Contents
Academic literature on the topic 'Convolutional neuralt nätverk'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Convolutional neuralt nätverk.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Convolutional neuralt nätverk"
Lavenius, Axel. "Automatic identification of northern pike (Exos Lucius) with convolutional neural networks." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-418639.
Full textDu, Zekun. "Algorithm Design and Optimization of Convolutional Neural Networks Implemented on FPGAs." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254575.
Full textDeep learning har utvecklats snabbt under den senaste tiden. Det har funnit applikationer inom många områden, som är huvudfälten inom Artificial Intelligence. Kombinationen av Deep Learning och innbyggda system är en god inriktning i det tekniska fältet. Syftet med detta projekt är att designa en Deep Learning-baserad Neural Network algoritm som kan implementeras på hårdvara, till exempel en FPGA. Projektet är baserat på modern forskning inom Deep Learning Neural Networks samt hårdvaruegenskaper.Systemet är baserat på PyTorch och CUDA. Projektets fokus är bild klassificering baserat på Convolutional Neural Networks (CNN). Det finns många bra CNN modeller att studera, t.ex. ResNet, ResNeXt och MobileNet. Genom att applicera dessa modeller till designen valdes en algoritm med MobileNetmodellen. Valet av modell är baserat på faktorer så som antal flyttalsoperationer, antal modellparametrar och klassifikationsprecision. Den mjukvarubaserade versionen av den MobileNet-baserade algoritmen har top-1 error på 5.5En hårdvarusimulering av MobileNet nätverket designades, i vilket parametrarna är konverterade från flyttal till 8-bit heltal. Talen från varje lager klipps till fixed-bit heltal för att anpassa nätverket till befintliga hårdvarubegränsningar. En metod designas för att simulera talförändringen på hårdvaran. Baserat på denna simuleringsmetod reduceras top-1 error till 12.3
Elander, Filip. "Semantic segmentation of off-road scenery on embedded hardware using transfer learning." Thesis, KTH, Mekatronik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301154.
Full textSe filen
Spång, Anton. "Automatic Image Annotation by Sharing Labels Based on Image Clustering." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210164.
Full textUtvecklingen av bildkollektioners storlekar har fram till idag ökat behovet av ett pålitligt och effektivt annoteringsverktyg i och med att manuell annotering har blivit ineffektivt. Denna rapport utvärderar möjligheterna att dela bildtaggar mellan visuellt lika bilder med ett system för automatisk bildannotering baserat på klustring. Utvärderingen sker i form av flera experiment med olika algoritmer och olika omärkta datamängder. I experimenten är systemet jämfört med en prisbelönt konvolutionell neural nätverksmodell, vilken är använd som utgångspunkt, för att undersöka om systemets resultat kan bli bättre än utgångspunktens resultat. Resultaten visar att både precisionen och återkallelsen förbättrades i de experiment som genomfördes på den data använd i detta arbete. En precisionsökning med 0.094 och en återkallelseökning med 0.049 för det implementerade systemet jämfört med utgångspunkten, över det genomförda experimenten.
Engström, Messén Matilda, and Elvira Moser. "Pre-planning of Individualized Ankle Implants Based on Computed Tomography - Automated Segmentation and Optimization of Acquisition Parameters." Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297674.
Full textFotledens komplexa anatomi ger upphov till en ideal balans mellan rörlighetoch stabilitet, vilket i sin tur möjliggör gång. Fotledens anatomi förändras när en skada uppstår, vilket kan påverka rörligheten och stabiliteten samt orsaka intensiv smärta. En skada i talusbenets ledbrosk eller i det subkondrala benet på talusdomen benämns som en Osteochondral Lesion of the Talus(OLT). En metod att behandla OLTs är att ersätta den del brosk eller bensom är skadat med ett implantat. Episurf Medical utvecklar och producerar individanpassade implantat (Episealers) och tillhörande nödvändiga kirurgiska instrument genom att, bland annat, skapa en motsvarande 3D-modell av fotleden (talus-, tibia- och fibula-benen) baserat på en skanning med antingen magnetisk resonanstomografi (MRI) eller datortomografi (CT). I dagsläget kan de 3D-modeller som baseras på MRI-skanningar skapas automatiskt, medan de 3D-modeller som baseras på CT-skanningar måste skapas manuellt - det senare ofta tidskrävande. I detta examensarbete har ett U-net-baserat Convolutional Neuralt Nätverk (CNN) tränats för att automatiskt kunna segmentera 3D-modeller av fotleder baserat på CT-bilder. Vidare har de speciferade parametrarna i Episurfs CT-protokoll för fotleden som skickas ut till klinikerna utvärderats, detta för att optimera bildkvaliteten på de CT-bilder som används för implantatspositionering och design. Det tränade nätverkets prestanda utvärderades med hjälp av Dicekoefficienten (DC) med en fem-delad korsvalidering. Nätverket åstadkom engenomsnittlig DC på 0.978±0.009 för talusbenet, 0.779±0.174 för tibiabenet, och 0.938±0.091 för fibulabenet. Värdena för talus och fibula var adekvata och jämförbara med resultaten presenterade i tidigare forskning. På grund av bakgrundsartefakter i bilderna blev den DC som nätverket åstadkom för sin segmentering av tibiabenet lägre än tidigiare forskningsresultat. För att korrigera för bakgrundsartefakterna kommer ett brusreduceringsfilter implementeras
Stjärnholm, Sigfrid. "Ghosts of Our Past: Neutrino Direction Reconstruction Using Deep Neural Networks." Thesis, Uppsala universitet, Högenergifysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-448765.
Full textNeutriner är de perfekta kosmiska budbärarna när det kommer till att undersöka de mest våldsamma och mystiska astronomiska och kosmologiska händelserna i vårt universum. Sannolikheten för en neutrinointeraktion är dock liten, och flödet av högenergetiska neutriner minskar kraftigt med energin. För att hitta dessa högenergetiska neutriner måste stora volymer av materia instrumenteras. Ett förslag på en design för en detektorstation kallas ARIANNA, och är framtagen för att detektera neutrinointeraktioner i den antarktiska isen genom att mäta radiopulser som bildas på grund av Askaryan-effekten. I denna rapport presenterar vi en metod baserad på toppmoderna maskininlärningstekniker för att rekonstruera riktningen på en inkommande neutrino, utifrån den radiostrålning som produceras. Vi tränade ett neuralt nätverk med simulerade data, som skapades med hjälp av ramverket NuRadioMC, och optimerade nätverket för att göra så bra förutsägelser som möjligt. Antalet interaktionshändelser som användes för att träna nätverket var i storleksordningen 106. Genom att undersöka två olika emissionsmodeller fann vi att nätverket kunde generalisera med god precision. Detta resulterade i en upplösning på 4-5°. Modellen kunde även göra goda förutsägelser på en datamängd trots att nätverket var tränat med en annan emissionsmodell. De resultat som metoden framtog är lovande, särskilt med avseende på att tidigare klassiska metoder inte har lyckats reproducera samma resultat utan att metoden redan innan vet var i isen som neutrinointeraktionen skedde. Nätverket kan också komma att användas för att utvärdera prestandan hos andra designförslag på detektorstationer för att snabbt och säkert ge en indikation på vilken design som kan tillhandahålla mest vetenskapligt värde.
Reiche, Myrgård Martin. "Acceleration of deep convolutional neural networks on multiprocessor system-on-chip." Thesis, Uppsala universitet, Avdelningen för datorteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-385904.
Full textJangblad, Markus. "Object Detection in Infrared Images using Deep Convolutional Neural Networks." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355221.
Full textAirola, Rasmus, and Kristoffer Hager. "Image Classification, Deep Learning and Convolutional Neural Networks : A Comparative Study of Machine Learning Frameworks." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-55129.
Full textGustavsson, Robin, and Johan Jakobsson. "Lung-segmentering : Förbehandling av medicinsk data vid predicering med konvolutionella neurala nätverk." Thesis, Högskolan i Borås, Akademin för bibliotek, information, pedagogik och IT, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-14380.
Full textIn the year of 2017 the Swedish social office reported the most common cancer related death amongst women was lung cancer and the second most common amongst men. A way to find out if a patient has lung cancer is for a doctor to study a computed tomography scan of a patients lungs. This introduces the chance for human error and could lead to fatal consequences. To prevent mistakes from happening it is possible to use computers and advanced algorithms for training a network model to detect details and deviations in the scans. This technique is called deep structural learning. It is both time consuming and highly challenging to create such a model. This discloses the importance of decorous training, and a lot of studies cover this subject. What these studies fail to emphasize is the significance of the preprocessing technique called lung segmentation. Therefore we investigated how is the accuracy and loss of a convolutional network model affected when lung segmentation is applied to the model’s training and test data? In this study a number of models were trained and evaluated on data where lung segmentation was applied, in relation to when it was not. The final conclusion of this report shows that the technique counteracts overfitting of a model and we allege that this study can ease further research within the same area of study.