Academic literature on the topic 'Convolutional Auto-Encoder'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Convolutional Auto-Encoder.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Convolutional Auto-Encoder"
Song, Xiaona, Haichao Liu, Lijun Wang, Song Wang, Yunyu Cao, Donglai Xu, and Shenfeng Zhang. "A Semantic Segmentation Method for Road Environment Images Based on Hybrid Convolutional Auto-Encoder." Traitement du Signal 39, no. 4 (August 31, 2022): 1235–45. http://dx.doi.org/10.18280/ts.390416.
Full textKim, Dong-Hoon, JoonWhoan Lee, and #VALUE! #VALUE! "Music Mood recognition using Convolutional Variation Auto Encoder." Journal of Korean Institute of Intelligent Systems 29, no. 5 (October 31, 2019): 352–58. http://dx.doi.org/10.5391/jkiis.2019.29.5.352.
Full textTheunissen, Carl Daniel, Steven Martin Bradshaw, Lidia Auret, and Tobias Muller Louw. "One-Dimensional Convolutional Auto-Encoder for Predicting Furnace Blowback Events from Multivariate Time Series Process Data—A Case Study." Minerals 11, no. 10 (October 9, 2021): 1106. http://dx.doi.org/10.3390/min11101106.
Full textYasukawa, Shinsuke, Sreeraman Raghura, Yuya Nishida, and Kazuo Ishii. "Underwater image reconstruction using convolutional auto-encoder." Proceedings of International Conference on Artificial Life and Robotics 26 (January 21, 2021): 262–65. http://dx.doi.org/10.5954/icarob.2021.os23-4.
Full textZhao, Wei, Zuchen Jia, Xiaosong Wei, and Hai Wang. "An FPGA Implementation of a Convolutional Auto-Encoder." Applied Sciences 8, no. 4 (March 27, 2018): 504. http://dx.doi.org/10.3390/app8040504.
Full textLi, Hongfei, Lili Meng, Jia Zhang, Yanyan Tan, Yuwei Ren, and Huaxiang Zhang. "Multiple Description Coding Based on Convolutional Auto-Encoder." IEEE Access 7 (2019): 26013–21. http://dx.doi.org/10.1109/access.2019.2900498.
Full textNewlin, Dev R., and C. Seldev Christopher. "De-noising of Natural Images with Better Enhancement Using Convolutional Auto-Encoder." Journal of Advanced Research in Dynamical and Control Systems 11, no. 12 (December 20, 2019): 124–36. http://dx.doi.org/10.5373/jardcs/v11i12/20193221.
Full textZhu, Yi, Lei Li, and Xindong Wu. "Stacked Convolutional Sparse Auto-Encoders for Representation Learning." ACM Transactions on Knowledge Discovery from Data 15, no. 2 (April 2021): 1–21. http://dx.doi.org/10.1145/3434767.
Full textZhou, Jian, Xianwei Wei, Chunling Cheng, Qidong Yang, and Qun Li. "Multimodal Emotion Recognition Method Based on Convolutional Auto-Encoder." International Journal of Computational Intelligence Systems 12, no. 1 (2019): 351. http://dx.doi.org/10.2991/ijcis.2019.125905651.
Full textOh, Junghyun, and Beomhee Lee. "Condition-invariant Place Recognition Using Deep Convolutional Auto-encoder." Journal of Korea Robotics Society 14, no. 1 (March 30, 2019): 8–13. http://dx.doi.org/10.7746/jkros.2019.14.1.008.
Full textDissertations / Theses on the topic "Convolutional Auto-Encoder"
Ionascu, Beatrice. "Modelling user interaction at scale with deep generative methods." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239333.
Full textFörståelse för hur användare interagerar med ett företags tjänst är essentiell för data-drivna affärsverksamheter med ambitioner om att bättre tillgodose dess användare och att förbättra deras utbud. Generativ maskininlärning möjliggör modellering av användarbeteende och genererande av ny data i syfte att simulera eller identifiera och förklara typiska användarmönster. I detta arbete introducerar vi ett tillvägagångssätt för storskalig modellering av användarinteraktion i en klientservice-modell. Vi föreslår en ny representation av multivariat tidsseriedata i form av tidsbilder vilka representerar temporala korrelationer via spatial organisering. Denna representation delar två nyckelegenskaper som faltningsnätverk har utvecklats för att exploatera, vilket tillåter oss att utveckla ett tillvägagångssätt baserat på på djupa generativa modeller som bygger på faltningsnätverk. Genom att introducera detta tillvägagångssätt för tidsseriedata expanderar vi applicering av faltningsnätverk inom domänen för multivariat tidsserie, specifikt för användarinteraktionsdata. Vi använder ett tillvägagångssätt inspirerat av ramverket β-VAE i syfte att lära modellen gömda faktorer som definierar olika användarmönster. Vi utforskar olika värden för regulariseringsparametern β och visar att det är möjligt att konstruera en modell som lär sig en latent representation av identifierbara och multipla användarbeteenden. Vi visar med verklig data att modellen genererar realistiska exempel vilka i sin tur fångar statistiken på populationsnivå hos användarinteraktionsdatan, samt lär olika användarbeteenden och bidrar med precisa imputationer av saknad data.
Sayadi, Karim. "Classification du texte numérique et numérisé. Approche fondée sur les algorithmes d'apprentissage automatique." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066079/document.
Full textDifferent disciplines in the humanities, such as philology or palaeography, face complex and time-consuming tasks whenever it comes to examining the data sources. The introduction of computational approaches in humanities makes it possible to address issues such as semantic analysis and systematic archiving. The conceptual models developed are based on algorithms that are later hard coded in order to automate these tedious tasks. In the first part of the thesis we propose a novel method to build a semantic space based on topics modeling. In the second part and in order to classify historical documents according to their script. We propose a novel representation learning method based on stacking convolutional auto-encoder. The goal is to automatically learn plot representations of the script or the written language
Chen, Peng-Cheng, and 陳鵬丞. "Semi-Supervised Learning Framework with an Auto-Elastic Convolutional Auto-Encoder for Image Classification Design." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/sv6v8s.
Full text逢甲大學
自動控制工程學系
106
More and more attention of the deep learning for image and speech recognition, even artificial intelligence (AI) beats humans in ancient game of Go has been attracted with the development of computer and electronic devices. In neural networks, deep learning with convolutional neural network (CNN) has been widely utilized in numerous applications of automatic image recognition, such as multiple object detection and classification, object tracking, sematic segmentation, and most of them have achieved outstanding results. However, with the applications are becoming more complex and various deep learning frameworks are constantly evolving, the neural networks need multiple layers in order to learn more detailed and more abstractions relationships within the data, and then it can enhance the efficiency of the recognition. Some popular types of deep neural networks often requires lots of labeled data as well as huge computing power and for this reason they are not easily to be integrated into embedded system. Indeed, sometimes problems don't need more layer neural networks to solve it, the relatively simple environment may have achieved better results using first few layers merely. Thus, it causes that the excess memory goes to waste and tedious and time-consuming process. Hence, the thesis presents a novel semi-supervised learning framework with an auto-elastic convolutional auto-encoder for image detection and classification. The proposed an auto-elastic convolutional auto-encoder learning framework is based on the Actor-Critic reinforcement learning approach. The Actor-Critic is the learning of a mapping from situations to actions, which learns from the consequences of its actions, rather than from being unequivocally instructed and it selects its actions on basis of its past experiences and also by new choices. It is a trial and error learning essentially. The main contribution of this study is to repeatedly generate the convolution kernels based on Actor-Critic algorithms and then determine the optimal number of layers of neural network framework so that the whole neural network framework can achieve self-elasticity function depending on task complexity. The novel Auto-Elastic Convolutional Auto-Encoder framework is mainly divided into four parts: auto-elastic unit, data generation unit, memory unit, learner unit. First, the auto-elastic unit is based on the proposed Actor-Critic encoder (ACE) algorithms. The Actor generates a coding policy (action) by using current image/feature map and historical convolution kernels information. The Critic as a value estimator, whereas the actor attempts to select actions (coding policy) based on the value function estimated by the critic. Next, memory unit is used to store the coding results and historical information from the auto-elastic unit, such as corresponding rewards, historical convolution kernels, feature maps, etc., and combine a data generation unit to generate training sample data automatically. Final, the learner unit is proposed as for the proposed semi-supervised learning framework training. Extensively simulation, quantitative analysis and comparison results demonstrate the feasibility and efficiency of the proposed auto-elastic convolutional auto-encoder learning framework for digit recognition and classification.
Liao, Chi-Jou, and 廖綺柔. "Using Convolutional Neural Network Auto-encoder in Breast Tumors Classification and Detection Compare with Traditional Ultrasound BIRADS." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/tfz345.
Full textPaul, Subir. "Hyperspectral Remote Sensing for Land Cover Classification and Chlorophyll Content Estimation using Advanced Machine Learning Techniques." Thesis, 2020. https://etd.iisc.ac.in/handle/2005/4537.
Full textBook chapters on the topic "Convolutional Auto-Encoder"
Chen, Wei, Ruimin Hu, Xiaochen Wang, and Dengshi Li. "HRTF Representation with Convolutional Auto-encoder." In MultiMedia Modeling, 605–16. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37731-1_49.
Full textWang, Taizheng, Chunyang Ye, Hui Zhou, Mingwang Ou, and Bo Cheng. "AIS Ship Trajectory Clustering Based on Convolutional Auto-encoder." In Advances in Intelligent Systems and Computing, 529–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55187-2_39.
Full textWang, Diangang, Wei Gan, Chenyang Yan, Kun Huang, and Hongyi Wu. "Inception Model of Convolutional Auto-encoder for Image Denoising." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 174–86. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64214-3_12.
Full textShamsi, Meysam, Damien Lolive, Nelly Barbot, and Jonathan Chevelu. "Script Selection Using Convolutional Auto-encoder for TTS Speech Corpus." In Speech and Computer, 423–32. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26061-3_43.
Full textXu, Chaoyang, Ling Wu, and Shiping Wang. "Unsupervised Dimension Reduction for Image Classification Using Regularized Convolutional Auto-Encoder." In Advances in Intelligent Systems and Computing, 99–108. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17795-9_8.
Full textHan, Xiaobing, Yanfei Zhong, Lifang He, Philip S. Yu, and Liangpei Zhang. "The Unsupervised Hierarchical Convolutional Sparse Auto-Encoder for Neuroimaging Data Classification." In Brain Informatics and Health, 156–66. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23344-4_16.
Full textArslan, Abdullah Taha, and Ugur Yayan. "Convolutional Auto-Encoder Based Degradation Point Forecasting for Bearing Data Set." In Artificial Intelligence and Applied Mathematics in Engineering Problems, 817–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36178-5_71.
Full textXiang, Xinyu, Ping Zhang, Qiang Yuan, Renping Li, Runqiao Hu, and Ke Li. "Few-Shot Learning Based on Convolutional Denoising Auto-encoder Relational Network." In Communications in Computer and Information Science, 103–12. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9247-5_8.
Full textLi, Chun, Wenfeng Shi, and Lin Shang. "Latent Feature Representation for Cohesive Community Detection Based on Convolutional Auto-Encoder." In Big Data, 380–94. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1899-7_27.
Full textShuvo, M. I. R., M. A. H. Akhand, and N. Siddique. "Handwritten Numeral Superposition to Printed Form Using Convolutional Auto-Encoder and Recognition Using Convolutional Neural Network." In Proceedings of International Joint Conference on Computational Intelligence, 179–90. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3607-6_14.
Full textConference papers on the topic "Convolutional Auto-Encoder"
Ye, Hao, Le Liang, and Geoffrey Ye Li. "Circular Convolutional Auto-Encoder for Channel Coding." In 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2019. http://dx.doi.org/10.1109/spawc.2019.8815483.
Full textSharma, Manish, Panos P. Markopoulos, Eli Saber, M. Salman Asif, and Ashley Prater-Bennette. "Convolutional Auto-Encoder with Tensor-Train Factorization." In 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). IEEE, 2021. http://dx.doi.org/10.1109/iccvw54120.2021.00027.
Full textWu, Hao, Ziyang Zheng, Yong Li, Wenrui Dai, and Hongkai Xiong. "Compressed Sensing via a Deep Convolutional Auto-encoder." In 2018 IEEE Visual Communications and Image Processing (VCIP). IEEE, 2018. http://dx.doi.org/10.1109/vcip.2018.8698640.
Full textAlqahtani, A., X. Xie, J. Deng, and M. W. Jones. "A Deep Convolutional Auto-Encoder with Embedded Clustering." In 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018. http://dx.doi.org/10.1109/icip.2018.8451506.
Full textTurchenko, Volodymyr, and Artur Luczak. "Creation of a deep convolutional auto-encoder in Caffe." In 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). IEEE, 2017. http://dx.doi.org/10.1109/idaacs.2017.8095172.
Full textBaccouche, Moez, Franck Mamalet, Christian Wolf, Christophe Garcia, and Atilla Baskurt. "Spatio-Temporal Convolutional Sparse Auto-Encoder for Sequence Classification." In British Machine Vision Conference 2012. British Machine Vision Association, 2012. http://dx.doi.org/10.5244/c.26.124.
Full textSchuch, Patrick, Simon Schulz, and Christoph Busch. "De-convolutional auto-encoder for enhancement of fingerprint samples." In 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE, 2016. http://dx.doi.org/10.1109/ipta.2016.7821036.
Full textZuo, Haolan. "CDAE-C: A Fully Convolutional Denoising Auto-Encoder with 2.5D Convolutional Classifier." In 2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). IEEE, 2022. http://dx.doi.org/10.1109/tocs56154.2022.10015922.
Full textGeng, Chi, and JianXin Song. "Human Action Recognition based on Convolutional Neural Networks with a Convolutional Auto-Encoder." In 2015 5th International Conference on Computer Sciences and Automation Engineering (ICCSAE 2015). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/iccsae-15.2016.173.
Full textTian, Sirui, Chao Wang, and Hong Zhang. "SAR Object Classification with a Multi-Scale Convolutional Auto-Encoder." In 2019 SAR in Big Data Era (BIGSARDATA). IEEE, 2019. http://dx.doi.org/10.1109/bigsardata.2019.8858491.
Full text