To see the other types of publications on this topic, follow the link: Convergence of Riemannian manifolds.

Books on the topic 'Convergence of Riemannian manifolds'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Convergence of Riemannian manifolds.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Lee, John M. Riemannian Manifolds. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/b98852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, John M. Introduction to Riemannian Manifolds. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91755-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tondeur, Philippe. Foliations on Riemannian Manifolds. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4613-8780-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lang, Serge, ed. Differential and Riemannian Manifolds. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4182-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lang, Serge. Differential and Riemannian manifolds. New York: Springer-Verlag, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tondeur, Philippe. Foliations on Riemannian manifolds. New York: Springer-Verlag, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Riemannian foliations. Boston: Birkhäuser, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hebey, Emmanuel. Sobolev Spaces on Riemannian Manifolds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0092907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Berestovskii, Valerii, and Yurii Nikonorov. Riemannian Manifolds and Homogeneous Geodesics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56658-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

C, Wood John, ed. Harmonic morphisms between Riemannian manifolds. Oxford: Clarendon Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hebey, Emmanuel. Sobolev spaces on Riemannian manifolds. Berlin: Springer-Verlag, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

Min, Ji. Minimal surfaces in Riemannian manifolds. Providence, R.I: American Mathematical Society, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Riemannian geometry of contact and symplectic manifolds. 2nd ed. New York, NY: Birkhäuser, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

N, Kupeli Demir, and Vázquez-Lorenzo Ramón, eds. Osserman manifolds in semi-Riemannian geometry. Berlin: Springer, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Foliations on Riemannian manifolds and submanifolds. Boston: Birkhauser, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

Fong, Robert Simon, and Peter Tino. Population-Based Optimization on Riemannian Manifolds. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04293-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Duggal, Krishan L., and Ramesh Sharma. Symmetries of Spacetimes and Riemannian Manifolds. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5315-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Shiohama, Katsuhiro, Takashi Sakai, and Toshikazu Sunada, eds. Curvature and Topology of Riemannian Manifolds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0075643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Güneysu, Batu. Covariant Schrödinger Semigroups on Riemannian Manifolds. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68903-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Rovenskii, Vladimir Y. Foliations on Riemannian Manifolds and Submanifolds. Boston, MA: Birkhäuser Boston, 1995. http://dx.doi.org/10.1007/978-1-4612-4270-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

García-Río, Eduardo, Demir N. Kupeli, and Ramón Vázquez-Lorenzo. Osserman Manifolds in Semi-Riemannian Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/b83213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Riemannian manifolds: An introduction to curvature. New York: Springer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

Duggal, Krishan L. Symmetries of spacetimes and Riemannian manifolds. Dordrecht: Kluwer Academic Publishers, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

Minimal submanifolds in pseudo-Riemannian geometry. New Jersey: World Scientific, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
25

Krzysztof, Galicki, Simanca S. R, and Boyer Charles P, eds. Riemannian topology and geometric structures on manifolds. Boston [Mass.]: Birkhäuser, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
26

Gestur, Ólafsson, and Schlichtkrull Henrik 1954-, eds. The selected works of Sigurdur Helgason. Providence, R.I: American Mathematical Society, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
27

Leonidovich, Verner Alekseĭ, and Leningradskiĭ gosudarstvennyĭ pedagogicheskiĭ institut imeni A.I. Gert͡s︡ena., eds. Issledovanii͡a︡ po teorii rimanovykh mnogoobraziĭ i ikh pogruzheniĭ: Mezhvuzovskiĭ sbornik nauchnykh trudov. Leningrad: Leningradskiĭ gos. pedagog. in-t im. A.I. Gert͡s︡ena, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
28

Galicki, Krzysztof, and Santiago R. Simanca, eds. Riemannian Topology and Geometric Structures on Manifolds. Boston, MA: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4743-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Blair, David E. Riemannian Geometry of Contact and Symplectic Manifolds. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4959-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Blair, David E. Riemannian Geometry of Contact and Symplectic Manifolds. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4757-3604-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

1954-, Baum Helga, ed. Twistors and killing spinors on Riemannian manifolds. Stuttgart: Teubner, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
32

Riemannian geometry: A beginner's guide. Boston: Jones and Bartlett Publishers, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

G, Ebin D., and American Mathematical Society, eds. Comparison theorems in riemannian geometry. Providence, R.I: American Mathematical Society, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Riemannian geometry: A beginner's guide. Wellesley, MA: A.K. Peters, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
35

Conference Board of the Mathematical Sciences., ed. Prescribing the curvature of a Riemannian manifold. Providence, R.I: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kazdan, Jerry L. Prescribing the curvature of a Riemannian manifold. Providence, R.I: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
37

Boyer, Charles P. Sasakian geometry. New York: Oxford University Press, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
38

Barilari, Davide, Ugo Boscain, and Mario Sigalotti, eds. Geometry, Analysis and Dynamics on sub-Riemannian Manifolds. Zuerich, Switzerland: European Mathematical Society Publishing House, 2016. http://dx.doi.org/10.4171/162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Barilari, Davide, Ugo Boscain, and Mario Sigalotti, eds. Geometry, Analysis and Dynamics on sub-Riemannian Manifolds. Zuerich, Switzerland: European Mathematical Society Publishing House, 2016. http://dx.doi.org/10.4171/163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Udrişte, Constantin. Convex Functions and Optimization Methods on Riemannian Manifolds. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8390-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Duggal, Krishan L., and Aurel Bejancu. Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-017-2089-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Deruelle, Nathalie, and Jean-Philippe Uzan. Riemannian manifolds. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0042.

Full text
Abstract:
This chapter introduces the Riemann tensor characterizing curved spacetimes, and then the metric tensor, which allows lengths and durations to be defined. As shown in the preceding chapter, ‘absolute, true, and mathematical’ spacetimes representing ‘relative, apparent, and common’ space and time in Einstein’s theory are Riemannian manifolds supplied with a metric and its associated Levi-Civita connection. Moreover, this metric simultaneously describes the coordinate system chosen to reference the events. The chapter begins with a study of connections, parallel transport, and curvature; the commutation of derivatives, torsion, and curvature; geodesic deviation and curvature; the metric tensor and the Levi-Civita connection; and locally inertial frames. Finally, it discusses Riemannian manifolds.
APA, Harvard, Vancouver, ISO, and other styles
43

Deruelle, Nathalie, and Jean-Philippe Uzan. Riemannian manifolds. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0064.

Full text
Abstract:
This chapter is about Riemannian manifolds. It first discusses the metric manifold and the Levi-Civita connection, determining if the metric is Riemannian or Lorentzian. Next, the chapter turns to the properties of the curvature tensor. It states without proof the intrinsic versions of the properties of the Riemann–Christoffel tensor of a covariant derivative already given in Chapter 2. This chapter then performs the same derivation as in Chapter 4 by obtaining the Einstein equations of general relativity by varying the Hilbert action. However, this will be done in the intrinsic manner, using the tools developed in the present and the preceding chapters.
APA, Harvard, Vancouver, ISO, and other styles
44

Lee, John M. Introduction to Riemannian Manifolds. Springer, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lang, Serge. Differential and Riemannian Manifolds. Springer London, Limited, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

Introduction to Riemannian Manifolds. Springer International Publishing AG, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
47

Foliations on Riemannian Manifolds. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lang, Serge. Differential and Riemannian Manifolds. Springer New York, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Tondeur, Philippe. Foliations on Riemannian Manifolds. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
50

Molino, Pierre. Riemannian Foliations. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography