Academic literature on the topic 'Convergence of Riemannian manifolds'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Convergence of Riemannian manifolds.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Convergence of Riemannian manifolds"
Perales, Raquel. "Convergence of manifolds and metric spaces with boundary." Journal of Topology and Analysis 12, no. 03 (November 28, 2018): 735–74. http://dx.doi.org/10.1142/s1793525319500638.
Full textKasue, Atsushi, and Hironori Kumura. "Spectral convergence of Riemannian manifolds." Tohoku Mathematical Journal 46, no. 2 (1994): 147–79. http://dx.doi.org/10.2748/tmj/1178225756.
Full textGreene, Robert, and Hung-Hsi Wu. "Lipschitz convergence of Riemannian manifolds." Pacific Journal of Mathematics 131, no. 1 (January 1, 1988): 119–41. http://dx.doi.org/10.2140/pjm.1988.131.119.
Full textArgyros, Ioannis K., and Santhosh George. "ON THE SEMILOCAL CONVERGENCE OF NEWTON'S METHOD FOR SECTIONS ON RIEMANNIAN MANIFOLDS." Asian-European Journal of Mathematics 07, no. 01 (March 2014): 1450007. http://dx.doi.org/10.1142/s1793557114500077.
Full textYang, Le. "Riemannian median and its estimation." LMS Journal of Computation and Mathematics 13 (December 2010): 461–79. http://dx.doi.org/10.1112/s1461157020090531.
Full textKasue, Atsushi. "A convergence theorem for Riemannian manifolds and some applications." Nagoya Mathematical Journal 114 (June 1989): 21–51. http://dx.doi.org/10.1017/s0027763000001380.
Full textKasue, Atsushi, and Hironori Kumura. "Spectral convergence of Riemannian manifolds, II." Tohoku Mathematical Journal 48, no. 1 (1996): 71–120. http://dx.doi.org/10.2748/tmj/1178225413.
Full textBoumal, Nicolas, P.-A. Absil, and Coralia Cartis. "Global rates of convergence for nonconvex optimization on manifolds." IMA Journal of Numerical Analysis 39, no. 1 (February 7, 2018): 1–33. http://dx.doi.org/10.1093/imanum/drx080.
Full textKatsuda, Atsushi. "Gromov’s convergence theorem and its application." Nagoya Mathematical Journal 100 (December 1985): 11–48. http://dx.doi.org/10.1017/s0027763000000209.
Full textGreene, Robert, and Hung-Hsi Wu. "Addendum to: “Lipschitz convergence of Riemannian manifolds”." Pacific Journal of Mathematics 140, no. 2 (December 1, 1989): 398. http://dx.doi.org/10.2140/pjm.1989.140.398.
Full textDissertations / Theses on the topic "Convergence of Riemannian manifolds"
Zergänge, Norman [Verfasser]. "Convergence of Riemannian manifolds with critical curvature bounds / Norman Zergänge." Magdeburg : Universitätsbibliothek, 2017. http://d-nb.info/1141230488/34.
Full textMartins, Tiberio Bittencourt de Oliveira. "Newton's methods under the majorant principle on Riemannian manifolds." Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/4847.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-11-03T14:25:04Z (GMT) No. of bitstreams: 2 Tese - Tiberio Bittencourt de Oliveira Martins.pdf: 1155588 bytes, checksum: add1eac74c4397efc29678341b834448 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2015-11-03T14:25:04Z (GMT). No. of bitstreams: 2 Tese - Tiberio Bittencourt de Oliveira Martins.pdf: 1155588 bytes, checksum: add1eac74c4397efc29678341b834448 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-06-26
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Apresentamos, nesta tese, uma an álise da convergência do m étodo de Newton inexato com tolerância de erro residual relativa e uma an alise semi-local de m etodos de Newton robustos exato e inexato, objetivando encontrar uma singularidade de um campo de vetores diferenci avel de nido em uma variedade Riemanniana completa, baseados no princ pio majorante a m invariante. Sob hip oteses locais e considerando uma fun ção majorante geral, a Q-convergância linear do m etodo de Newton inexato com uma tolerância de erro residual relativa xa e provada. Na ausência dos erros, a an alise apresentada reobtem o teorema local cl assico sobre o m etodo de Newton no contexto Riemanniano. Na an alise semi-local dos m etodos exato e inexato de Newton apresentada, a cl assica condi ção de Lipschitz tamb em e relaxada usando uma fun ção majorante geral, permitindo estabelecer existência e unicidade local da solu ção, uni cando previamente resultados pertencentes ao m etodo de Newton. A an alise enfatiza a robustez, a saber, e dada uma bola prescrita em torno do ponto inicial que satifaz as hip oteses de Kantorovich, garantindo a convergência do m etodo para qualquer ponto inicial nesta bola. Al em disso, limitantes que dependem da função majorante para a taxa de convergência Q-quadr atica do m étodo exato e para a taxa de convergência Q-linear para o m etodo inexato são obtidos.
A local convergence analysis with relative residual error tolerance of inexact Newton method and a semi-local analysis of a robust exact and inexact Newton methods are presented in this thesis, objecting to nd a singularity of a di erentiable vector eld de ned on a complete Riemannian manifold, based on a ne invariant majorant principle. Considering local assumptions and a general majorant function, the Q-linear convergence of inexact Newton method with a xed relative residual error tolerance is proved. In the absence of errors, the analysis presented retrieves the classical local theorem on Newton's method in Riemannian context. In the semi-local analysis of exact and inexact Newton methods presented, the classical Lipschitz condition is also relaxed by using a general majorant function, allowing to establish the existence and also local uniqueness of the solution, unifying previous results pertaining Newton's method. The analysis emphasizes robustness, being more speci c, is given a prescribed ball around the point satisfying Kantorovich's assumptions, ensuring convergence of the method for any starting point in this ball. Furthermore, the bounds depending on the majorant function for Q-quadratic convergence rate of the exact method and Q-linear convergence rate of the inexact method are obtained.
Luckhardt, Daniel [Verfasser], Thomas [Akademischer Betreuer] Schick, Thomas [Gutachter] Schick, Ralf [Gutachter] Meyer, Stephan [Gutachter] Huckemann, Russell [Gutachter] Luke, Viktor [Gutachter] Pidstrygach, and Ingo [Gutachter] Witt. "Benjamini-Schramm Convergence of Normalized Characteristic Numbers of Riemannian Manifolds / Daniel Luckhardt ; Gutachter: Thomas Schick, Ralf Meyer, Stephan Huckemann, Russell Luke, Viktor Pidstrygach, Ingo Witt ; Betreuer: Thomas Schick." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/1209358239/34.
Full textGuevara, Stefan Alberto Gómez. "Unificando o análise local do método de Newton em variedades Riemannianas." Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/6951.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-20T13:11:14Z (GMT) No. of bitstreams: 2 Dissertação - Stefan Alberto Gómez Guevara - 2017.pdf: 2201042 bytes, checksum: bd12be92bd41bae24c13758a1fc1a73d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-03-20T13:11:14Z (GMT). No. of bitstreams: 2 Dissertação - Stefan Alberto Gómez Guevara - 2017.pdf: 2201042 bytes, checksum: bd12be92bd41bae24c13758a1fc1a73d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-08
In this work we consider the problem of finding a singularity of a field of differentiable vectors X on a Riemannian manifold. We present a local analysis of the convergence of Newton's method to find a singularity of field X on an increasing condition. The analysis shows a relationship between the major function and the vector field X. We also present a semi-local Kantorovich type analysis in the Riemannian context under a major condition. The two results allow to unify some previously unrelated results.
Neste trabalho consideramos o problema de encontrar uma singularidade de um campo de vetores diferenciável X sobre uma variedade Riemanniana. Apresentamos uma análise local da convergência do método de Newton para encontrar uma singularidade do Campo X sobre uma condição majorante. A análise mostra uma relação entre a função majorante e o campo de vetores X. Também apresentamos uma análise semi-local do tipo Kantorovich no contexto Riemanniana sob uma condição majorante. Os dois resultados permitem unificar alguns resultados não previamente.
Erb, Wolfgang. "Uncertainty principles on Riemannian manifolds." kostenfrei, 2010. https://mediatum2.ub.tum.de/node?id=976465.
Full textDunn, Corey. "Curvature homogeneous pseudo-Riemannian manifolds /." view abstract or download file of text, 2006. http://proquest.umi.com/pqdweb?did=1188874491&sid=3&Fmt=2&clientId=11238&RQT=309&VName=PQD.
Full textTypescript. Includes vita and abstract. Includes bibliographical references (leaves 146-147). Also available for download via the World Wide Web; free to University of Oregon users.
Longa, Eduardo Rosinato. "Hypersurfaces of paralellisable Riemannian manifolds." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/158755.
Full textWe introduce a Gauss map for hypersurfaces of paralellisable Riemannian manifolds and de ne an associated curvature. Next, we prove a Gauss- Bonnet theorem. As an example, we carefully study the case where the ambient space is an Euclidean sphere minus a point and obtain a topological rigidity theorem. We use it to provide an alternative proof for a theorem of Qiaoling Wang and Changyu Xia, which asserts that if an orientable immersed hypersurface of the sphere is contained in an open hemisphere and has nowhere zero Gauss-Kronecker curvature, then it is di eomorphic to a sphere. Later, we obtain some topological invariants for hypersurfaces of translational manifolds that depend on the geometry of the manifold and the ambient space. Finally, we nd obstructions to the existence of certain codimension-one foliations.
Catalano, Domenico Antonino. "Concircular diffeomorphisms of pseudo-Riemannian manifolds /." [S.l.] : [s.n.], 1999. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13064.
Full textAfsari, Bijan. "Means and averaging on riemannian manifolds." College Park, Md. : University of Maryland, 2009. http://hdl.handle.net/1903/9978.
Full textThesis research directed by: Dept. of Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Popiel, Tomasz. "Geometrically-defined curves in Riemannian manifolds." University of Western Australia. School of Mathematics and Statistics, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0119.
Full textBooks on the topic "Convergence of Riemannian manifolds"
Lee, John M. Riemannian Manifolds. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/b98852.
Full textLee, John M. Introduction to Riemannian Manifolds. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91755-9.
Full textTondeur, Philippe. Foliations on Riemannian Manifolds. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4613-8780-0.
Full textLang, Serge, ed. Differential and Riemannian Manifolds. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4182-9.
Full textLang, Serge. Differential and Riemannian manifolds. New York: Springer-Verlag, 1995.
Find full textTondeur, Philippe. Foliations on Riemannian manifolds. New York: Springer-Verlag, 1988.
Find full textHebey, Emmanuel. Sobolev Spaces on Riemannian Manifolds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0092907.
Full textBerestovskii, Valerii, and Yurii Nikonorov. Riemannian Manifolds and Homogeneous Geodesics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56658-6.
Full textC, Wood John, ed. Harmonic morphisms between Riemannian manifolds. Oxford: Clarendon Press, 2003.
Find full textBook chapters on the topic "Convergence of Riemannian manifolds"
Godinho, Leonor, and José Natário. "Riemannian Manifolds." In Universitext, 95–122. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08666-8_3.
Full textDeWitt, Bryce, and Steven M. Christensen. "Riemannian Manifolds." In Bryce DeWitt's Lectures on Gravitation, 51–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-36911-0_4.
Full textSaller, Heinrich. "Riemannian Manifolds." In Operational Spacetime, 29–80. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0898-8_3.
Full textWells, Raymond O. "Riemannian Manifolds." In Differential and Complex Geometry: Origins, Abstractions and Embeddings, 187–210. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58184-2_13.
Full textTorres del Castillo, Gerardo F. "Riemannian Manifolds." In Differentiable Manifolds, 115–60. Boston: Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8271-2_6.
Full textBurago, Yuriĭ Dmitrievich, and Viktor Abramovich Zalgaller. "Riemannian Manifolds." In Geometric Inequalities, 232–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-07441-1_6.
Full textBerestovskii, Valerii, and Yurii Nikonorov. "Riemannian Manifolds." In Springer Monographs in Mathematics, 1–74. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56658-6_1.
Full textTorres del Castillo, Gerardo F. "Riemannian Manifolds." In Differentiable Manifolds, 141–202. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45193-6_6.
Full textKühnel, Wolfgang. "Riemannian manifolds." In The Student Mathematical Library, 189–224. Providence, Rhode Island: American Mathematical Society, 2005. http://dx.doi.org/10.1090/stml/016/05.
Full textAubin, Thierry. "Riemannian manifolds." In Graduate Studies in Mathematics, 111–67. Providence, Rhode Island: American Mathematical Society, 2000. http://dx.doi.org/10.1090/gsm/027/06.
Full textConference papers on the topic "Convergence of Riemannian manifolds"
OU, YE-LIN. "BIHARMONIC MORPHISMS BETWEEN RIEMANNIAN MANIFOLDS." In Differential Geometry in Honor of Professor S S Chern. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792051_0018.
Full textSnoussi, Hichem, and Ali Mohammad-Djafari. "Particle Filtering on Riemannian Manifolds." In Bayesian Inference and Maximum Entropy Methods In Science and Engineering. AIP, 2006. http://dx.doi.org/10.1063/1.2423278.
Full textKASHANI, S. M. B. "ON COHOMOGENEITY ONE RIEMANNIAN MANIFOLDS." In Proceedings of the Summer School. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810571_0010.
Full textBrendle, Simon, and Richard Schoen. "Riemannian Manifolds of Positive Curvature." In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0021.
Full textElworthy, K. D., and Feng-Yu Wang. "Essential spectrum on Riemannian manifolds." In Proceedings of the First Sino-German Conference on Stochastic Analysis (A Satellite Conference of ICM 2002). WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702241_0010.
Full textJacobs, H., S. Nair, and J. Marsden. "Multiscale surveillance of Riemannian manifolds." In 2010 American Control Conference (ACC 2010). IEEE, 2010. http://dx.doi.org/10.1109/acc.2010.5531152.
Full textYi Wu, Bo Wu, Jia Liu, and Hanqing Lu. "Probabilistic tracking on Riemannian manifolds." In 2008 19th International Conference on Pattern Recognition (ICPR). IEEE, 2008. http://dx.doi.org/10.1109/icpr.2008.4761046.
Full textYang, Hyun Seok. "Riemannian Manifolds and Gauge Theory." In Proceedings of the Corfu Summer Institute 2011. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.155.0063.
Full textLee, Sangyul, and Hee-Seok Oh. "Robust Multivariate Regression on Riemannian Manifolds." In 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2020. http://dx.doi.org/10.1109/dsaa49011.2020.00099.
Full textChazal, Frédéric, Leonidas J. Guibas, Steve Y. Oudot, and Primoz Skraba. "Persistence-based clustering in riemannian manifolds." In the 27th annual ACM symposium. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1998196.1998212.
Full textReports on the topic "Convergence of Riemannian manifolds"
Bozok, Hülya Gün. Bi-slant Submersions from Kenmotsu Manifolds onto Riemannian Manifolds. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, March 2020. http://dx.doi.org/10.7546/crabs.2020.03.05.
Full textChiang, Yuan-Jen. f-biharmonic Maps Between Riemannian Manifolds. GIQ, 2013. http://dx.doi.org/10.7546/giq-14-2013-74-86.
Full textDušek, Zdenek. Examples of Pseudo-Riemannian G.O. Manifolds. GIQ, 2012. http://dx.doi.org/10.7546/giq-8-2007-144-155.
Full textChiang, Yuan-Jen. f-biharmonic Maps Between Riemannian Manifolds. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-27-2012-45-58.
Full textMirzaei, Reza. Cohomogeneity Two Riemannian Manifolds of Non-Positive Curvature. GIQ, 2012. http://dx.doi.org/10.7546/giq-13-2012-233-244.
Full textIyer, R. V., R. Holsapple, and D. Doman. Optimal Control Problems on Parallelizable Riemannian Manifolds: Theory and Applications. Fort Belvoir, VA: Defense Technical Information Center, January 2002. http://dx.doi.org/10.21236/ada455175.
Full textR. Mirzaie. Topological Properties of Some Cohomogeneity on Riemannian Manifolds of Nonpositive Curvature. GIQ, 2012. http://dx.doi.org/10.7546/giq-3-2002-351-359.
Full textTanimura, Shogo. Path Integrals on Riemannian Manifolds with Symmetry and Stratified Gauge Structure. GIQ, 2012. http://dx.doi.org/10.7546/giq-3-2002-431-441.
Full text