreas M., Ludwig K. Limbach, Luu Van Duc, Frank Krumeich, Evagelos K. Athanassiou, Lukas C. Gerber, Holger Moch, and Wendelin J. Stark. "Nanoparticle cytotoxicity depends on intracellular solubility: Comparison of stabilized copper metal and degradable copper oxide nanoparticles." Toxicology Letters 197, no. 3 (September 1, 2010): 169–74. http://dx.doi.org/10.1016/j.toxlet.2010.05.012.
Full textNasibulin, Albert G., P. Petri Ahonen, Olivier Richard, and Esko I. Kauppinen. "Copper and copper oxide nanoparticle formation by chemical vapor nucleation from copper (II) acetylacetonate." Journal of Aerosol Science 31 (September 2000): 552–53. http://dx.doi.org/10.1016/s0021-8502(00)90563-9.
Full textDukhinova, Marina S., Artur Y. Prilepskii, Alexander A. Shtil, and Vladimir V. Vinogradov. "Metal Oxide Nanoparticles in Therapeutic Regulation of Macrophage Functions." Nanomaterials 9, no. 11 (November 16, 2019): 1631. http://dx.doi.org/10.3390/nano9111631.
Full text