Academic literature on the topic 'Coordination Chemistry - Transition Metals'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Coordination Chemistry - Transition Metals.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Coordination Chemistry - Transition Metals"

1

Salzer, A. "Nomenclature of Organometallic Compounds of the Transition Elements (IUPAC Recommendations 1999)." Pure and Applied Chemistry 71, no. 8 (August 30, 1999): 1557–85. http://dx.doi.org/10.1351/pac199971081557.

Full text
Abstract:
Organometallic compounds are defined as containing at least one metal-carbon bond between an organic molecule, ion, or radical and a metal. Organometallic nomenclature therefore usually combines the nomenclature of organic chemisty and that of coordination chemistry. Provisional rules outlining nomenclature for such compounds are found both in Nomenclature of Organic Chemistry, 1979 and in Nomenclature of Inorganic Chemistry, 1990This document describes the nomenclature for organometallic compounds of the transition elements, that is compounds with metal-carbon single bonds, metal-carbon multiple bonds as well as complexes with unsaturated molecules (metal-p-complexes).Organometallic compounds are considered to be produced by addition reactions and so they are named on an addition principle. The name therefore is built around the central metal atom name. Organic ligand names are derived according to the rules of organic chemistry with appropriate endings to indicate the different bonding modes. To designate the points of attachment of ligands in more complicated structures, the h, k, and m-notations are used. The final section deals with the abbreviated nomenclature for metallocenes and their derivatives.ContentsIntroduction Systems of Nomenclature2.1 Binary type nomenclature 2.2 Substitutive nomenlcature 2.3 Coordination nomenclature Coordination Nomenclature3.1 General definitions of coordination chemistry 3.2 Oxidation numbers and net charges 3.3 Formulae and names for coordination compounds Nomenclature for Organometallic Compounds of Transition Metals 4.1 Valence-electron-numbers and the 18-valence-electron-rule 4.2 Ligand names 4.2.1 Ligands coordinating by one metal-carbon single bond 4.2.2 Ligands coordinating by several metal-carbon single bonds 4.2.3 Ligands coordinating by metal-carbon multiple bonds 4.2.4 Complexes with unsaturated molecules or groups 4.3 Metallocene nomenclature
APA, Harvard, Vancouver, ISO, and other styles
2

Gallen, Albert, Sílvia Orgué, Guillermo Muller, Eduardo C. Escudero-Adán, Antoni Riera, Xavier Verdaguer, and Arnald Grabulosa. "Synthesis and coordination chemistry of enantiopure t-BuMeP(O)H." Dalton Transactions 47, no. 15 (2018): 5366–79. http://dx.doi.org/10.1039/c8dt00897c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kubas, Gregory J. "Molecular Hydrogen Coordination to Transition Metals." Comments on Inorganic Chemistry 7, no. 1 (May 1988): 17–40. http://dx.doi.org/10.1080/02603598808072297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bobrov, Sergey V., Andrey A. Karasik, and Oleg G. Sinyashin. "Heterocyclic Phosphorus Ligands in Coordination Chemistry of Transition Metals." Phosphorus, Sulfur, and Silicon and the Related Elements 144, no. 1 (January 1, 1999): 289–92. http://dx.doi.org/10.1080/10426509908546238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fischer, Roland A., and Jurij Weiß. "Coordination Chemistry of Aluminum, Gallium, and Indium at Transition Metals." Angewandte Chemie International Edition 38, no. 19 (October 4, 1999): 2830–50. http://dx.doi.org/10.1002/(sici)1521-3773(19991004)38:19<2830::aid-anie2830>3.0.co;2-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Molter, Anja, Julia Kuchar, and Fabian Mohr. "Acylselenoureas, selenosemicarbazones and selenocarbamate esters: Versatile ligands in coordination chemistry." New Journal of Chemistry 46, no. 10 (2022): 4534–49. http://dx.doi.org/10.1039/d2nj00026a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ramler, Jacqueline, and Crispin Lichtenberg. "Bismuth species in the coordination sphere of transition metals: synthesis, bonding, coordination chemistry, and reactivity of molecular complexes." Dalton Transactions 50, no. 21 (2021): 7120–38. http://dx.doi.org/10.1039/d1dt01300a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Lizhu, Hunter A. Dulaney, Branford O. Wilkins, Sarah Farmer, Yanbing Zhang, Frank R. Fronczek, and Jonah W. Jurss. "High-spin enforcement in first-row metal complexes of a constrained polyaromatic ligand: synthesis, structure, and properties." New Journal of Chemistry 42, no. 23 (2018): 18667–77. http://dx.doi.org/10.1039/c8nj02072h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kawamura, Airi, Alexander S. Filatov, and John S. Anderson. "Sulfonate-Ligated Coordination Polymers Incorporating Paramagnetic Transition Metals." European Journal of Inorganic Chemistry 2019, no. 21 (May 27, 2019): 2613–17. http://dx.doi.org/10.1002/ejic.201900285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pringouri, Konstantina, Muhammad U. Anwar, Liz Mansour, Nathan Doupnik, Yassine Beldjoudi, Emma L. Gavey, Melanie Pilkington, and Jeremy M. Rawson. "A novel bis-1,2,4-benzothiadiazine pincer ligand: synthesis, characterization and first row transition metal complexes." Dalton Transactions 47, no. 44 (2018): 15725–36. http://dx.doi.org/10.1039/c8dt03346c.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Coordination Chemistry - Transition Metals"

1

Sze-To, Lap, and 司徒立. "The structural chemistry of coordination compounds containing d-block or f-block metals." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45204470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aucott, Stephen Mark. "Coordination chemistry of aminophosphine ligands." Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/34492.

Full text
Abstract:
The reaction of [MCl2(cod)] (M = Pt, Pd) with two equivalents of 2-(diphenylphosphinoamino)pyridine, Ph2PNHpy, in warm acetonitrile led to cationic complexes of the type cis-[MCl(Ph2PNHpy-P,N){Ph2PNHpy-P}][Cl] (M = Pt, Pd) which exhibit broad single 31P{1H} NMR resonances due to their dynamic pyridyl exchange behaviour in solution. A single crystal X-ray diffraction study of the platinum species confirmed the proposed structure and revealed that adjacent complex molecules were held together by hydrogen bonding to the same chloride counter-ion. The bromo- and iodo-cis[MX(Ph2PNHpy-P,N){Ph2PNHpy-P}][X] (M = Pt, Pd; X = Br, I) complexes were obtained by metathesis from the corresponding chloride complex.
APA, Harvard, Vancouver, ISO, and other styles
3

Chotalia, Rohit. "The synthesis and coordination chemistry of novel oligopyridine ligands." Thesis, University of Cambridge, 1993. https://www.repository.cam.ac.uk/handle/1810/272580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

McCart, Mark Kevin. "Some diphosphine chemistry of the transition metals ruthenium, palladium, platinum and nickel." Thesis, University of Liverpool, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moneo, Corcuera Andrea. "Bistable molecular materials: triazole-based coordination chemistry of first row transition metals." Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/668881.

Full text
Abstract:
En la present tesi doctoral presentem el magnetisme molecular bàsic de compostos de coordinació basats en un lligant di-anionico: (L-2 = 4- (1,2,4-triazole-4-il) etanosulfonato). En particular, vam estudiar el fenomen de transició d'espín d'un trímer de ferro (II) poli-aniònic en diferents escales, des d'una escala macroscòpica ("bulk") fins a nivells moleculars, acabant amb la deposició en superfície. D'una banda, el comportament SCO "macroscòpic" es va modular canviant l'empaquetatge de vidre i la connectivitat entre els trímers amb una estratègia d'intercanvi catiònic. D'altra banda, hem trobat bi-estabilitat en sistemes altament diluïts del trímer de Fe (II), en una solució mixta sòlida i en dissolució, on les forces de cooperació entre trímers s'hi han reduït fins a nivells moleculars. Aquest resultat ens anima a estudiar la deposició i el comportament del trímer en diverses superfícies amb vista a un primer acostament cap a una aplicació real. Finalment, hem fabricat una pel·lícula nanomètrica del compost sobre sílice, amb propietats de transició d'espín intactes. A més, també vam poder impulsar el procés de miniaturització més enllà de la mida nanomètrica en créixer una subcapa ordenada del complex en una superfície d'or a través d'una deposició d'alt buit.
En la presente tesis doctoral presentamos el magnetismo molecular básico de compuestos de coordinación basados en uno ligando *di-*anionico: (L-2 = 4- (1,2,4-*triazole-4-*il) *etanosulfonato). En particular, estudiamos el fenómeno de transición de espín de un trímero de hierro (II) *poli-aniónico en diferentes escalas, desde una escala macroscópica ("*bulk") hasta niveles moleculares, acabando con la deposición en superficie. Por un lado, el comportamiento *SCO "macroscópico" se moduló cambiando el empaque de vidrio y la conectividad entre los trímeros con una estrategia de intercambio catiónico. Por otro lado, hemos encontrado *bi-estabilidad en sistemas altamente diluidos del trímero de Fe (II), en una solución mixta sólida y en disolución, donde las fuerzas de cooperación entre trímeros se han reducido hasta niveles moleculares. Este resultado nos anima a estudiar la deposición y el comportamiento del trímero en varias superficies en orden a un primer acercamiento hacia una aplicación real. Finalmente, hemos fabricado una película *nanomètrica del compuesto sobre sílice, con propiedades de transición de espín intactos. Además, también pudimos impulsar el proceso de miniaturización más allá de la medida *nanomètrica al crecer una *subcapa ordenada del complejo en una superficie de oro a través de una deposición de alto vacío.
At the present doctoral thesis present the basic molecular magnetism of compounds of coordination based at one binding *di-*anionico: (*L-2 = 4- (1,2,4-*triazole-4-*il) *etanosulfonato). In particular, we studied the phenomenon of transition of spin of a trimer of iron (*II) *poli-*aniònic at distinct scales, since a macroscopic scale ("*bulk") until molecular levels, ending with the deposition at surface. On the one hand, the behaviour *SCO "macroscopic" modulated capsizing the packaging of glass and the connectivity among the trimers with a strategy of exchange *catiònic. On the other hand, we have found *bi-stability at systems highly diluted of the trimer of Faith (*II), at a solid mixed solution and at dissolution, where the forces of cooperation among trimers have reduced until molecular levels. This result warms us at studying the deposition and the behaviour of the trimer at several surfaces with a view to a first approach to a real app. Finally, we have fashioned a film *nanomètrica of the compound on silica, with properties of transition of intact spin. Besides, also we could further the process of miniaturisation further of the size *nanomètrica at growing a *subcapa ordered of the complex at a surface of gold through a deposition of tall void.
APA, Harvard, Vancouver, ISO, and other styles
6

Jafarpour, Laleh. "New ligands, design and coordination chemistry with the transition metals and lanthanides." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0009/NQ38903.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Holmes, Nicholas J. "Synthesis and coordination of stibine and bismuthine ligands with transition metals." Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Haque, Nadera. "Coordination Chemistry of Barbituric Acid, its Diethyl Derivative and Benzildiimine with Transition Metals." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-115621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

De, Jongh Leigh-Anne. "Imine-donor complexes with group 6 and group 11 transition metals : coordination and dynamics." Thesis, Stellenbosch : Stellenbosch University, 2008. http://hdl.handle.net/10019.1/2001.

Full text
Abstract:
Thesis (MSc (Chemistry and Polymer Science))--Stellenbosch University, 2008.
In this study the coordination of ligands with several coordination sites, 2-aminoazoles (2- amino-4-methylthiazole), 2-aminobenzothiazole, 2-aminobenzoimidazole and 2- aminothiazoline and a biguanidine (N-(2-methylphenyl)imidodicarbonimidic diamide) to soft metal centres [gold(I) (group 11), chromium(0) (group 6) and tungsten (0) (group 6)] was investigated. The aminoazoles have three coordination sites, an exocyclic amine nitrogen, an endocyclic imine nitrogen and an endocyclic thioether sulphur. The biguanidine ligand has three sites for deprotonation, one central amine and two imine nitrogens, and at least five sites available for nitrogen coordination.
APA, Harvard, Vancouver, ISO, and other styles
10

Castañeda-Perea, Luis Raúl. "Imidoyl Amidine Ligands: A Versatile Framework to Build Homo and Heterometallic Complexes." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40712.

Full text
Abstract:
Ligand design in general enables the formation of coordination compounds with multiple functionalities within a single framework. To date, two of the most widely studied ligands are 2,2′:6′,2′′-terpyridine (terpy) and acetylacetone (acac), whose tridentate and bidentate coordination pockets, respectively, enables the formation of metallic complexes with various geometries. The Brusso group had been incorporating imidoyl amidine (ImAm) ligands to build different materials such as organic radicals and fluorescent materials. In particular, the ligands N-2-pyridylimidoyl-2-pyridylamidine (Py2ImAm) and N-2-pyrimidylimidoyl-2-pyrimidylamidine (Pm2ImAm) were recently synthesized and have great appeal to build metallic complexes, as they poses two coordination sites similar to those in terpy and acac. The work presented herein represents the first studies involving the coordination of Py2ImAm and Pm2ImAm as discrete ligands. Our results demonstrate the versatility of these ligand frameworks, in which discrete mononuclear complexes, homometallic and heterometallic polynuclear complexes may be realized. Chapter one serves as a brief introduction to transition metal chemistry and has a comprehensive review of the coordination chemistry of the ImAm ligand framework. In chapter two, the selective coordination of first row transition metals into the bidentate or tridentate sites of Py2ImAm is explored. The formation of these mononuclear complexes is acid-base driven, where a weak acid induces coordination to the tridentate site and a weak base leads to coordination in the bidentate site. Coordination to both sides of Pm2ImAm with manganese or iron is explored in chapter three. The results show the formation of unusual tetranuclear complexes with the metal ions in both low spin and high spin configurations. Chapter four covers the coordination to cobalt, and the formation of polynuclear complexes with different geometries using Pm2ImAm. The magnetochemistry of these cobalt polynuclear complexes is also presented and reveal a single molecule magnet behaviour for one of the complexes. Finally, in chapter five, a one-pot synthesis of copper-manganese heterometallic complexes is presented. Overall, these imidoyl amidine ligands are able to build complexes with different geometries, different electronic configurations (i.e. low or high spin), and different metal ions. These results show a great versatility of ImAm ligands and suggest the future use of these ligands by other research groups.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Coordination Chemistry - Transition Metals"

1

A, Herrmann W., Astruc D, Okuda J, and Zybill Ch, eds. Transition metall [sic] coordination chemistry. Berlin: Springer-Verlag, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Herrmann, W. A., ed. Transition Metall Coordination Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-54324-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

1934-, Veillard A., North Atlantic Treaty Organization. Scientific Affairs Division., and Société de chimie physique. International Meeting, eds. Quantum chemistry: The challenge of transition metals and coordination chemistry. Dordrecht: D. Reidel Pub. Co., 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1940-, Trautwein Alfred, and Deutsche Forschungsgemeinschaft, eds. Bioinorganic chemistry: Transition metals in biology and their coordination chemistry. Bonn, Germany: Deutsche Forschungsgemeinschaft, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Veillard, A., ed. Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4656-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chi-Ming, Che, and Yam Vivian W. W, eds. Advances in transition metal coordination chemistry. Greenwich, Co: Jai Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Organotransition metal chemistry: From bonding to catalysis. Sausalito, Calif: University Science Books, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yamaguchi, Ryohei. Ligand platforms in homogenous catalytic reactions with metals: Practice and applications for green organic transformations. Hoboken, New Jersey: Wiley, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

M, Neĭman K., and Zhidomirov G. M, eds. Kvantovai͡a︡ khimii͡a︡ i spektroskopii͡a︡ vysokovozbuzhdennykh sostoi͡a︡niĭ: Koordinat͡s︡ionnye soedinenii͡a︡ perekhodnykh metallov. Novosibirsk: "Nauka," Sibirskoe otd-nie, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Broclawik, Ewa, Tomasz Borowski, and Mariusz Radoń, eds. Transition Metals in Coordination Environments. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11714-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Coordination Chemistry - Transition Metals"

1

Escudero, Daniel. "Photodeactivation Channels of Transition Metal Complexes: A Computational Chemistry Perspective." In Transition Metals in Coordination Environments, 259–87. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11714-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stein, Matthias. "Anisotropic Magnetic Spin Interactions of Transition Metal Complexes and Metalloenzymes from Spectroscopy and Quantum Chemistry." In Transition Metals in Coordination Environments, 35–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11714-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hirao, Hajime. "Applications of Computational Chemistry to Selected Problems of Transition-Metal Catalysis in Biological and Nonbiological Systems." In Transition Metals in Coordination Environments, 463–86. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11714-6_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Palmer, Joshua H. "Transition Metal Corrole Coordination Chemistry." In Molecular Electronic Structures of Transition Metal Complexes I, 49–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/430_2011_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

McCleverty, J. A. "Towards Molecular Wires and Switches: Exploiting Coordination Chemistry for Non-Linear Optics and Molecular Electronics." In Transition Metals in Supramolecular Chemistry, 261–78. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8380-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hall, Michael B. "Multiple Metal-Metal and Metal-Carbon Bonds." In Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry, 391–401. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4656-9_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wedig, Ulrich, Michael Dolg, Hermann Stoll, and Heinzwerner Preuss. "Energy-Adjusted Pseudopotentials for Transition-Metal Elements." In Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry, 79–89. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4656-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Koga, Nobuaki, and Keiji Morokuma. "Transition State for Carbonyl and Olefin Insertion Reactions." In Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry, 351–61. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4656-9_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rösch, N., H. Jörg, and B. I. Dunlap. "Applications of the LCGTO-Xα Method to Transition Metal Carbonyls." In Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry, 179–87. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4656-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Walch, Stephen P., and Charles W. Bauschlicher. "The Nature of the Bonding in the Transition Metal Trimers." In Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry, 119–34. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4656-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Coordination Chemistry - Transition Metals"

1

Tkachev, Alexey V. "Terpene based chiral N-donor ligands for transition metals." In New frontiers in natural product chemistry, scientific seminar with international participation. Institute of Chemistry, 2021. http://dx.doi.org/10.19261/nfnpc.2021.ab05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Demukhamedova, D., N. Alieva, and N. M. Gojayev. "Effect of the transition metals on the carnosine coordination complexes structure." In 2009 International Conference on Application of Information and Communication Technologies (AICT). IEEE, 2009. http://dx.doi.org/10.1109/icaict.2009.5372539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

G. Costa, Susana P., Cátia Esteves, and M. Manuela M. Raposo. "Recognition of transition metals by benzimidazoles with an optical response." In The 19th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2015. http://dx.doi.org/10.3390/ecsoc-19-d003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Forcherio, Gregory T., Luigi Bonacina, Jérémy Riporto, Yannick Mugnier, Ronan Le Dantec, Jeremy R. Dunklin, Mourad Benamara, and Donald K. Roper. "Integrating plasmonic metals and 2D transition metal dichalcogenides for enhanced nonlinear frequency conversion." In Physical Chemistry of Semiconductor Materials and Interfaces XVII, edited by Hugo A. Bronstein and Felix Deschler. SPIE, 2018. http://dx.doi.org/10.1117/12.2321047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lekishvili, N., Kh Barbakadze, W. Brostow, T. Datashvili, A. Fainleib, and O. Grigorieva. "Inorganic-organic hybrid antibiocorrosive covers based on polyurethanes and coordination compounds of some transition metals." In 6TH INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2012. http://dx.doi.org/10.1063/1.4738469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Blair, Sharon L., C. W. Chu, Ralph R. Dammel, and Ross H. Hill. "Use of complex coordination chemistry for the deposition of inorganic materials: spin on metals and photoresist-free lithography." In Microlithography '97, edited by Regine G. Tarascon-Auriol. SPIE, 1997. http://dx.doi.org/10.1117/12.275884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Page, Ralph H., and Christopher S. Gudeman. "Double-Resonance, Fluorescence Dip Spectroscopy of Iron Period Elements." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.pdp4.

Full text
Abstract:
The high melting points and appreciable spin multiplicities of some iron period elements have made spectra of their highly-excited states difficult to obtain and interpret. However, a complete set of accurate data would facilitate studies of the chemistry and physics of transition metals. It is thus desirable to unravel the spectra with state-selective spectroscopy, preferably without an oven.
APA, Harvard, Vancouver, ISO, and other styles
8

Grzenda, Michael, Arielle Gamboa, James Mercado, Lin Lei, Jennifer Guzman, Lisa C. Klein, Andrei Jitianu, and Jonathan P. Singer. "Parametric Control of Melting Gel Morphology and Chemistry via Electrospray Deposition." In ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-63347.

Full text
Abstract:
Abstract Melting gels are a class of hybrid organic-inorganic, silica-based sol-gels which are solid below their glass transition temperatures, near room temperature, but show thermoplastic behavior when heated. While this phase change can be repeated multiple times, heating the gel past its consolidation temperature, typically above 130 °C, initiates an irreversible reaction that produces highly crosslinked glassy organic/inorganic materials via hydrolysis and polycondensation. This ability makes melting gels uniquely compatible with processing techniques inaccessible to other sol-gels. By properly tuning their properties, it should be possible to create protective coatings for electronics and anti-corrosive coatings for metals that are highly hydrophobic and insulating. However, melting gel consolidation reactions are highly dependent on charge interactions, raising the question of how these materials will respond to a processing technique, like electrospray deposition (ESD), which is dependent on charge delivery. In this study, we focus on the role that substrate temperature and charge polarity play on film morphology, consolidation chemistry, and surface properties when processing via ESD. Optical images, film thickness measurements, and FTIR were used to characterize the sprayed melting gel with the goal of developing a robust processing space for producing highly cross linked, hydrophobic, dielectric coatings.
APA, Harvard, Vancouver, ISO, and other styles
9

Ge, Xiaojing, Ghith Biheri, Abdulmohsin Imqam, Baojun Bai, and Yuwei Zhang. "Experimental Study: Investigating the Anions and Cations’ Effects on the Elasticity of the Anionic and Cationic High Viscosity Friction Reducers." In SPE Western Regional Meeting. SPE, 2023. http://dx.doi.org/10.2118/213048-ms.

Full text
Abstract:
Abstract High viscosity friction reducers (HVFRs) are widely used as friction-reducing agents and proppant carriers during hydraulic fracturing. The reuse of produced water has gained popularity due to environmental and economic benefits. Currently, the field’s most commonly used friction reducers are anionic and cationic HVFRs. Anionic HVFRs are typically pumped with freshwater, while cationic HVFRs are used with high Total Dissolved Solids (TDS) produced water. Cationic friction reducers are believed to have better TDS tolerance, friction reduction performance, and proppant transport capabilities compared to anionic friction reducers under high TDS conditions due to their superior viscoelastic properties. In addition, the impact of different anions and cations on the viscosity of HVFRs has been thoroughly studied, and viscosity reduction mechanisms include charge shielding, increasing the degree of hydrolysis, and forming coordination complexes. However, anions and cations’ effects on the elasticity of HVFRs still remain to be investigated. Besides, most previous experimental studies either do not specify experimental procedures or control the experimental variables well. Therefore, the ultimate objective of this experimental study is to analyze various cations and anions’ effects on the elasticity of anionic and cationic HVFRs comparably and precisely with experimental variables well controlled. Two hypotheses based on anions and cations’ effects on the viscosity of HVFRs are proposed and will be tested in this study. First, the elasticity reduction of anionic HVFRs is mainly due to cations, whereas the elasticity reduction of cationic HVFRs is mainly due to anions. Second, the salts’ effects on the elasticity reduction of HVFRs should follow the same trend as the salts’ effects on the viscosity reduction of HVFRs. For anionic HVFRs, monovalent Alkali metals should have a similar effect; divalent Alkaline earth metals should have a similar effect; transition metals should have the most severe effect. For cationic HVFRs, SO42- should have more pronounced effects than Cl-. To demonstrate both hypotheses, an anionic and a cationic HVFR at 4 gallons per thousand gallons (GPT) were selected and analyzed. The elasticity measurements of both anionic and cationic HVFRs were conducted with deionized (DI) water and various salts respectively. Fe3+ and H+ (or pH) effects were specifically investigated. The results showed both hypotheses were accepted.
APA, Harvard, Vancouver, ISO, and other styles
10

Huang, Zhijun, Kai Miao, Xiudi Cao, and Yutao Wang. "Experimental Study on High Performance Welding Materials for Pipeline Steels." In 2004 International Pipeline Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ipc2004-0611.

Full text
Abstract:
West-to-East Natural Gas Transmission Project is in great need of high quality steels of API grade X70 and suitable high quality welding materials. The weld of pipe should have high strength, high toughness and low sulphur and arsenic contents (less than or equal to 0.005 wt % respectively). The work performed in WISCO concerning welding wires of SAW, GMAW and SMAW and weldability of pipe steel is reported in this article. Steel grade X70 is a TMCP high strength and high toughness steel with low carbon equivalent. It has good weldability and is less susceptible to cold cracking in the heat-affected zone. Generally in order for weld to gain the same strength as the base metal, more alloying elements should be added into the weld. Therefore, it is likely that the weld is expected to be more susceptible to cold cracking. The mechanism of strengthening and toughening of the weld should be carefully investigated. WISCO has made great progress in both property improvement and manufacturing of welding materials. Through the addition of alloying elements, the influences of some alloying elements on the strength and toughness of welds, especially on the low temperature toughness were carried out. The results show that the upper shelves of the Charpy V transition curves for the weld metals remain high despite the different alloying elements. However, the influence of alloying degree on the low-temperature toughness is significant. The weld metals micro-alloyed with Ti,B and Ni, etc. have high acicular ferrite volume fractions in the metallographs, thereby possessing high strengths and high toughness. For SAW weld, the strength is more than 590MPa, the Charpy impact energy at −40°C above 180J; for the weld of gas metal arc welding, the Charpy impact energy at −30°C reaches 190J which are far better than some current specifications. If the welding is performed with caution, no cracks were found. HIC and SSCC test for corrosion resistance of the welds were also performed and the results fully met the requirements concerned. With respect to strength and toughness, chemistry and metallography, the HIC performance of welds was analysed.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Coordination Chemistry - Transition Metals"

1

Cundari, T. R. Improved Modeling of Transition Metals, Applications to Catalysis and Technetium Chemistry. Office of Scientific and Technical Information (OSTI), March 2004. http://dx.doi.org/10.2172/833745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Morabito, Matthew P., and Suljo Linic. Oxygen chemistry on transition metals : first principles DFT and Monte Carlo studies. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1055876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Marino, Maria, M. and Walter C. Ermler. Reliable Electronic Structure Calculations for Heavy Element Chemistry: Molecules Containing Actinides, Lanthanides, and Transition Metals. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/875418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Neu, Mary Patricia. Coordination chemistry of two heavy metals: I, Ligand preferences in lead(II) complexation, toward the development of therapeutic agents for lead poisoning: II, Plutonium solubility and speciation relevant to the environment. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10107977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography