Journal articles on the topic 'Copper monooxygenases'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Copper monooxygenases.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Fukatsu, Arisa, Yuma Morimoto, Hideki Sugimoto, and Shinobu Itoh. "Modelling a ‘histidine brace’ motif in mononuclear copper monooxygenases." Chemical Communications 56, no. 38 (2020): 5123–26. http://dx.doi.org/10.1039/d0cc01392g.
Full textMusiani, Francesco, Valquiria Broll, Elisa Evangelisti, and Stefano Ciurli. "The model structure of the copper-dependent ammonia monooxygenase." JBIC Journal of Biological Inorganic Chemistry 25, no. 7 (September 14, 2020): 995–1007. http://dx.doi.org/10.1007/s00775-020-01820-0.
Full textLiew, Elissa F., Daochen Tong, Nicholas V. Coleman, and Andrew J. Holmes. "Mutagenesis of the hydrocarbon monooxygenase indicates a metal centre in subunit-C, and not subunit-B, is essential for copper-containing membrane monooxygenase activity." Microbiology 160, no. 6 (June 1, 2014): 1267–77. http://dx.doi.org/10.1099/mic.0.078584-0.
Full textFarhan Ul Haque, Muhammad, Bhagyalakshmi Kalidass, Nathan Bandow, Erick A. Turpin, Alan A. DiSpirito, and Jeremy D. Semrau. "Cerium Regulates Expression of Alternative Methanol Dehydrogenases in Methylosinus trichosporium OB3b." Applied and Environmental Microbiology 81, no. 21 (August 21, 2015): 7546–52. http://dx.doi.org/10.1128/aem.02542-15.
Full textVu, Van V., and Son Tung Ngo. "Copper active site in polysaccharide monooxygenases." Coordination Chemistry Reviews 368 (August 2018): 134–57. http://dx.doi.org/10.1016/j.ccr.2018.04.005.
Full textBlackburn, Ninian J., Brian Reedy, Eilleen Zhou, Robert Carr, and Steven J. Benkovic. "Chemistry and spectroscopy of copper monooxygenases." Journal of Inorganic Biochemistry 47, no. 3-4 (July 1992): 8. http://dx.doi.org/10.1016/0162-0134(92)84079-3.
Full textChoi, Dong-W., Ryan C. Kunz, Eric S. Boyd, Jeremy D. Semrau, William E. Antholine, J. I. Han, James A. Zahn, Jeffrey M. Boyd, Arlene M. de la Mora, and Alan A. DiSpirito. "The Membrane-Associated Methane Monooxygenase (pMMO) and pMMO-NADH:Quinone Oxidoreductase Complex from Methylococcus capsulatus Bath." Journal of Bacteriology 185, no. 19 (October 1, 2003): 5755–64. http://dx.doi.org/10.1128/jb.185.19.5755-5764.2003.
Full textHedegård, Erik Donovan, and Ulf Ryde. "Molecular mechanism of lytic polysaccharide monooxygenases." Chemical Science 9, no. 15 (2018): 3866–80. http://dx.doi.org/10.1039/c8sc00426a.
Full textItoh, Shinobu, and Shunichi Fukuzumi. "Dioxygen Activation by Copper Complexes. Mechanistic Insights into Copper Monooxygenases and Copper Oxidases." Bulletin of the Chemical Society of Japan 75, no. 10 (October 2002): 2081–95. http://dx.doi.org/10.1246/bcsj.75.2081.
Full textMaiti, Debabrata, Amy A. Narducci Sarjeant, and Kenneth D. Karlin. "Copper−Hydroperoxo-Mediated N-Debenzylation Chemistry Mimicking Aspects of Copper Monooxygenases." Inorganic Chemistry 47, no. 19 (October 6, 2008): 8736–47. http://dx.doi.org/10.1021/ic800617m.
Full textFujisawa, K., T. Katayama, N. Kitajima, and Y. Moro-oka. "Reaction aspects of peroxo copper complexes relevant to copper containing monooxygenases." Journal of Inorganic Biochemistry 43, no. 2-3 (August 1991): 216. http://dx.doi.org/10.1016/0162-0134(91)84208-q.
Full textMigliore, Agostino, and David N. Beratan. "Cu-To-Cu Electron Tunneling in Copper Monooxygenases." Biophysical Journal 106, no. 2 (January 2014): 588a. http://dx.doi.org/10.1016/j.bpj.2013.11.3259.
Full textCiano, Luisa, Alessandro Paradisi, Glyn R. Hemsworth, Morten Tovborg, Gideon J. Davies, and Paul H. Walton. "Insights from semi-oriented EPR spectroscopy studies into the interaction of lytic polysaccharide monooxygenases with cellulose." Dalton Transactions 49, no. 11 (2020): 3413–22. http://dx.doi.org/10.1039/c9dt04065j.
Full textITO, M., K. FUJISAWA, N. KITAJIMA, and Y. MORO-OKA. "ChemInform Abstract: Model Studies on Nonheme Monooxygenases. Chemical Models for Nonheme Iron and Copper Monooxygenases." ChemInform 28, no. 28 (August 3, 2010): no. http://dx.doi.org/10.1002/chin.199728284.
Full textBissaro, Bastien, and Vincent G. H. Eijsink. "Lytic polysaccharide monooxygenases: enzymes for controlled and site-specific Fenton-like chemistry." Essays in Biochemistry 67, no. 3 (March 2023): 575–84. http://dx.doi.org/10.1042/ebc20220250.
Full textMurrell, J. Colin, Ian R. McDonald, and Bettina Gilbert. "Regulation of expression of methane monooxygenases by copper ions." Trends in Microbiology 8, no. 5 (May 2000): 221–25. http://dx.doi.org/10.1016/s0966-842x(00)01739-x.
Full textConcia, Alda Lisa, Maria Rosa Beccia, Maylis Orio, Francine Terra Ferre, Marciela Scarpellini, Frédéric Biaso, Bruno Guigliarelli, Marius Réglier, and A. Jalila Simaan. "Copper Complexes as Bioinspired Models for Lytic Polysaccharide Monooxygenases." Inorganic Chemistry 56, no. 3 (January 6, 2017): 1023–26. http://dx.doi.org/10.1021/acs.inorgchem.6b02165.
Full textBeeson, William T., Christopher M. Phillips, Jamie H. D. Cate, and Michael A. Marletta. "Oxidative Cleavage of Cellulose by Fungal Copper-Dependent Polysaccharide Monooxygenases." Journal of the American Chemical Society 134, no. 2 (December 28, 2011): 890–92. http://dx.doi.org/10.1021/ja210657t.
Full textNgo, Son Tung, Han N. Phan, Chinh N. Le, Nhung C. T. Ngo, Khanh Bao Vu, Nguyen Thanh Tung, Cuong X. Luu, and Van V. Vu. "Fine Tuning of the Copper Active Site in Polysaccharide Monooxygenases." Journal of Physical Chemistry B 124, no. 10 (January 28, 2020): 1859–65. http://dx.doi.org/10.1021/acs.jpcb.9b08114.
Full textBogush, T. A., F. V. Donenko, S. M. Sitdikova, and N. V. Andronova. "Interaction of the copper complex Cu-2 with liver monooxygenases." Bulletin of Experimental Biology and Medicine 104, no. 4 (October 1987): 1394–96. http://dx.doi.org/10.1007/bf00834954.
Full textHamamura, Natsuko, Chris M. Yeager, and Daniel J. Arp. "Two Distinct Monooxygenases for Alkane Oxidation inNocardioides sp. Strain CF8." Applied and Environmental Microbiology 67, no. 11 (November 1, 2001): 4992–98. http://dx.doi.org/10.1128/aem.67.11.4992-4998.2001.
Full textBissaro, Bastien, Bennett Streit, Ingvild Isaksen, Vincent G. H. Eijsink, Gregg T. Beckham, Jennifer L. DuBois, and Åsmund K. Røhr. "Molecular mechanism of the chitinolytic peroxygenase reaction." Proceedings of the National Academy of Sciences 117, no. 3 (January 6, 2020): 1504–13. http://dx.doi.org/10.1073/pnas.1904889117.
Full textMerkler, David J., Raviraj Kulathila, Wilson A. Francisco, David E. Ash, and Joseph Bell. "The irreversible inactivation of two copper-dependent monooxygenases by sulfite: peptidylglycine α-amidating enzyme and dopamine β-monooxygenase." FEBS Letters 366, no. 2-3 (June 12, 1995): 165–69. http://dx.doi.org/10.1016/0014-5793(95)00516-c.
Full textCowley, Ryan E., Li Tian, and Edward I. Solomon. "Mechanism of O2 activation and substrate hydroxylation in noncoupled binuclear copper monooxygenases." Proceedings of the National Academy of Sciences 113, no. 43 (October 10, 2016): 12035–40. http://dx.doi.org/10.1073/pnas.1614807113.
Full textTandrup, Tobias, Kristian E. H. Frandsen, Katja S. Johansen, Jean-Guy Berrin, and Leila Lo Leggio. "Recent insights into lytic polysaccharide monooxygenases (LPMOs)." Biochemical Society Transactions 46, no. 6 (October 31, 2018): 1431–47. http://dx.doi.org/10.1042/bst20170549.
Full textRochman, Fauziah F., Miye Kwon, Roshan Khadka, Ivica Tamas, Azriel Abraham Lopez-Jauregui, Andriy Sheremet, Angela V. Smirnova, et al. "Novel copper-containing membrane monooxygenases (CuMMOs) encoded by alkane-utilizing Betaproteobacteria." ISME Journal 14, no. 3 (December 3, 2019): 714–26. http://dx.doi.org/10.1038/s41396-019-0561-2.
Full textSabbadin, Federico, Saioa Urresti, Bernard Henrissat, Anna O. Avrova, Lydia R. J. Welsh, Peter J. Lindley, Michael Csukai, et al. "Secreted pectin monooxygenases drive plant infection by pathogenic oomycetes." Science 373, no. 6556 (August 12, 2021): 774–79. http://dx.doi.org/10.1126/science.abj1342.
Full textLiu, Yucui, Wei Ma, and Xu Fang. "The Role of the Residue at Position 2 in the Catalytic Activity of AA9 Lytic Polysaccharide Monooxygenases." International Journal of Molecular Sciences 24, no. 9 (May 5, 2023): 8300. http://dx.doi.org/10.3390/ijms24098300.
Full textPrigge, S. T., R. E. Mains, B. A. Eipper, and L. M. Amzel* **. "New insights into copper monooxygenases and peptide amidation: structure, mechanism and function." Cellular and Molecular Life Sciences 57, no. 8 (August 2000): 1236–59. http://dx.doi.org/10.1007/pl00000763.
Full textItoh, Shinobu. "Dioxygen activation by copper complexes supported by 2-(2-pyridyl)ethylamine ligands. Mechanistic insights into copper monooxygenases and copper oxidases." Journal of Inorganic Biochemistry 96, no. 1 (July 2003): 20. http://dx.doi.org/10.1016/s0162-0134(03)80437-3.
Full textIpsen, Johan Ø., Magnus Hallas-Møller, Søren Brander, Leila Lo Leggio, and Katja S. Johansen. "Lytic polysaccharide monooxygenases and other histidine-brace copper proteins: structure, oxygen activation and biotechnological applications." Biochemical Society Transactions 49, no. 1 (January 15, 2021): 531–40. http://dx.doi.org/10.1042/bst20201031.
Full textN. Le, Chinh, Cuong X. Luu, Son Tung Ngo, and Van V. Vu. "DFT studies of the copper active site in AA13 polysaccharide monooxygenase." Ministry of Science and Technology, Vietnam 64, no. 4 (December 15, 2022): 28–31. http://dx.doi.org/10.31276/vjste.64(4).28-31.
Full textCourtade, Gaston, Reinhard Wimmer, Åsmund K. Røhr, Marita Preims, Alfons K. G. Felice, Maria Dimarogona, Gustav Vaaje-Kolstad, et al. "Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase." Proceedings of the National Academy of Sciences 113, no. 21 (May 5, 2016): 5922–27. http://dx.doi.org/10.1073/pnas.1602566113.
Full textBlain, Ingrid, Patrick Slama, Michel Giorgi, Thierry Tron, and Marius Réglier. "Copper-containing monooxygenases: enzymatic and biomimetic studies of the O-atom transfer catalysis." Reviews in Molecular Biotechnology 90, no. 2 (April 2002): 95–112. http://dx.doi.org/10.1016/s1389-0352(01)00068-x.
Full textFilandr, Frantisek, Daniel Kavan, Daniel Kracher, Christophe V. F. P. Laurent, Roland Ludwig, Petr Man, and Petr Halada. "Structural Dynamics of Lytic Polysaccharide Monooxygenase during Catalysis." Biomolecules 10, no. 2 (February 5, 2020): 242. http://dx.doi.org/10.3390/biom10020242.
Full textItoh, Shinobu, Hajime Nakao, and Shunichi Fukuzumi. "Mechanistic studies of aliphatic ligand hydroxylation of a copper complex by dioxygen: A model reaction for copper monooxygenases." Journal of Inorganic Biochemistry 67, no. 1-4 (July 1997): 65. http://dx.doi.org/10.1016/s0162-0134(97)89946-1.
Full textItoh, Shinobu, Hajime Nakao, Lisa M. Berreau, Toshihiko Kondo, Mitsuo Komatsu, and Shunichi Fukuzumi. "Mechanistic Studies of Aliphatic Ligand Hydroxylation of a Copper Complex by Dioxygen: A Model Reaction for Copper Monooxygenases." Journal of the American Chemical Society 120, no. 12 (April 1998): 2890–99. http://dx.doi.org/10.1021/ja972809q.
Full textIvanova, Anastasia A., Igor Y. Oshkin, Olga V. Danilova, Dmitriy A. Philippov, Nikolai V. Ravin, and Svetlana N. Dedysh. "Rokubacteria in Northern Peatlands: Habitat Preferences and Diversity Patterns." Microorganisms 10, no. 1 (December 22, 2021): 11. http://dx.doi.org/10.3390/microorganisms10010011.
Full textSchicke, Olivier, Bruno Faure, Yannick Carissan, Michel Giorgi, Ariane Jalila Simaan, and Marius Réglier. "Synthesis and Characterization of a Dinuclear Copper Complex Bearing a Hydrophobic Cavity as a Model for Copper-Containing Monooxygenases." European Journal of Inorganic Chemistry 2015, no. 21 (June 3, 2015): 3512–18. http://dx.doi.org/10.1002/ejic.201500280.
Full textAyub, Hina, Min-Ju Kang, Adeel Farooq, and Man-Young Jung. "Ecological Aerobic Ammonia and Methane Oxidation Involved Key Metal Compounds, Fe and Cu." Life 12, no. 11 (November 7, 2022): 1806. http://dx.doi.org/10.3390/life12111806.
Full textBranch, Jessie, Badri S. Rajagopal, Alessandro Paradisi, Nick Yates, Peter J. Lindley, Jake Smith, Kristian Hollingsworth, et al. "C-type cytochrome-initiated reduction of bacterial lytic polysaccharide monooxygenases." Biochemical Journal 478, no. 14 (July 28, 2021): 2927–44. http://dx.doi.org/10.1042/bcj20210376.
Full textSvenning, Mette M., Anne Grethe Hestnes, Ingvild Wartiainen, Lisa Y. Stein, Martin G. Klotz, Marina G. Kalyuzhnaya, Anja Spang, et al. "Genome Sequence of the Arctic Methanotroph Methylobacter tundripaludum SV96." Journal of Bacteriology 193, no. 22 (July 1, 2011): 6418–19. http://dx.doi.org/10.1128/jb.05380-11.
Full textSamanta, Dipayan, Tanvi Govil, Priya Saxena, Lee Krumholz, Venkataramana Gadhamshetty, Kian Mau Goh, and Rajesh K. Sani. "Genetical and Biochemical Basis of Methane Monooxygenases of Methylosinus trichosporium OB3b in Response to Copper." Methane 3, no. 1 (February 20, 2024): 103–21. http://dx.doi.org/10.3390/methane3010007.
Full textFrandsen, Kristian E. H., and Leila Lo Leggio. "Lytic polysaccharide monooxygenases: a crystallographer's view on a new class of biomass-degrading enzymes." IUCrJ 3, no. 6 (October 14, 2016): 448–67. http://dx.doi.org/10.1107/s2052252516014147.
Full textWu, Peng, Fangfang Fan, Jinshuai Song, Wei Peng, Jia Liu, Chunsen Li, Zexing Cao, and Binju Wang. "Theory Demonstrated a “Coupled” Mechanism for O2 Activation and Substrate Hydroxylation by Binuclear Copper Monooxygenases." Journal of the American Chemical Society 141, no. 50 (November 20, 2019): 19776–89. http://dx.doi.org/10.1021/jacs.9b09172.
Full textKim, S., J. Stahlberg, M. Sandgren, R. S. Paton, and G. T. Beckham. "Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism." Proceedings of the National Academy of Sciences 111, no. 1 (December 16, 2013): 149–54. http://dx.doi.org/10.1073/pnas.1316609111.
Full textSchröder, Gabriela C., William B. O'Dell, Paul D. Swartz, and Flora Meilleur. "Preliminary results of neutron and X-ray diffraction data collection on a lytic polysaccharide monooxygenase under reduced and acidic conditions." Acta Crystallographica Section F Structural Biology Communications 77, no. 4 (March 31, 2021): 128–33. http://dx.doi.org/10.1107/s2053230x21002399.
Full textCastillo, Ivan, Andrea C. Neira, Ebbe Nordlander, and Erica Zeglio. "Bis(benzimidazolyl)amine copper complexes with a synthetic ‘histidine brace’ structural motif relevant to polysaccharide monooxygenases." Inorganica Chimica Acta 422 (October 2014): 152–57. http://dx.doi.org/10.1016/j.ica.2014.06.027.
Full textXing, Zhilin, Tiantao Zhao, Lijie Zhang, Yanhui Gao, Shuai Liu, and Xu Yang. "Effects of copper on expression of methane monooxygenases, trichloroethylene degradation, and community structure in methanotrophic consortia." Engineering in Life Sciences 18, no. 4 (February 22, 2018): 236–43. http://dx.doi.org/10.1002/elsc.201700153.
Full textNaik, Anil D., Pattubala A. N. Reddy, Munirathinam Nethaji, and Akhil R. Chakravarty. "Ternary copper(II) complexes of thiosemicarbazones and heterocyclic bases showing N3OS coordination as models for the type-2 centers of copper monooxygenases." Inorganica Chimica Acta 349 (June 2003): 149–58. http://dx.doi.org/10.1016/s0020-1693(03)00091-4.
Full text