Academic literature on the topic 'CONVERSION OF ENERGY'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CONVERSION OF ENERGY.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "CONVERSION OF ENERGY"
Kishore, Abhishek, and Ameen Uddin Ahmad. "Ocean Thermal Energy Conversion." International Journal of Trend in Scientific Research and Development Volume-1, Issue-5 (August 31, 2017): 412–15. http://dx.doi.org/10.31142/ijtsrd2314.
Full textGates, Bruce C., George W. Huber, Christopher L. Marshall, Phillip N. Ross, Jeffrey Siirola, and Yong Wang. "Catalysts for Emerging Energy Applications." MRS Bulletin 33, no. 4 (April 2008): 429–35. http://dx.doi.org/10.1557/mrs2008.85.
Full textYAMABE, Chobei, and Kenji HORII. "Direct energy conversion." Journal of the Fuel Society of Japan 68, no. 11 (1989): 950–60. http://dx.doi.org/10.3775/jie.68.11_950.
Full textBossel, Ulf. "Alternative Energy Conversion." Ceramics in Modern Technologies 2, no. 2 (May 29, 2020): 86–91. http://dx.doi.org/10.29272/cmt.2020.0005.
Full textPilon, Laurent, and Ian M. McKinley. "PYROELECTRIC ENERGY CONVERSION." Annual Review of Heat Transfer 19, no. 1 (2016): 279–334. http://dx.doi.org/10.1615/annualrevheattransfer.2016015566.
Full textBatschelet, William H. "Photochemical energy conversion." Journal of Chemical Education 63, no. 5 (May 1986): 435. http://dx.doi.org/10.1021/ed063p435.
Full textPeter, L. M. "Photochemical energy conversion." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 286, no. 1-2 (June 1990): 292. http://dx.doi.org/10.1016/0022-0728(90)85084-i.
Full textMarignetti, Fabrizio, Haitao Yu, and Luigi Cappelli. "Marine Energy Conversion." Advances in Mechanical Engineering 5 (January 2013): 457083. http://dx.doi.org/10.1155/2013/457083.
Full textDragt, J. B. "Wind Energy Conversion." Europhysics News 24, no. 2 (1993): 27–30. http://dx.doi.org/10.1051/epn/19932402027.
Full textPalacios, Rodrigo E., Stephanie L. Gould, Christian Herrero, Michael Hambourger, Alicia Brune, Gerdenis Kodis, Paul A. Liddell, et al. "Bioinspired energy conversion." Pure and Applied Chemistry 77, no. 6 (January 1, 2005): 1001–8. http://dx.doi.org/10.1351/pac200577061001.
Full textDissertations / Theses on the topic "CONVERSION OF ENERGY"
Lundin, Staffan. "Marine Current Energy Conversion." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-280763.
Full textSilva, Ubiravan Geraldo de Oliveira e. [UNESP]. "Análise energética em refino de petróleo." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/99282.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
No trabalho apresentado foi realizada uma análise de eficiência energética levando em conta variáveis tais como a pressão, a temperatura, o estado físico dos componentes e a atividade de cada elemento que compõe a unidade de craqueamento em refino de petróleo. Tal análise foi realizada baseando-se na Primeira e Segunda leis da Termodinâmica. Destacou-se na análise do FCC a geração e a perda de energia com os gases, levando em conta a concentração molar de cada gás na entrada e na saída do FCC. No riser foram levadas em conta as transformações ocorridas e sua cinética com o propósito de fazer uma análise de gasto de energia no processo de formação inicial dos produtos do FCC; com isso, determinaram-se as quantidades de calor que foram utilizados no processo principal de formação. Foram realizadas análises sobre os fluxos de massas no vaso separador com a abordagem de um suposto fluxo interno, que seria a diferença entre as energias adquiridas com o vapor de retificação com os fluxos de carbono arrastados e com energia vinda do riser, e o fluxo de saída também para o processo de retificação no stripper. Verificou-se a energia gerada pelo regenerador e sua distribuição, que é feita com o aquecimento do catalisador na linha de transmissão do stripper e das perdas de energia com a troca do catalisador gasto e pela massa de catalisador que entra no riser. A energia perdida durante o processo foi associada à energia perdida na integralidade e em cada unidade. Verificou-se que uma parcela do calor gerado no processo é absorvida por gases inertes necessários ou integrados a gases reagentes; além disso, observou-se a formação de novos gases e compostos químicos que geram certas quantidades de energia, e que estão e são importantes na contabilização de toda energia que é gerada. Em tal análise levou-se em conta a energia de formação dos gases e a...
In the present study it was performed an analysis of energy efficiency taking into account variables such as pressure, temperature, physical state of the components and activities of each element that makes up a cracker in petroleum refining. The First and Second Law of Thermodynamics were used for the present analysis. It was highlighted in the analysis of the FCC the generation and loss of energy with the gases, taking into account the molar concentration of each gas at the inlet and outlet of the FCC. In the riser it was taken into account the transformations and their kinetics in order to make an analysis of energy use in the process of initial formation of the products of the FCC; with these results, it was determined the amounts of heat that were used in the main proceedings training. It was analyzed the flow of masses in the separator vessel with the approach of a supposed internal flow, which would be the difference between the energy gained steam with the rectification of carbon fluxes and dragged with energy coming from the riser, and the outflow also for the grinding process in stripper. There was the energy generated by the regenerator and its distribution, which is made by heating the catalyst in the transmission line striper and loss of energy with the exchange of spent catalyst and the mass of catalyst entering the riser. The energy lost during the process was associated with the energy that disappeared in the whole and in each unit. It was found that a portion of the heat generated is absorbed by inert gases necessary or integrated reactive gases; in addition, it was observed the formation of new gases and chemicals that generate amounts of energy, and are important in accounting for all energy that is generated. In this analysis it was taken into account the energy of formation of exhaust gases and the opportunities of products formation in the conditions ... (Complete abstract click electronic access below)
Thorburn, Karin. "Electric Energy Conversion Systems : Wave Energy and Hydropower." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7081.
Full textBalouchi, Farouk. "Footfall energy harvesting : footfall energy harvesting conversion mechanisms." Thesis, University of Hull, 2013. http://hydra.hull.ac.uk/resources/hull:8433.
Full textZhao, Yixin. "Developing Nanomaterials for Energy Conversion." Cleveland, Ohio : Case Western Reserve University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1270172686.
Full textLaestander, Joakim, and Simon Laestander. "OTEC - Ocean Thermal Energy Conversion." Thesis, KTH, Energiteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-98974.
Full textOTEC är en teknik där kraft utvinns från havsvatten genom att utnyttja temperaturdifferensen mellan ytvatten och vatten från djupet. Denna teknik kräver dock generellt en temperaturdifferens på minst 20K. En sådan temperaturskillnad är geografiskt begränsad till den tropiska zonen runt ekvatorn.I rapporten undersöks om OTEC kan användas till att förse 100 000 människor, boende på en 10 stor generisk ö i just den tropiska zonen, med dess elbehov. I detta projekt har det gjorts en litteraturstudie för att etablera en kunskapsbas och sedan gjorts en matematisk modell i programmet EES och slutligen har resultaten från modellen granskats och diskuterats. I modellen jämfördes två olika cykler och målet var att bestämma vilken av dessa som var det bästa alternativet för ön. För att underlätta beräkningarna gjordes vissa antaganden och förenklingar.Den slutna cykeln var mest effektiv men den öppna cykeln (OC) hade positiva synergieffekter som den sluta cykeln (CC) saknade. Kostnaden för en anläggning baserades på äldre studier och enligt dessa var den öppna cykeln billigare än den slutna. Anläggningar av de båda cyklerna kan tillgodose den fiktiva öns energibehov, det behöver dock byggas fler anläggningar om OC väljs framför CC.Det kommer krävas ytterligare arbete med att utveckla tekniken innan OTEC på allvar kan utmana dagens fossilbränslebaserade energisystem – eller att oljan helt enkelt blir för dyr. Idag är OTEC för dyrt för att kunna motiveras rent ekonomiskt, men om även miljövinsterna beaktas, samt att ön befriar sig från importer och därigenom får större kontroll över sitt eget energisystem, finns goda incitament att investera i OTEC redan idag.
Chin, Timothy Edward. "Electrochemical to mechanical energy conversion." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/63015.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
Electrode materials for rechargeable lithium ion batteries are well-known to undergo significant dimensional changes during lithium-ion insertion and extraction. In the battery community, this has often been looked upon negatively as a degradation mechanism. However, the crystallographic strains are large enough to warrant investigation for use as actuators. Lithium battery electrode materials lend themselves to two separate types of actuators. On one hand, intercalation oxides and graphite provide moderate strains, on the order of a few percent, with moderate bandwidth (frequency). Lithium intercalation of graphite can achieve actuation energy densities of 6700 kJ m-3 with strains up to 6.7%. Intercalation oxides provide strains on the order of a couple percent, but allow for increased bandwidth. Using a conventional stacked electrode design, a cell consisting of lithium iron phosphate (LiFePO4) and carbon achieved 1.2% strain with a mechanical power output of 1000 W m 3 . Metals, on the other hand, provide colossal strains (hundreds of percent) upon lithium alloying, but do not cycle well. Instead, a self-amplifying device was designed to provide continuous, prolonged, one-way actuation over longer time scales. This was still able to achieve an energy density of 1700 kJ n 3, significantly greater than other actuation technologies such as shape-memory alloys and conducting polymers, with displacements approaching 10 mm from a 1 mm thick disc. Further, by using lithium metal as the counterelectrode in an electrochemical couple, these actuation devices can be selfpowered: mechanical energy and electrical energy can be extracted simultaneously.
by Timothy Edward Chin.
Ph.D.
Clark, Joanna Helen. "Inorganic materials for energy conversion." Thesis, University of Liverpool, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.569768.
Full textQiu, Xiaofeng. "NANOSTRUCTURED MATERIALS FOR ENERGY CONVERSION." Case Western Reserve University School of Graduate Studies / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=case1207243913.
Full textRiboni, F. "PHOTOCATALYTIC REACTIONS FOR ENERGY CONVERSION." Doctoral thesis, Università degli Studi di Milano, 2014. http://hdl.handle.net/2434/244319.
Full textBooks on the topic "CONVERSION OF ENERGY"
Goswami, D. Yogi, and Frank Kreith, eds. Energy Conversion. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192.
Full textEnergy conversion. St. Paul: West Pub. Co., 1992.
Find full textKocabiyikoğlu, Zeki Uğurata. Electromechanical Energy Conversion. First edition. | Boca Raton, FL : CRC Press, 2020. |: CRC Press, 2020. http://dx.doi.org/10.1201/9780429317637.
Full textPiotrowiak, Piotr, ed. Solar Energy Conversion. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849735445.
Full textPleskov, Yuri V. Solar Energy Conversion. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74958-2.
Full textLikhtenshtein, Gertz. Solar Energy Conversion. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527647668.
Full textKitanovski, Andrej, Jaka Tušek, Urban Tomc, Uroš Plaznik, Marko Ožbolt, and Alojz Poredoš. Magnetocaloric Energy Conversion. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-08741-2.
Full textRosa, Richard J. Magnetohydrodynamic energy conversion. Washington: Hemisphere Pub. Corp., 1987.
Find full textSoni, Amit, Dharmendra Tripathi, Jagrati Sahariya, and Kamal Nayan Sharma. Energy Conversion and Green Energy Storage. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003258209.
Full textBauer, Gottfried H. Photovoltaic Solar Energy Conversion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46684-1.
Full textBook chapters on the topic "CONVERSION OF ENERGY"
Wolff, Lodwijk Reiner, and Valerylvanovit Yarigin. "Thermionic Energy Conversion, Space Technology for Energy Conservation." In Conversion, 199–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-95701-7_32.
Full textDemirel, Yaşar. "Energy Conversion." In Energy, 229–303. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2372-9_7.
Full textDemirel, Yaşar. "Energy Conversion." In Energy, 241–319. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29650-0_7.
Full textDemirel, Yaşar. "Energy Conversion." In Energy, 233–311. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56164-2_7.
Full textSankaranarayanan, Krishnan. "Energy Conversion." In Efficiency and Sustainability in the Energy and Chemical Industries, 103–32. 3rd ed. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003304388-12.
Full textKurchania, A. K. "Biomass Energy." In Biomass Conversion, 91–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28418-2_2.
Full textRenner, Joel L., and Marshall J. Reed. "Geothermal Energy." In Energy Conversion, 177–87. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-8.
Full textGoswami, D. Yogi, and Frank Kreith. "Global Energy Systems." In Energy Conversion, 1–30. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-1.
Full textBunce, Richard H. "Gas Turbines." In Energy Conversion, 209–22. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-10.
Full textKlett, David E., Elsayed M. Afify, Kalyan K. Srinivasan, and Timothy J. Jacobs. "Internal Combustion Engines." In Energy Conversion, 223–55. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-11.
Full textConference papers on the topic "CONVERSION OF ENERGY"
Eijkel, Jan C. T., Albert van den Berg, and Yanbo Xie. "Ballistic energy conversion." In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2017. http://dx.doi.org/10.1109/transducers.2017.7994000.
Full textCrabtree, George W., Nathan S. Lewis, David Hafemeister, B. Levi, M. Levine, and P. Schwartz. "Solar Energy Conversion." In PHYSICS OF SUSTAINABLE ENERGY: Using Energy Efficiently and Producing It Renewably. AIP, 2008. http://dx.doi.org/10.1063/1.2993729.
Full text"Conversion of solar energy, geothermal energy." In CONV-09. Proceedings of International Symposium on Convective Heat and Mass Transfer in Sustainable Energy. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/ichmt.2009.conv.790.
Full textHirshfield, J. L., M. A. LaPointe, and A. K. Ganguly. "Gyroharmonic conversion experiments." In High energy density microwaves. AIP, 1999. http://dx.doi.org/10.1063/1.59008.
Full textWoolf, L. D. "Solar Photothermophotovoltaic Energy Conversion." In 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9060.
Full textRegan, Thomas M., Jose G. Martin, Juanita R. Riccobono, and Jacques E. Ludman. "Multisource thermophotovoltaic energy conversion." In SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Tomasz Jannson. SPIE, 1995. http://dx.doi.org/10.1117/12.221246.
Full textBeresnevich, Vitalijs, Shravan Koundinya Vutukuru, Martins Irbe, Edgars Kovals, Maris Eiduks, Kaspars Burbeckis, and Janis Viba. "Wind energy conversion generator." In 20th International Scientific Conference Engineering for Rural Development. Latvia University of Life Sciences and Technologies, Faculty of Engineering, 2021. http://dx.doi.org/10.22616/erdev.2021.20.tf213.
Full text"Electro-mechanical energy conversion." In 2016 10th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG). IEEE, 2016. http://dx.doi.org/10.1109/cpe.2016.7544195.
Full text"Electro-mechanical energy conversion." In 2015 9th International Conference on Compatibility and Power Electronics (CPE). IEEE, 2015. http://dx.doi.org/10.1109/cpe.2015.7231076.
Full text"Photovoltaic energy conversion systems." In IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2013. http://dx.doi.org/10.1109/iecon.2013.6700285.
Full textReports on the topic "CONVERSION OF ENERGY"
Atanassov, Plamen. Materials for Energy Conversion: Materials for Energy Conversion and Storage. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1349091.
Full textHennessy, Daniel, Rodica Sibisan, and Mike Rasmussen. Solid State Energy Conversion Energy Alliance (SECA). Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1084473.
Full textHennessy, Daniel, Rodica Sibisan, and Mike Rasmussen. Solid State Energy Conversion Energy Alliance (SECA). Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1084477.
Full textFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), January 1987. http://dx.doi.org/10.2172/6369309.
Full textFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), January 1988. http://dx.doi.org/10.2172/6020364.
Full textFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/6020379.
Full textFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), November 1986. http://dx.doi.org/10.2172/6022834.
Full textFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5118367.
Full textCairns, E. J. Energy Conversion and Storage Program. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/7148265.
Full textHutchinson, R. A. Turbulence and energy conversion research. Office of Scientific and Technical Information (OSTI), July 1985. http://dx.doi.org/10.2172/6345659.
Full text