Books on the topic 'Convergence of Riemannian manifolds'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Convergence of Riemannian manifolds.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Lee, John M. Riemannian Manifolds. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/b98852.
Full textLee, John M. Introduction to Riemannian Manifolds. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91755-9.
Full textTondeur, Philippe. Foliations on Riemannian Manifolds. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4613-8780-0.
Full textLang, Serge, ed. Differential and Riemannian Manifolds. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4182-9.
Full textLang, Serge. Differential and Riemannian manifolds. New York: Springer-Verlag, 1995.
Find full textTondeur, Philippe. Foliations on Riemannian manifolds. New York: Springer-Verlag, 1988.
Find full textRiemannian foliations. Boston: Birkhäuser, 1988.
Find full textHebey, Emmanuel. Sobolev Spaces on Riemannian Manifolds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0092907.
Full textBerestovskii, Valerii, and Yurii Nikonorov. Riemannian Manifolds and Homogeneous Geodesics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56658-6.
Full textC, Wood John, ed. Harmonic morphisms between Riemannian manifolds. Oxford: Clarendon Press, 2003.
Find full textHebey, Emmanuel. Sobolev spaces on Riemannian manifolds. Berlin: Springer-Verlag, 1996.
Find full textMin, Ji. Minimal surfaces in Riemannian manifolds. Providence, R.I: American Mathematical Society, 1993.
Find full textRiemannian geometry of contact and symplectic manifolds. 2nd ed. New York, NY: Birkhäuser, 2010.
Find full textN, Kupeli Demir, and Vázquez-Lorenzo Ramón, eds. Osserman manifolds in semi-Riemannian geometry. Berlin: Springer, 2002.
Find full textFoliations on Riemannian manifolds and submanifolds. Boston: Birkhauser, 1998.
Find full textFong, Robert Simon, and Peter Tino. Population-Based Optimization on Riemannian Manifolds. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04293-5.
Full textDuggal, Krishan L., and Ramesh Sharma. Symmetries of Spacetimes and Riemannian Manifolds. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5315-1.
Full textShiohama, Katsuhiro, Takashi Sakai, and Toshikazu Sunada, eds. Curvature and Topology of Riemannian Manifolds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0075643.
Full textGüneysu, Batu. Covariant Schrödinger Semigroups on Riemannian Manifolds. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68903-6.
Full textRovenskii, Vladimir Y. Foliations on Riemannian Manifolds and Submanifolds. Boston, MA: Birkhäuser Boston, 1995. http://dx.doi.org/10.1007/978-1-4612-4270-3.
Full textGarcía-Río, Eduardo, Demir N. Kupeli, and Ramón Vázquez-Lorenzo. Osserman Manifolds in Semi-Riemannian Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/b83213.
Full textRiemannian manifolds: An introduction to curvature. New York: Springer, 1997.
Find full textDuggal, Krishan L. Symmetries of spacetimes and Riemannian manifolds. Dordrecht: Kluwer Academic Publishers, 1999.
Find full textMinimal submanifolds in pseudo-Riemannian geometry. New Jersey: World Scientific, 2011.
Find full textKrzysztof, Galicki, Simanca S. R, and Boyer Charles P, eds. Riemannian topology and geometric structures on manifolds. Boston [Mass.]: Birkhäuser, 2009.
Find full textGestur, Ólafsson, and Schlichtkrull Henrik 1954-, eds. The selected works of Sigurdur Helgason. Providence, R.I: American Mathematical Society, 2009.
Find full textLeonidovich, Verner Alekseĭ, and Leningradskiĭ gosudarstvennyĭ pedagogicheskiĭ institut imeni A.I. Gert͡s︡ena., eds. Issledovanii͡a︡ po teorii rimanovykh mnogoobraziĭ i ikh pogruzheniĭ: Mezhvuzovskiĭ sbornik nauchnykh trudov. Leningrad: Leningradskiĭ gos. pedagog. in-t im. A.I. Gert͡s︡ena, 1985.
Find full textGalicki, Krzysztof, and Santiago R. Simanca, eds. Riemannian Topology and Geometric Structures on Manifolds. Boston, MA: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4743-8.
Full textBlair, David E. Riemannian Geometry of Contact and Symplectic Manifolds. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4959-3.
Full textBlair, David E. Riemannian Geometry of Contact and Symplectic Manifolds. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4757-3604-5.
Full text1954-, Baum Helga, ed. Twistors and killing spinors on Riemannian manifolds. Stuttgart: Teubner, 1991.
Find full textRiemannian geometry: A beginner's guide. Boston: Jones and Bartlett Publishers, 1993.
Find full textG, Ebin D., and American Mathematical Society, eds. Comparison theorems in riemannian geometry. Providence, R.I: American Mathematical Society, 2008.
Find full textRiemannian geometry: A beginner's guide. Wellesley, MA: A.K. Peters, 1998.
Find full textConference Board of the Mathematical Sciences., ed. Prescribing the curvature of a Riemannian manifold. Providence, R.I: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1985.
Find full textKazdan, Jerry L. Prescribing the curvature of a Riemannian manifold. Providence, R.I: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1985.
Find full textBoyer, Charles P. Sasakian geometry. New York: Oxford University Press, 2007.
Find full textBarilari, Davide, Ugo Boscain, and Mario Sigalotti, eds. Geometry, Analysis and Dynamics on sub-Riemannian Manifolds. Zuerich, Switzerland: European Mathematical Society Publishing House, 2016. http://dx.doi.org/10.4171/162.
Full textBarilari, Davide, Ugo Boscain, and Mario Sigalotti, eds. Geometry, Analysis and Dynamics on sub-Riemannian Manifolds. Zuerich, Switzerland: European Mathematical Society Publishing House, 2016. http://dx.doi.org/10.4171/163.
Full textUdrişte, Constantin. Convex Functions and Optimization Methods on Riemannian Manifolds. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8390-9.
Full textDuggal, Krishan L., and Aurel Bejancu. Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-017-2089-2.
Full textDeruelle, Nathalie, and Jean-Philippe Uzan. Riemannian manifolds. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0042.
Full textDeruelle, Nathalie, and Jean-Philippe Uzan. Riemannian manifolds. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0064.
Full textLee, John M. Introduction to Riemannian Manifolds. Springer, 2019.
Find full textLang, Serge. Differential and Riemannian Manifolds. Springer London, Limited, 2012.
Find full textIntroduction to Riemannian Manifolds. Springer International Publishing AG, 2021.
Find full textFoliations on Riemannian Manifolds. Springer, 2011.
Find full textLang, Serge. Differential and Riemannian Manifolds. Springer New York, 2012.
Find full textTondeur, Philippe. Foliations on Riemannian Manifolds. Springer, 2012.
Find full textMolino, Pierre. Riemannian Foliations. Springer, 2012.
Find full text