Dissertations / Theses on the topic 'Copper(I) N-heterocyclic carbene'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Copper(I) N-heterocyclic carbene.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ellul, Charles. "Trimetallic N-heterocyclic carbene complexes." Thesis, University of Bath, 2011. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.538279.
Full textSirokman, Gergely. "(N-heterocyclic-carbene)Copper(I)-catalyzed carbon-carbon bond formation using carbon dioxide." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/39584.
Full textVita.
Includes bibliographical references.
This thesis presents work towards the development of a new catalytic C-C bond forming reaction. Alkynes and olefins insert into [(IPr)CuH]2 (IPr = N,N-bis-(2,6-diisopropylphenyl)-1,3-imidazol-2-ylidene) to give copper vinyl and copper alkyl complexes. These copper complexes insert CO2 into the Cu-C bond to form copper acrylate and copper carboxylate complexes. Acrylic and carboxylic acids can be isolated by hydrolysis. A catalytic cycle based on (IPr)copper(I) was developed. Alkynes undergo reductive carboxylation to give acrylic acids in moderate yields. Unexpected interactions between several components of the catalytic system led to a number of side reaction, most importantly between [(IPr)CuH]2 and the product silyl acrylate. The use of silylcarbonate salts to desylilate the product enhanced yield. In addition, silylcarbonates can also serve as a source of CO2.
by Gergely Sirokman.
Ph.D.
Gallop, Christopher W. D. "N-heterocyclic carbene-palladium and -copper complexes in cross-coupling reactions." Thesis, University of Sussex, 2015. http://sro.sussex.ac.uk/id/eprint/54338/.
Full textLazreg, Faïma. "Group 11 N-heterocyclic carbenes : synthesis, characterisation and catalytic applications." Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/7059.
Full textQuezada, Carol A. "N-Heterocyclic Carbenes: From Heterocyclynes to Potential Radiopharmaceuticals." Akron, OH : University of Akron, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=akron1116249871.
Full textLake, Benjamin Richard Morris. "Copper N-heterocyclic carbenes : novel electrochemical synthesis, stabilisation of variable oxidation states and unusual carbene reactivity." Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/7891/.
Full textCharra, Valentine. "Coordination of multidentate N-heterocyclic carbene ligands to nickel." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAF019/document.
Full textThe purpose of this work was the synthesis of bis-NHC (N-Heterocyclic carbene) ligands, theformation of the corresponding silver(I), copper(I) and nickel(II) complexes and the assessment ofthe catalytic activity of the bis-NHC nickel(II) complexes in ethylene oligomerization. A series of new bis-NHC silver(I) and copper(I) complexes was synthesized. Five different synthetic routes were tested for the formation of nickel(II) bis-NHC complexes. The most significant results were obtained by transmetalation from the silver(I) iodide or bromide complexes
Santoro, Orlando. "Copper(I)-N-heterocyclic carbene (NHC) complexes : synthesis, characterisation and applications in synthesis and catalysis." Thesis, University of St Andrews, 2016. http://hdl.handle.net/10023/8409.
Full textShu, Tao Verfasser], Dieter [Akademischer Betreuer] [Enders, and Markus [Akademischer Betreuer] Albrecht. "N-heterocyclic carbene - and copper-catalyzed asymmetric domino reactions / Tao Shu ; Dieter Enders, Markus Albrecht." Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/1171818831/34.
Full textShu, Tao [Verfasser], Dieter [Akademischer Betreuer] Enders, and Markus [Akademischer Betreuer] Albrecht. "N-heterocyclic carbene - and copper-catalyzed asymmetric domino reactions / Tao Shu ; Dieter Enders, Markus Albrecht." Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/1171818831/34.
Full textMcGrath, Kevin Patrick. "Enantioselective Methods for Allylic Substitution and Conjugate Addition Reactions Catalyzed by N-Heterocyclic Carbene-Copper Complexes." Thesis, Boston College, 2016. http://hdl.handle.net/2345/bc-ir:106792.
Full textChapter 1 Catalytic Enantioselective Addition of Organoaluminum Reagents Catalytic methods involving the enantioselective addition of both commercially available as well as in situ generated organoaluminum reagents are reviewed. An overview of additions to aldehydes, ketones, and imines is provided as well as the difficulties and limitations of such transformations. Furthermore, additions to unsaturation adjacent to a leaving group to form a new stereogenic center are examined. Finally, conjugate addition reactions wherein an organoaluminum reagent is added to an olefin adjacent to a carbonyl or nitro group are discussed. Chapter 2 Synthesis of Quaternary Carbon Stereogenic Centers through Enantioselective Cu-Catalyzed Allylic Substitution with Alkenylaluminum Reagents A method for the formation of 1,4-diene containing quaternary stereogenic centers through catalytic enantioselective allylic substitution is disclosed. The addition of alkyl- and aryl-substituted alkenylaluminum reagents to trisubstituted allylic phosphates is promoted by 0.5–2.5 mol % of a sulfonate-containing bidentate N-heterocyclic carbene–copper complex. Products containing a quaternary stereogenic center as well as a newly formed terminal olefin are obtained in up to 97% yield and 99:1 er with high site selectivity (>98:2 SN2’:SN2). The requisite nucleophiles are generated in situ through hydroalumination of terminal alkynes. The utility of the method is demonstrated through a concise synthesis of natural product bakuchiol. Chapter 3 A Multicomponent Ni-, Zr-, Cu-Catalyzed Strategy for Enantioselective Synthesis of Alkenyl-Substituted Quaternary Carbons Despite the widespread use of conjugate addition in organic synthesis, few reports pertain to the addition of nucleophiles to acyclic systems and none in which the nucleophile is an alkene. Herein, we report the first examples of enantioselective conjugate addition of alkenylmetal reagents to trisubstituted enones to form all-carbon quaternary stereogenic centers. Alkenylaluminum nucleophiles are prepared through a site-selective Ni-catalyzed hydroalumination of terminal alkynes and the requisite E-trisubsituted enones are the products of a regioselective Zr-catalyzed carboalumination/acylation of a terminal alkyne. Products are obtained in up to 97% yield and 99:1 er. A model for enantioselectivity, supported by DFT calculations, is proposed. Chapter 4 Formation of Tertiary Centers through Catalytic Enantioselective Conjugate Addition of Alkenylaluminum Reagents to Acyclic Enones We have developed an enantioselective NHC–Cu catalyzed synthesis of tertiary centers in acyclic systems using in situ generated alkenylaluminum reagents, as current methods typically rely on Rh-catalysis at high temperatures with alkenyl boronic acids in protic solvents. Moreover, most examples include chalcone-derived substrates, which, while more reactive, often preclude further functionalization. With the current method, we are able to couple a variety of alkenyl nucleophiles with α,β-unsaturated ketones. E- or Z-silylalkenylaluminum reagents, derived from hydroalumination of silyl-protected alkynes, lead to products in good yields and high enantioselectivities. Additionally, both the α- and β-alkenylaluminum reagents participate in the reaction. Chapter 5 Development of N-Heterocyclic Carbene–Cu Catalyzed Allylic Substitution of Diboryl Methane to Morita-Baylis-Hillman Derived Allylic Phosphates We have developed a method for the coupling of a geminyl diboron reagent with Morita-Baylis-Hillman derived trisubstituted ester-containing allylic phosphates. With 10 mol % of an in situ generated NHC–Cu complex and 1.5 equivalents of the boron reagent, we are able to form the desired product in high regio- and enantioselectivity with a 2,5-ditert-butyl containing carbene. Simple aryl substituents as well as those containing a halogen or an electron-withdrawing group furnish the desired products in up to 85% yield and 98:2 er. Alkyl-containing substrates are also competent reaction partners, although longer chain aliphatics results in slightly diminished enantioselectivity. We are pursuing the application of this method to the synthesis of α-methylene lactones which can be further functionalized to natural products like tubulin polymerization inhibitor (–)-steganone and glaucoma medication (+)-pilocarpine
Thesis (PhD) — Boston College, 2016
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Resch, Stefan Günter. "Dinuclear Copper and Nickel Complexes of New Multidentate N-heterocyclic Carbene Ligands: Structures, Dynamics and Reactivity." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2018. http://hdl.handle.net/21.11130/00-1735-0000-0005-12D5-6.
Full textGao, Fang. "Copper-Catalyzed Enantioselective Allylic Substitution Reactions with Organoaluminum and Boron Based Reagents Promoted by Chiral Sulfonate Bearing N-Heterocyclic Carbenes." Thesis, Boston College, 2013. http://hdl.handle.net/2345/bc-ir:101227.
Full textChapter 1. A Review of Catalytic Enantioselective Allylic Substitution (EAS) with Chiral Sulfonate Containing N-heterocyclic Carbenes (NHC). A comprehensive review of enantioselective allylic substitution reactions, which are promoted by a chiral N-heterocyclic carbene metal complex that features a unique sulfonate motif, is provided in this chapter. Reactions are classified into two categories. One class of transformations is catalyzed by a series of easily modifiable sulfonate bearing NHC-Cu complexes, with which a range of nucleophilic organometallic reagents (i.e., organozinc-, aluminum-, magnesium- and boron-based) that carry different carbon-based units are readily utilized in efficient and highly selective C-C bond forming processes. Another set of reactions exclude the use of a copper salt; catalytic amount of a sulfonate containing imidazolinium salt is capable of promoting additions of alkyl Grignard, zinc and aluminum species to easily available allylic electrophiles in a site- and enantioselective fashion. The mechanistic scenarios of both catalytic systems that account for the observed experimental data are discussed in detail. Chapter 2. Cu-Catalyzed Enantioselective Allylic Substitutions with Aryl- and Heteroarylaluminum Reagents. In this chapter, the first examples of EAS reactions of aryl- and heteroaryl-substituted dialkylaluminum reagents to a wide range of trisubstituted allylic phosphates are demonstrated through a facile and selective catalysis rendered possible by an in situ generated sulfonate containing NHC-Cu complex, delivering enantiomerically enriched olefin products that bear an all carbon quaternary stereogenic center. The requisite organometallic species are easily prepared from either the corresponding aryl- and heteroaryl halides, or through efficient and site selective deprotonation at the C-2 position of furan and thiophene; such aluminum entities are readily used in situ without the requirement of purification. Application to small molecule natural product synthesis is also carried out to illustrate the utility of the present protocol. Chapter 3. Cu-Catalyzed Enantioselective Allylic Substitutions with Alkenylaluminum Reagents. This chapter focuses on our research towards construction of enantioenriched tertiary and quaternary stereogenic centers that are substituted with two further functionalizable alkenes. The first combination of the study involves the addition of stereochemically well-defined trisubstituted alkenylaluminum reagents to disubstituted allylic phosphates; the transformation commences with a silyl-directed stereoselective hydroalumination and finishes with an enantioselective Cu-catalyzed EAS promoted by a sulfonate bearing NHC. Such reactions deliver molecules that feature silicon containing trisubstituted olefin adjacent to the tertiary stereogenic center; subsequent conversion of the versatile silicon group to a proton reveals the first set of examples that incorporate pure Z alkene in Cu-catalyzed EAS. The stereoselective and concise synthesis of naturally occurring small molecule nyasol demonstrates the utility of the above method. On a different front, Ni-catalyzed site-selective hydroalumination of terminal alkynes has opened new possibility of introducing 1,1-disubstituted olefins in Cu-catalyzed EAS in the formation of tertiary stereogenic center containing enantioenriched organic building blocks. Such catalytic hydrometallation procedure also allows efficient access to alkenylaluminums that are derived from the conventionally problematic aromatic alkynes. The importance of efficient and selective synthesis of terminal aryl-substituted alkenylaluminum species is showcased in NHC-Cu-catalyzed EAS reactions that construct all-carbon quaternary stereogenic centers; a three-step convergent synthesis of natural product bakuchiol in enantiomerically enriched form highlights the potential of the current protocol in chemical synthesis. Chapter 4 Cu-Catalyzed Enantioselective Allylic Substitutions with Alkenylboronic Acid Pinacol Ester Reagents and Applications in Natural Product Synthesis. Within this chapter, we disclose the efficient utilization of alkenylboron reagents in Cu-catalyzed EAS reactions, which lead to highly site and enantioselective formations of molecules that contain both tertiary and quaternary carbon stereogenic centers. Unlike their aluminum-based counterparts, the use of boron-based reagents allows effective delivery of sensitive organic function groups, such as a carbonyl, which would be incompatible in the hydrometallation process with dibal-H. Our efforts accumulate to the first report of incorporation of all carbon quaternary centers that are substituted with unsaturated ester and aldehyde units in the EAS products; such a method facilitates the concise diastereo- and enantioselective synthesis of Pummerer's ketone and it's trans isomer. Further development of the above protocol towards the construction of tertiary stereogenic centers requires the design of new chiral sulfonate-containing imidazolinium salts as the ligand precursors and has lead to the employment of a broader range of alkenylboron species, which feature readily functionalizable motifs. Subsequent demonstrations in enantioselective synthesis of a variety of small molecule natural products showcase the utility
Thesis (PhD) — Boston College, 2013
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Resch, Stefan Günter [Verfasser]. "Dinuclear Copper and Nickel Complexes of New Multidentate N-heterocyclic Carbene Ligands: Structures, Dynamics and Reactivity / Stefan Günter Resch." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://d-nb.info/1224100247/34.
Full textScattolin, Elena. "Polynuclear carbene complex catalysts for Fine Chemistry applications." Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3426078.
Full textQuesto progetto di Dottorato riguarda la sintesi e la caratterizzazione di complessi di rame(I) e argento(I) con leganti policarbenici e il loro impiego come catalizzatori in reazioni di formazione di nuovi legami C-C e C-eteroatomo. É stata messa a punto una metodologia alternativa per la sintesi di complessi di rame(I) in collaborazione col gruppo del Prof. Santini dell’Università di Camerino. Questa metodica ha permesso di ottenere il complesso trinucleare di rame 2c, che ha una struttura trinucleare in cui ogni atomo di rame è coordinato a due anelli imidazolinidenici appartenenti a due unità tricarbeniche diverse. Il complesso 2c è stato preparato tramite una reazione di transmetallazione a partire dal complesso di argento 2b che è isostrutturale a 2c. La nuova procedura consente di ottenere 2c in basse rese tuttavia consente di ottenere dei complessi con purezza maggiore rispetto alla procedura classica. Il complesso 2c ha la stessa struttura del complesso 1c che è stato sintetizzato precedentemente all’inizio di questo progetto. Questo complesso è stato preparato seguendo la procedura classica di deprotonazione e differisce da 2c per la variata natura dei sostituenti agli atomi di azoto. L’applicabilità di questa procedura è stata poi investigate utilizzando altri complessi tricarbenici di argento preparati da Santini e anche ad alcuni complessi dicarbenici di argento preparati seguendo procedure di letteratura. Ad oggi è stato possibile isolare il complesso dinucleare di rame 8c utilizzando il complesso 9b come precursore, altri tentativi sono tuttora in corso per la sintesi dei complessi 3c e 4c. I complessi di rame e argento sono stati utilizzati nelle reazioni di trasferimento di carbeni e nitreni, nelle reazioni di coupling C-N e C-O (reazione di Ullmann) e di coupling C-C (reazione di Sonogashira ). Il complesso 1c mostra di avere un comportamento anomalo nella reazione di Ullmann. solitamente in queste reazioni gli alogenuri arilici con sostituenti elettron donatori sono meno reattivi di alogenuri arilici con sostituenti elettron attrattori. Nel caso del complesso 1c tuttavia, alogenuri arilici con sostituenti debolmente elettron donatori come il metile danno rese inferiori rispetto ad alogenuri arilici con sostituenti elettron donatori come il metossi. Per comprendere il comportamento del complesso 1c sono state condotte alcune reazioni di coupling col complesso 2c e on un complesso monocarbenico di rame(I) di riferimento che è stato sintetizzato da Nolan. Il complesso IPrCuCl è stato utilizzato come catalizzatore nelle reazioni di arilazione di imidazolo, pirazolo e 4-cresolo e ha mostrato di essere un buon catalizzatore, in particolare per il coupling di cloruri arilici. Il complesso 2c è stato impiegato nell’ arilazione di imidazolo con vari alogenuri arilici e ha dimostrato di avere una buona attività catalitica. IPrCuCl e 2c seguonol’andamento tipico di queste reazioni dato che la reazione con iodoanisolo da rese inferiori a quella con iodotoluene. L’attività catalitica dei complessi 1c, 2c e IPrCuCl è stata studiata anche per la reazione di Sonogashira per l’arilazione di alchini. IPrCuCl non catalizza questa reazione mentre i complessi 1c e 2c mostrano una buona attività catalitica con gli ioduri arilici. Il complesso 1c da rese quantitative con iodoacetofenone e iodotoluene mentre col meno reattivo iodoanisolo da una resa del 54%. Anche alcuni complessi di argento sono stati utilizzati in questa reazione, il risultato migliore è stato ottenuto col complesso 6b in DMF, gli altri complessi hanno dato rese basse o nulle. Sorprendentemente passando da DMF a DMSO cambia la selettività della reazione, infatti quando la reazione veniva condotta in DMSO si formava il prodotto di homocoupling dell’alogenuro arilico invece che l’arilalchino. Alcuni complessi di rame e argento sono stati impiegati come catalizzatori anche in reazioni di trasferimento di carbeni e nitreni utilizzando rispettivamente EDA e PhI=NTs come fonti di carbene e nitrene. Il complesso 8c si è rivelato cataliticamente attivo e selettivo nella reazione di ciclopropanazione di stirene con etildiazoacetato e ha dimostrato una certa attività catalitica anche nella reazione di funzionalizzazione di legame CH di THF. Nelle reazioni di trasferimento di nitreni i complessi 1c e 8c hanno dato rese elevate nella reazione di aziridinazione di stirene e il complesso 1c ha dato una resa del 30% nell’aminazione di toluene mentre il miglior catalizzatore per questa reazione (il complesso di rame con legante trispirazolilborato perbromato), ha dato una resa del 60%. I complessi di argento 6b e 7b sono insolubili nei più comuni solventi organici, per questo motivo si è deciso di utilizzare come solvente un liquido ionico commerciale, il butiltrimetilammonio bis(trifluorometilsolfonil)immide, dato che i complessi 6b e 7b sono completamente solubili nello stesso. Tuttavia anche in queste condizioni tali complessi non sono risultati cataliticamente attivi. Un’altra parte di questo progetto riguardava l’applicazione in catalisi di alcuni campioni di rame supportati su ossidi inorganici quali silice, allumina e silice-allumina. Questi catalizzatori sono stati preparati dal gruppo della Dottoressa Ravasio del ISTN-CNR di Milano attraverso il metodo di idrolisi-chemisorbimento. La reazione presa in esame è la reazione di Sonogashira Dai risultati emerge che in generale i materiali supportati su allumina sono più reattivi rispetto a quelli supportati su silice e che il catalizzatore di rame metallico da rese più elevate rispetto al catalizzatore contenente rame ossido. Dalla forma sigmoidale della curva di reazione appare evidente la presenza di un periodo di induzione. Questo suggerisce che le specie di rame supportato agiscano in realtà come precatalizzatore e che la specie cataliticamente attiva si formi direttamente nell’ambiente di reazione. Per concludere, la sintesi di nuovi complessi di rame con leganti carbenici è risultata complicata, tuttavia la nuova metodologia sviluppata in collaborazione con Santini sembra essere promettente. Due complessi policarbenici di rame sono stati ottenuti tramite questa metodologia (2c e 8c) e sono stati ottenuti anche alcuni complessi di argento. I complessi ottenuti sono stati applicati in catalisi in reazioni di formazione di legami C-C e C-eteroatomo. Alcuni dei risultati ottenuti sono molto interessanti: l’arilazione di 4-cresolo con cloroacetofenone catalizzata da IPrCuCl e aziridinazione di stirene catalizzata dai complessi 1c e 8c.
May, Tricia Lee. "Copper-Based N-Heterocyclic Carbene Complexes for Catalytic Enantioselective Conjugate Additions of Alkyl-, Aryl- and Vinyl-Based Nucleophiles to Form All-Carbon Quaternary Stereogenic Centers." Thesis, Boston College, 2011. http://hdl.handle.net/2345/2650.
Full textChapter 1 Enantioselective Conjugate Additions of Carbon Nucleophiles to Activated Olefins: Preparation of Enantioenriched Compounds Containing All-Carbon Quaternary Stereogenic Centers. Methods for enantioselective conjugate addition of nucleophiles to activated olefins generating products containing all-carbon quaternary stereogenic centers are critically reviewed. Enantioselective conjugate addition has been shown to be a powerful and concise approach to construct carbon-carbon bonds to prepare compounds containing sterically hindered stereogenic centers and has seen great advances in the past several years. Owing to the difficult nature of additions to relatively unreactive conjugate acceptors, compared to additions generating tertiary stereogenic centers, and construction of a sterically-hindered bond, in many cases, new and active catalysts had to be developed. The review discusses the areas where significant advances have been made as well as current limitations and future outlook. Chapter 2 Development of New and Active Catalysts for Cu-Catalyzed Enantioselective Conjugate Addition of Alkyl- and Arylzinc Reagent. Through development of new chiral catalysts, we have found an active and enantiodiscriminating bidentate, sulfonate-containing NHC-Cu catalyst that effects enantioselective conjugate addition of alkyl- and arylzinc reagents on notoriously difficult trisubstituted cyclic enones. Products are prepared with high levels of selectivity and participate in a variety of further functionalizations. The enantioselective additions are efficient and practical, not requiring rigorously anhydrous or oxygen-free conditions. Chapter 3 Cu-Catalyzed Enantioselective Conjugate Addition of Alkyl- and Arylaluminum Reagents to Trisubstituted Enones. Outlined in this chapter is the first effective solution for Cu-catalyzed enantioselective addition of alkyl and aryl nucleophiles to trisubstituted cyclopentenones generating products bearing a β-all-carbon quaternary stereogenic center. Products are obtained in up to 97% yield and 99:1 er, only requiring 5 mol % of an in situ generated Cu-NHC catalyst. The methodology was highlighted as one of the key steps in the total synthesis of clavirolide C. Not only five-membered rings, but six- and seven-membered rings serve as proficient partners in the enantioselective process. Moreover, in cases for the enantioselective aryl addition, in situ prepared Me2AlAr can be used without purification, filtration, or isolation, only requiring the corresponding aryl halides. The additions have also been extended to trisubstituted unsaturated lactones and chromones. Chapter 4 Cu-Catalyzed Enantioselective Conjugate Addition of Vinylaluminum Reagents to Cyclic Trisubstituted Enones. An enantioselective protocol for the formation of β,β-disubstituted cyclic ketones containing a synthetically versatile vinylsilane is disclosed. Enantioselective conjugate addition of in situ prepared silyl-substituted vinylaluminum reagents to β,β-unsaturated ketones promoted by 5 mol % of chiral Cu-NHC complexes delivers desired products with high efficiency (up to 95% yield after purification) and enantioselectivities (up to >98:<2 er). Several functionalizations utilizing the vinylsilanes, vicinal to an all-carbon quaternary stereogenic center, are shown, including an oxidative rearrangement, vinyl iodide formation and protodesilylation, accessing products not previously attainable. Furthermore, the enantioselective protocol is demonstrated as the key transformation in the total synthesis of riccardiphenol B
Thesis (PhD) — Boston College, 2011
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Akhdar, Ayman. "Synthesis, Modification And Click Of Arylopeptoids Using Carbene-Based Catalysts." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2022. http://www.theses.fr/2022UCFAC117.
Full textArylopeptoids (i.e. oligomeric N-substituted aminomethyl benzamides) is a class of peptoid-inspired oligoamides with aromatic backbone. They retain advantageous features of peptoids such as straightforward synthesis by submonomer approach and conformational preferences governed by cis-trans isomerism of N,N-disubstituted amides. These N-alkylated aromatic oligoamides may be developed as proteomimetics or scaffolds for multivalent display. The aim of this thesis was to explore the chemical diversity accessible from linear and cyclic arylopeptoids through Click chemistry using Copper carbene as catalyst. First, access and properties of Copper (I)-N-heterocyclic carbene catalyst was exposed. Also, an extension of the quantitative NMR was presented to study the purity of this catalyst and other organometallic compounds. The development of an efficient CuAAC protocol on-resin using Copper (I)-N-heterocyclic carbene catalyst for the functionalization of arylopeptoids has allowed the efficient preparation of a library of linear oligomers carrying several triazole-type side chains. Beside, combinatorial and sequential approaches have been implemented leading to huge accessible chemical diversity. Post-modification of the triazoles into triazoliums has led to several series of triazolium-based arylopeptoids exhibiting amphipathic character. Their antibacterial activity against a panel of bacterial strains has been evaluated. The access to 3-dimensional crown- and tube-like structures from constrained arylopeptoid macrocycles by CuAAC reaction using the Cu-NHC catalyst also proved to be efficient with a selectivity depending on the spatial preorganization of the cyclic core and proper choice of the NHC catalyst. Finally, the access to H-shaped arylopeptoids was studied using CuAAC reaction on resin. Overall, this work highlights the potential of the Copper (I)-N-heterocyclic carbene as catalyst for CuAAC to perform on-resin poly-functionalization of arylopeptoids and to build complex 3D-architectures
Shi, Ying. "Copper-catalyzed Enantioselective Allylic Substitutions and Conjugate Additions Promoted by Chiral Sulfonate- or Alkoxy-containing N-heterocyclic Carbenes." Thesis, Boston College, 2017. http://hdl.handle.net/2345/bc-ir:107648.
Full textChapter 1. A Review of Sulfonate-Containing NHC Ligands in Copper-Catalyzed Enantioselective Transformations—Maneuvering Selectivities in Tight Space. A comprehensive review of enantioselective copper-catalyzed transformations, which are promoted by a chiral N-heterocyclic carbene metal complex that features a unique sulfonate motif, is provided in this chapter. Reactions have been categorized into four sets: allylic substitutions conjugate additions, Cu-B additions alkenes and multicomponent reactions. The mechanistic scenarios provided by DFT calculations accounts for their uniquely reaction profile in enantioselective allylic substitutions (EAS), enantioselective conjugate additions (EAS) and enantioselective Cu-B additions to alkenes. Mechanistic investigations (density functional theory calculations and deuterium labeling) point to a bridging function for an alkali metal cation connecting the sulfonate anion and a substrate’ s phosphate group to form the branched addition products as the dominant isomers via Cu(III) π -allyl intermediate complexes in EAS reactions. Sulfonate-bearing NHC ligand with different substitution patterns promote EAS reactions with different reactivity and enantioselectivity. We also developed a guideline to follow to choose the proper sulfonate-based NHC ligands according to the combination of the substrates and the nucleophiles. Chapter 2. NHC–Cu-Catalyzed Enantioselective Allylic Substitutions with Silyl-protected Propargyl Boron Reagent to Generate Tertiary and Quaternary Carbon Stereogenic Centers. Catalytic allylic substitution reactions involving a propargylic nucleophilic component are presented; reactions are facilitated by 5.0 mol % of a catalyst derived from a chiral N-heterocyclic carbene (NHC) and a copper chloride salt. A silyl-containing propargylic organoboron compound, easily prepared in multi-gram quantities, serves as the reagent. Aryl- and heteroaryl-substituted disubstituted alkenes within allylic phosphates and those with an alkyl or a silyl group can be used. Functional groups typically sensitive to hard nucleophilic reagents are tolerated, particularly in the additions to disubstituted alkenes. Reactions may be performed on the corresponding trisubstituted alkenes, affording quaternary carbon stereogenic centers. Incorporation of the propargylic group is generally favored (vs allenyl addition; 89:11 to >98:2 selectivity); 1,5-enynes can be isolated in 75−90% yield, 87:13 to >98:2 SN2′:SN2 (branched/linear) selectivity and 83:17−99:1 enantiomeric ratio. Utility is showcased by conversion of the alkynyl group to other useful functional units. Application to stereoselective synthesis of the acyclic portion of antifungal agent plakinic acid A, containing two remotely positioned stereogenic centers, by sequential use of two different NHC–Cu-catalyzed enantioselective allylic substitution (EAS) reactions further highlights utility. Chapter 3. NHC–Cu-Catalyzed Enantioselective Allylic Substitutions with Methylenediboron to Generate Tertiary and Quaternary Carbon Stereogenic Centers. A catalytic EAS method for the site- and enantioselective addition of commercially available di-B(pin)-methane to disubstituted allylic phosphates is introduced. Transformations are facilitated by a sulfonate-containing NHC–Cu complex and products are obtained in 63–95% yield, 88:12 to >98:2 SN2’/SN2 selectivity, and 85:15–99:1 enantiomeric ratio. The utility of the approach is highlighted by its application to the formal synthesis of the cytotoxic natural product rhopaloic acid A, in an all-catalytic-method synthesis route. Catalytic EAS methods of the di-B(pin) methane to Z-trisubstituted allylic phosphates are also disclosed and DFT calculations provide insights to the stereochemical models for those transformations and rationales for the choice of Z-trisubstituted allylic phosphates as the starting materials. Chapter 4. Enantioselective NHC–Cu-Catalyzed Prenyl Conjugate Additions to Enoates to Generate Tertiary Carbon Stereogenic Centers. An efficient catalytic protocol for generation of prenyl-bearing tertiary carbon stereogenic centers from aryl-substituted enoates was achieved in the presence of a chiral alkoxy-based NHC–Cu complex. A range of aryl and heteroaryl-substituted substrate were suitable substrates, the corresponding prenyl conjugate addition products were generated in up to 94% yield and 95:5 enantioselectivity. The utility of the current method has been shown in the application to the synthesis of a selective integrin antagonist. DFT calculations provided a stereochemical model for the ECA reaction employing alkoxy-containing NHC–Cu catalyst
Thesis (PhD) — Boston College, 2017
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Dabrowski, Jennifer A. "Development of Selective Methods to Form C-C Bonds. Enantioselective Formation of Tertiary and Quaternary Stereogenic Centers." Thesis, Boston College, 2013. http://hdl.handle.net/2345/3771.
Full textFormation of C-C bonds is an invaluable tool for the construction of materials, pharmaceuticals, natural products, and the building blocks of life. Although great strides in this area have been made, there remain several limitations in regio-, site-, and enantioselective additions of carbon-based nucleophiles. Solving these challenges by expanding the scope, efficiency, and selectivity of alkyl, aryl, heteroaryl, vinyl, and alkynyl additions to carbon-based electrophiles is the topic of this dissertation
Thesis (PhD) — Boston College, 2013
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Takeda, Momotaro. "Copper-Catalyzed Asymmetric Allylic Substitution with Organo- and Silylboronates." 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/188504.
Full textSun, Xuetong. "Development of a new tridentate pincer phosphine N-heterocyclic carbene ligand & Development of a copper II catalyzed three component tandem synthesis of isoindolinone derivatives." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97123.
Full textDeux types de recherches ont été accompli dans cette thèse. La première section comporte sur le développement d'un nouveau ligand carbène hétérocyclique et l'analyse de ses complexes formés avec des métaux de transitions et leur efficacité lors des additions conjuguées, d'addition alcyne-alcène et des réactions de couplage entre un alcyne, une aldéhyde et une amine (A-3). La deuxième partie de cette thèse porte sur le développement d'une méthodologie de synthèse de dérivés d'isoindoline utilisant une réaction en tandem dérivés du couplage A-3 et la synthèse de dérivés d' isoindolo[2,1-1]quinolines par cyclisation catalysée par des sels d'or(I). Le but de ces études étant de développer des méthodologies de synthèse et des catalyseurs novateurs pouvant s'appliquer à des synthèses conventionnelles et de ce fait les rendre plus "vertes", en augmentant leur économie d'atomes, économie d'étapes dans une perspective de développement durable.
Wu, Hao. "Catalytic Enantioselective Formations of C–B, C–C and C–Si Bonds by Organic Molecules or Transition-Metal Complexes." Thesis, Boston College, 2015. http://hdl.handle.net/2345/bc-ir:104759.
Full textCatalytic enantioselective reactions are of great importance in synthetic organic chemistry. Thus, development of efficient, selective and easily accessible catalyst for various bond formations is the main task in our laboratories. First, we have developed the first broadly applicable enantioselective boryl conjugate addition reactions to a variety of α,β-unsaturated carbonyls, promoted by a chiral Lewis basic N-heterocyclic carbene. The valuable β-boryl carbonyls were further used in complex molecule syntheses. The mechanism of these C–B bond formations was studied in details. We have also developed a practical method for enantioselective addition of an allene unit to aryl-, heteroaryl- and alkyl-substituted Boc-aldimines. These efficient C–C bond formations, catalyzed by an aminophenol-derived boron-based catalyst, were further utilized in succinct syntheses of anisomycin and epi-cytoxazone. Finally, chiral NHC–Cu complexes were employed for site-, diastereo- and enantioselective silyl conjugate additions to acyclic and cyclic dienones and dienoates. The precious enantiomerically enriched allylsilane obtained can be converted into a ketone-aldol type product, which is difficult to access through alternative methods
Thesis (PhD) — Boston College, 2015
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Rungtanapirom, Wasupol. "Diverse reactivity of chelating and xanthine-derived copper-N-heterocyclic carbenes : catalytic activity, electrochemical reactivity and non-innocent behaviour." Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/21273/.
Full textLesieur, Mathieu. "Cu and Pd complexes of N-heterocyclic carbenes : catalytic applications as single and dual systems." Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/7999.
Full textAlmallah, Hamzé. "Systèmes confinants pour la catalyse homogène." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAF011.
Full textDescribed herein are the stepwise syntheses and properties of three types of complexes based on sterically encumbered N-heterocyclic carbenes (NHCs): 1) Pd-PEPPSI complexes with an unsymmetrical imidalolylidene ligand having its N atoms substituted by a bulky 9-alkyl-9-fluorenyl (AF) group and an aryl group. These turned out to be very active Suzuki-Miyaura cross coupling catalysts with an activity comparable to previously reported, highly performing "symmetrical" analogues which bear two identical AF substituents. These findings illustrate the high stabilising effect of each individual AF group; 2) Trigonal copper(I) complexes with the general formula [Cu(Im)(2,2'-dipyridylamine)]BF4 in which the NHC ligands are symmetrical or not. Here again the AF substituents ensure complex stability with respect to air when compared to analogues displaying sterically non-bulky substituents. One of the complexes, namely [Cu((EtF,Ph)-Im)(2,2'-dipyridylamine)]BF4, was found to be strongly luminescent in solution and in the solid state; 3) Pd-PEPPSI complexes in which calix[4]arene-substituted phenyl moieties have been grafted on both N atoms, these behaving as potential receptor units. Owing to the presence of the calixarene termini, complexes of this type were found to self-assemble, thereby resulting in dimers with sterically highly protected metal centres. The formation of such species was correlated to the catalytic performance of these complexes
Casely, Ian J. "Electropositive metal N-heterocyclic carbene complexes." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3873.
Full textRodden, Mark. "Alkoxide functionalised N-heterocyclic carbene complexes." Thesis, University of Nottingham, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423306.
Full textHeckler, James E. "Advances in gold-carbon bond formation: mono-, di-, and triaurated organometallics." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1441363597.
Full textWilliamson, Craig. "Imidazolylidenes in N-heterocyclic carbene organo-catalysis." Thesis, University of Aberdeen, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440601.
Full textTulloch, Arran Alexander Dickon. "Novel mixed donor N-Heterocyclic carbene complexes." Thesis, University of Southampton, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249941.
Full textBemowski, Ross David. "Novel N-heterocyclic dicarbene ligands and molybdenum and dimolybdenum N-heterocyclic carbene complexes." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/1291.
Full textCollinson, John Michael. "Immobilised N-heterocyclic carbene metal complexes in catalysis." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/42227.
Full textChardon, Edith. "N-Heterocyclic carbene complexes : toward innovative anticancer agents." Strasbourg, 2011. http://www.theses.fr/2011STRA6265.
Full textAmong the existing anticancer agents, cisplatin or cis-diamminedichloroplatinum(II), represents the most known and commonly used chemotherapeutic drug worldwide highlighting the potential of metals in medicinal chemistry. However, its clinical effectiveness is also accompanied by severe side toxicities and cell-resistance mechanisms. These therapeutic limitations have encouraged the development of substitutes to cisplatin and have led to the discovery of N-heterocyclic carbene (NHC) complexes of several late transition metals as new anticancer agents with similar to higher in vitro activities than cisplatin. In this context, the present project dealt with the synthesis and the study of novel cytotoxic NHC complexes of some transition metals (mainly platinum). Two simple, reproducible and modular synthetic routes were developed for the easy functionalization post-complexation of NHC derivatives using (a) ruthenium-catalyzed alkyne-azide cycloaddition and (b) ligand substitution. In order to improve the efficacy and selectivity of the NHC complexes, we have extended these strategies of functionalization to the attachment of biologically interesting moieties such as targeting agents, hydrosoluble groups and fluorescent dyes. In vitro cytotoxic activities of these newly synthesized complexes were measured against a wide variety of cancerous cells. The majority of the compounds demonstrated higher activities than the benchmark cisplatin and some were selective toward tumoral cells. These promising early-stage results offer new perspectives in cancer therapy while giving alternatives to the biomedical limitations of cisplatin
Robinson, William J. III. "Development of Tetrathiafulvalene Fused N-Heterocyclic Carbene Compounds." Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1610382201476554.
Full textSerre, Veronique. "Synthesis of new N-heterocyclic carbene metal complexes." Thesis, Loughborough University, 2004. https://dspace.lboro.ac.uk/2134/34833.
Full textHodgson, Richard. "Novel chiral di-N-heterocyclic carbene and hybrid phosphine-N-heterocyclic carbene ligands and their application to transition metal mediated asymmetric catalysis." Thesis, University of York, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423839.
Full textMartínez, Lombardía Alberto. "Heterogenized n-heterocyclic carbene metal complexes for selective catalysis." Doctoral thesis, Universitat Rovira i Virgili, 2016. http://hdl.handle.net/10803/386577.
Full textLa presente tesis doctoral se centra en el desarrollo de catalizadores que permitan llevar a cabo procesos sintéticos de manera más eficiente y sostenible. Se presentan dos nuevas familias de catalizadores soportados, ambas pertenecientes al grupo de complejos organometálicos moleculares inmovilizados sobre un soporte sólido. La primera familia incluye complejos de Pd con ligandos carbeno N-heterocíclico monodentados de gran impedimento estérico, inmovilizados sobre óxidos inorgánicos, como sílicas, alúmina u òxido de titanio. Esta familia de catalizadores se aplicó en dos tipos de reacciones: i) reacciones de acoplamiento C-C y ii) semireducción de alquinos. Entre las reacciones de acoplamiento mencionadas, los complejos de [Pd(NHC)] inmovilizados se aplicaron en las reacciones de Suzuki, Heck y Sonogashira, y se evaluaron en base a su actividad, selectividad y reciclabilidad. Además, en el caso de las reacciones de Suzuki y Sonogashira, estos catalizadores también se aplicaron en condiciones de flujo continuo. La aplicación de esta familia de catalizadores en la semireducción selectiva de alquinos se llevó a cabo utilizando dos metodologías diferentes: utilizando hidrógeno molecular, o bien utilizando el sistema trietilamina/ácido fórmico como dador de H (condiciones de transferencia de hidrógeno). La segunda familia de catalizadores soportados contempla complejos de Rh(I) estabilizados con ligandos bidentados de tipo carbeno N-heterocíclico, con quiralidad axial, y funcionalizados con un grupo pireno. La inmovilización de estos complejos de Rh sobre la superficie de nanotubos de carbono "multi-walled" tuvo lugar mediante interacciones de tipo "pi-pi stacking" entre la superficie de los nanotubos y el grupo pireno presente en el ligando. Finalmente, se presentan los resultados obtenidos en la aplicación de estos complejos de Rh en varios procesos catalíticos.
The present PhD thesis aims at contributing to the development of more efficient and sustainable synthetic processes through catalysis. In this regard, two families of new solid-supported catalysts are presented. Both families belong to the group of molecularly defined organometallic complexes immobilized onto a solid support. The first family includes Pd complexes of sterically hindered monodentate N-Heterocylic Carbene ligands supported onto inorganic oxide materials, namely silicas, alumina and titania. This family of catalysts was applied in two types of reactions: i) C-C cross-couplings and ii) semireduction of alkynes. Among cross-coupling reactions, the supported [Pd(NHC)] complexes could be applied in Suzuki, Heck and Sonogashira couplings and their performance was assessed in terms of activity, selectivity and reusability. For the Suzuki and Sonogashira couplings, the catalysts were also appied under continuous flow conditions. The application of this family of catalysts in the selective reduction of alkynes was carried out following two different methodologies: using hydrogen gas, or using triethylamine/formic acid as the H-donor system (transfer hydrogenation conditions). The second family of solid-supported catalysts features Rh(I) complexes bearing axially chiral bidentate N-Heterocyclic carbene ligands functionalized with a pyrene moiety. Immobilization of these Rh complexes onto the surface of multi-walled carbon nanotubes was achieved by means of "pi-pi stacking interactions" between the surface of the nanotubes and the pyrene moiety present in the ligand. Results obtained from the application of these complexes as catalysts in various reactions are presented.
Arentsen, Katherine. "Application of palladium N-heterocyclic carbene complexes in catalysis." Thesis, University of Sussex, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430951.
Full textNewman, Christopher P. "Phenylpyridine and N-heterocyclic carbene complexes of platinum (II)." Thesis, University of Warwick, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425555.
Full textMartin, Thomas Antony. "Unravelling the photochemistry of organometallic N-heterocyclic carbene complexes." Thesis, University of Bath, 2011. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547630.
Full textMarr, Isobel Helen. "Synthesis and reactivity of scandium N-heterocyclic carbene complexes." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/17970.
Full textHippolyte, Laura. "New syntheses of N-heterocyclic carbene-stabilized gold nanoparticles." Electronic Thesis or Diss., Sorbonne université, 2018. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2018SORUS148.pdf.
Full textOver the past decade, N-heterocyclic carbenes (NHC) have drawn considerable interest in the field of materials chemistry. Indeed, this relatively new class of ligands forms strong bonds with a wide range of metals and their structures and electronic properties can be tuned “at-will” through organic synthesis. This strong bond is of particular interest for gold nanoparticles. Indeed, gold nanoparticles have many potential applications, for example in sensors, catalysis or medicine, but those potential applications are sometimes hindered by a lack of stability of the surface ligand. A few syntheses of NHC-stabilized gold nanoparticles have already been described in the literature but each presents their own set of drawbacks. This thesis work has focused on the development of new syntheses of NHC-stabilized gold nanoparticles. First, by revisiting a literature procedure starting from imidazolium salts, we managed to develop a one-pot synthesis starting only from commercially available AuCl, NaBH4 and easily synthesized imidazolium salts. A totally new synthesis was developed using NHC-boranes, which are stable Lewis adducts. Here, we reported for the first time their use as a 2-in-1 reagent, able to reduce the metallic precursor and provide the nanoparticles stabilizing ligands. Finally, we are the first to report a synthesis of gold nanoparticles stabilized by mesoionic carbenes (MIC). MICs are a sub-class of NHCs synthesized by well-known “click-chemistry”, which present unique electronic properties. Throughout this work, special care was taken to characterize the nanoparticles, notably by XPS
Durmus, Semih. "Silver(I) and Gold(I) N-Heterocyclic Carbene Complexes." University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1165247084.
Full textFraser, Roan. "Fischer and N-heterocyclic carbene complexes of chromium(0)." Diss., University of Pretoria, 2012. http://hdl.handle.net/2263/31504.
Full textDissertation (MSc)--University of Pretoria, 2012.
Chemistry
MSc
Unrestricted
Pretorius, René. "Fischer and N-heterocyclic carbene complexes of tungsten(0)." Diss., University of Pretoria, 2012. http://hdl.handle.net/2263/31515.
Full textDissertation (MSc)--University of Pretoria, 2012.
Chemistry
MSc
Unrestricted
Panzner, Matthew John. "SILVER N-HETEROCYCLIC CARBENES AND SUBSTITUTED CYCLOTRIPHOSPHAZENES." University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1164744266.
Full textFyfe, Andrew Alston. "d- and f-metal alkoxy-tethered N-heterocyclic carbene complexes." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/15862.
Full textZhang, Pinglu. "Cyclodextrin-(N-Heterocyclic Carbene)-Metal Complexes for Cavity-Dependent Catalysis." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066380/document.
Full textCyclodextrin (CD)-NHC-Metal complexes (NHC=N-Heterocyclic Carbene), including the AgI, CuI and AuI complexes were synthesized. A structural study showed that the metal was inside the cavity, and induced by C-H…M, C-H…X and π…X interactions. Variations on α-, β-, γ-CD cavities and NHC derivatives (midazole, benzimidazole, triazole) were studied. When the size of the cavity increased, these interactions decreased. Furthermore, stronger σ-donating effects lead to stronger interactions. CD-Cu complexes showed good activity in catalytic hydroboration of alkynes. The selectivity is depending on the size of the cavity of the catalyst. α-CD copper complex gives linear hydroboration products, while β-CD copper complex yields the branched isomers. The CD-Cu species potentially involved in the catalytic cycle were studied, two different mechanisms were thus proposed. In the α-CD-Cu complex catalyzed reactions, the catalytic process takes place outside the cavity; while a bigger cavity β-CD permits the catalysis to take place inside the cavity. Furthermore, the gold complexes also show different enantioselectivity and regioselectivity in cycloisomerization using different cavity-based catalysts. Catalytic results evidenced the selectivity of a catalytic reaction is dependent on the cavity of the CD-NHC-metal complexes
Turner, Zoe Rose. "Small molecule activation using electropositive metal N-heterocyclic carbene complexes." Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/8210.
Full textTeasdale, Christopher William Thomas. "Novel N-heterocyclic carbene ligands for use in supported catalysis." Thesis, Durham University, 2005. http://etheses.dur.ac.uk/2953/.
Full text