To see the other types of publications on this topic, follow the link: Convection mathematics.

Dissertations / Theses on the topic 'Convection mathematics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Convection mathematics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Wu, Gang 1962 June 18. "An introduction to dendritic growth with convection /." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60665.

Full text
Abstract:
In this thesis I intend to summarize several theories dealing with dendritic growth with convection. I have also looked into a special case where the convection motion is induced by the density change in phase transition. In terms of a small parameter $ alpha$, measuring the relating density change, the second order approximate solution is obtained by using regular perturbation method.
APA, Harvard, Vancouver, ISO, and other styles
2

Worthing, Rodney A. (Rodney Alan). "Contributions to the variational theory of convection." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/10577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Ping. "Thermal convection in slender laterally-heated cavities." Thesis, City University London, 1992. http://openaccess.city.ac.uk/7995/.

Full text
Abstract:
Two-dimensional convective flows in shallow and tall cavities with adiabatic or conducting horizontal boundaries and driven by differential heating of the two vertical end walls, are studied numerically over a range of Rayleigh numbers and Prandtl numbers. As the Rayleigh number increases, nonlinearity first affects the flow structure in the turning regions near the ends of the cavity. These `end-zone problems' have been investigated by a combined computational and analytical approach. Numerical solutions are found using a DuFort-Frankel-Multigrid method, and appear to be in good agreement with theoretical predictions of a boundary-layer structure at high values of the Rayleigh number. For time-dependent shallow cavity flows, new theoretical solutions and numerical solutions are obtained by both analytical and computational methods. A numerical scheme for finding thermal convective flows in a finite laterally heated cavity is described in detail in Chapter 2. The end-zone problems for tall cavities with conducting and adiabatic horizontal boundaries are considered in Chapters 3 and 4 respectively. For shallow cavities, the end-zone problems for these two thermal boundary conditions are considered in Chapters 5 and 6. Finally, timedependent shallow cavity flows for insulated horizontal boundaries are investigated using both analytical and computational methods in Chapter 7.
APA, Harvard, Vancouver, ISO, and other styles
4

Tang, Kit Yee. "Double-diffusive convection in a vertical slot." Thesis, City University London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tracey, John. "Stability analyses of multi-component convection-diffusion problems." Thesis, University of Glasgow, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Acomb, Simon. "Applications of nonlinear dynamics to time dependent thermal convection." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chan, Wing-Le. "Radiative transfer and cellular convection in a model atmosphere." Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hill, Adrian T. "Attractors for convection-diffusion equations and their numerical approximation." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sivapragasam, Valerie. "Finite-amplitude patterns of convection near a lateral boundary." Thesis, City University London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chiang, Weng Cheng Venus. "High-order finite difference methods for solving convection diffusion equations." Thesis, University of Macau, 2008. http://umaclib3.umac.mo/record=b1807119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Zhang, Zhengru. "Moving mesh methods for convection-dominated equations and nonlinear conservation laws." HKBU Institutional Repository, 2003. http://repository.hkbu.edu.hk/etd_ra/512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Houston, Paul D. "Lagrange-Galerkin methods for unsteady convection-diffusion problems : a posteriori error analysis and adaptivity." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Chow, Peter M. Y. "Control volume unstructured mesh procedure for convection-diffusion solidification processes." Thesis, University of Greenwich, 1993. http://gala.gre.ac.uk/6133/.

Full text
Abstract:
The research work presented herein addresses the unstructured mesh problem in finite volume (FV) or control volume (CV) method used in numerical simulations. The modelling work conducted is in context of solidification for casting processes. The control volume-unstructured mesh (CV-UM) method can be categorised into two approaches, a vertex-centred and a cell-centred approach. The classification of the approach is based on the relationship between the control volume and the unstructured mesh. The vertex-centred is naturally unstructured and has been used successfully in fluid flow and heat transfer calculations. The cell-centred on the other hand has always been associated with structured (quadrilateral) meshes, this has been extended to handle unstructured mesh in the current work and is called the irregular control volume (ICV) method. Both approaches have been studied for solidification by conduction only, using several standard phase change test cases and one with experimental data from the casting industry. The result of this work is reported and their suitability for solidification addressed. For the ICV method, the extension to solve the full convective-diffusive solidification was undertaken, these are primarily the fluid flow and energy equations solved using the well known SIMPLE algorithm. One spin-off from the ICV is the appearance of "highorder cell" control volumes, control volumes with more than the standard four cell faces in two-dimensions. The high-order cell technique is exhibiting the same characteristics as high-order schemes used in standard CV method, when applied to standard CFD test cases. The one current drawback for the technique is the generation of these high-ordercells, currently no fully- or semi-automatic mesh generation is available. This prevented further study of the technique and used in the solidification test cases, where in one, experimental data is available for the phase change fronts. This was carried Out using quadrilateral meshes, but solved using the unstructured approach of the ICV. The predicted solution is in qualitative agreement with experiment. The second convective-diffusive solidification problem is the first to demonstrate the CV-UM integrated framework by solving two major casting components simultaneously, the solidification (the work undertaken in this research) and the residual stress for deformation. This is still an on going research work, where refinement and validation are required and further integration of casting processes, such as mould filling, are necessary to complete the various stages of the shape casting process. This kind of integrated simulation requires huge amount of computations, it will take days for traditional scalar computers to do one prediction. Vector and parallel machines offer ways in which to bring down the computing times to a level that is in hours instead of days. To utilise machines with vector and parallel capability efficiently, the algorithm of the model process need to be mapped onto such architectures for it to take full advantage of the computing powers. The solidification algorithm in threedimensions has been vectorised and a speed-up of five is possible. This was part of a collective study into mapping algorithms Onto vector and parallel computers, where it emerged that the ideal computing architecture is a network of processors each with its own vector capabilities.
APA, Harvard, Vancouver, ISO, and other styles
14

Finlay, Leslie. "Hydrodynamic Stability of Free Convection from an Inclined Elliptic Cylinder." Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2929.

Full text
Abstract:
The steady problem of free convective heat transfer from an isothermal inclined elliptic cylinder and its stability is investigated. The cylinder is inclined at an arbitrary angle with the horizontal and immersed in an unbounded, viscous, incompressible fluid. It is assumed that the flow is laminar and two-dimensional and that the Boussinesq approximation is valid. The full steady Navier-Stokes and thermal energy equations are transformed to elliptical co-ordinates and an asymptotic analysis is used to find appropriate far-field conditions. A numerical scheme based on finite differences is then used to obtain numerical solutions. Results are found for small to moderate Grashof and Prandtl numbers, and varying ellipse inclinations and aspect ratios.

A linear stability analysis is performed to determine the critical Grashof number at which the flow loses stability. Comparisons are made with long-time unsteady solutions.
APA, Harvard, Vancouver, ISO, and other styles
15

Sharpe, Michael Anthony. "On convection and stability of some welding and solidification processes." Thesis, University of Southampton, 2000. https://eprints.soton.ac.uk/50624/.

Full text
Abstract:
In this thesis a variety of problems are considered, the first of which is associated with the welding process. Experiments indicate that the shape of a weld pool is influenced by convection in the liquid metal. In recent years it has been shown that this convection is crucially affected by the Marangoni (or thermocapillary) force. Recently Craine and Belgrove ([30], [7]) have developed a two-dimensional, axisymmetric model which includes the Marangoni force on the free surface of a semi-infinite region of liquid steel when a point source of current and heat is incident on the free surface. An asymptotic solution to this problem is obtained in this thesis, and the surface tension gradient with respect to temperature, dj/dT, a parameter which is crucial to the magnitude of the Marangoni force, is found to affect every coefficient in the leading and first order asymptotic expansions. In various theoretical and experimental models purely poloidal flow bifurcates to a rotating flow. To investigate this possibility for our flow a linear stability analysis is performed on a numerically obtained poloidal solution for the flow and temperature distribution in a hemisphere (a model first derived in [7]). For the azimuthal stability mode m = 0 the equation governing the linear stability of the rotating motion is found to decouple from the corresponding poloidal equations. The poloidal and azimuthal stability equations both become unstable at different critical currents dependent on the sign and magnitude of d^/dT. An investigation of the eigenvectors indicates the onset of instability near to the point source. For the upper modes instability occurs only when m = 1 and in a very small region of parameter space. In the second part of this thesis a freezing sphere problem with flow is used to compare a sharp interface Stefan model and a diffuse interface phase-field model. Firstly a Stefan model that includes a disparity between the density of the solid and liquid phases is derived and solved numerically. This model is compared with a recent phase-field model with flow, derived by Anderson et al. in [2]. In this thesis the one-dimensional isotropic version of Anderson's model is obtained in spherical polar coordinates and using certain simplifications when the dimensionless thickness of the interface £5 is vanishingly small a leading order asymptotic expression reproduces the Stefan model with flow. The phase-field model is subsequently modified and solved numerically, and the results are compared with the sharp interface model. Close agreement is observed between these models when es < 0.01.
APA, Harvard, Vancouver, ISO, and other styles
16

Patel, Mayur K. "On the false-diffusion problem in the numerical modelling of convection-diffusion processes." Thesis, University of Greenwich, 1986. http://gala.gre.ac.uk/8697/.

Full text
Abstract:
This thesis is concerned with the classification and evaluation of various numerical schemes that are available for computing solutions for fluid-flow problems, and secondly, with the development of an improved numerical discretisation scheme of the finite-volume type for solving steady-state differential equations for recirculating flows with and without sources. In an effort to evaluate the performance of the various numerical schemes available, some standard test cases were used. The relative merits of the schemes were assessed by means of one-dimensional laminar flows and two-dimensional laminar and turbulent flows, with and without sources. Furthermore, Taylor series expansion analysis was also utilised to examine the limitations that were present. The outcome of this first part of the work was a set of conclusions, concerning the accuracy of the numerous schemes tests, vis-a-vis their stability, ease of implementation, and computational costs. It is hoped that these conclusions can be used by `computational fluid-dynamics' practitioners in deciding on an optimum choice of scheme for their particular problem. From the understanding gained during the first part of the study, and in an effort to combine the attributes of a successful discretisation scheme, eg positive coefficients. conservation and the elimination of 'false-diffusion', a new flow-oriented finite-volume numerical scheme was devised and applied to several test cases in order to evaluate its performance. The novel approach in formulating the new CUPID* scheme (for Corner UPw^nDing) underlines the idea of focussing attention at the control-volume corners rather than at the control-volume cell-faces. In two-dimensions, this leads to an eight neighbour influence for the central grid point value, depending on the flow-directions at the corners of the control-volume. In the formulation of the new scheme, false-diffusion is considered from a pragmatic perspective, with emphasis on physics rather than on strict mathematical considerations such as the order of discretisation, etc. The accuracy of the UPSTREAM scheme (for JJPwind in STREAMIines) indicates that although it is formally only first-order accurate, it considerably reduces 'false-diffusion'. Scalar transport calculations (without sources) show that the UPSTREAM scheme predicts bounded solutions which are more accurate than the upwind-difference scheme and the unbounded skew-upstream-difference scheme. Furthermore, for laminar and turbulent flow calculations, improved results are obtained when compared with the performances of the other schemes. The advantage of the UPSTREAM-difference scheme is that all the influence coefficients are always positive and thus the coefficient matrices are suitable for iterative solution procedures. Finally, the stability and convergence characteristics are similar to those of the upwind-difference scheme, eg converged solutions are guaranteed. What cannot be guaranteed, however, is the conservatism of the scheme and it is recommended that future work should be directed towards improving that disadvantage.
APA, Harvard, Vancouver, ISO, and other styles
17

McQuarrie, Shane Alexander. "Data Assimilation in the Boussinesq Approximation for Mantle Convection." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/6951.

Full text
Abstract:
Many highly developed physical models poorly approximate actual physical systems due to natural random noise. For example, convection in the earth's mantle—a fundamental process for understanding the geochemical makeup of the earth's crust and the geologic history of the earth—exhibits chaotic behavior, so it is difficult to model accurately. In addition, it is impossible to directly measure temperature and fluid viscosity in the mantle, and any indirect measurements are not guaranteed to be highly accurate. Over the last 50 years, mathematicians have developed a rigorous framework for reconciling noisy observations with reasonable physical models, a technique called data assimilation. We apply data assimilation to the problem of mantle convection with the infinite-Prandtl Boussinesq approximation to the Navier-Stokes equations as the model, providing rigorous conditions that guarantee synchronization between the observational system and the model. We validate these rigorous results through numerical simulations powered by a flexible new Python package, Dedalus. This methodology, including the simulation and post-processing code, may be generalized to many other systems. The numerical simulations show that the rigorous synchronization conditions are not sharp; that is, synchronization may occur even when the conditions are not met. These simulations also cast some light on the true relationships between the system parameters that are required in order to achieve synchronization. To conclude, we conduct experiments for two closely related data assimilation problems to further demonstrate the limitations of the rigorous results and to test the flexibility of data assimilation for mantle-like systems.
APA, Harvard, Vancouver, ISO, and other styles
18

Boronska, Katarzyna. "Motifs tridimensionnels dans la convection de Rayleigh-Benard." Phd thesis, Université Paris-Diderot - Paris VII, 2005. http://tel.archives-ouvertes.fr/tel-00337840.

Full text
Abstract:
Nous simulons numériquement les équations de Boussinesq pour la convection de Rayleigh-Bénard en récipient cylindrique. Dans la première partie, pour un rapport d'aspect d'environ 1.5, le nombre de Prandtl 1 et parois verticales isolantes, une transition d'un écoulement stationnaire axisymétrique vers des écoulements non-stationnaires est étudiée, par moyens de simulations non-linéaires, analyse de stabilité linéaire et théorie de bifurcations. Pour un nombre de Rayleigh d'environ $25\,000$, l'état axisymétrique devient instable vers les ondes azimutales stationnaires ou progressives. Les ondes stationnaires sont légèrement instables vers les ondes progressives. Ce scénario est identifié comme une bifurcation de Hopf dans un système avec une symétrie $O(2)$. Dans la deuxième partie nous étudions le phénomène de coexistence d'états stables pour le rapport d'aspect 2, le nombre de Prandtl 6.7 et les parois verticales soit parfaitement isolantes, soit parfaitement conductrices. En faisant varier le nombre de Rayleigh et les conditions initiales, nous obtenons une grande variété de motifs convectifs pour le même nombre de Rayleigh. Nous donnons un diagramme de bifurcations préliminaire, montrant les branches stables. Les résultats pour les parois verticales parfaitement isolantes sont en bon accord avec les expériences.
APA, Harvard, Vancouver, ISO, and other styles
19

Alfaro, Matthieu. "Systèmes de convection-réaction-diffusion et dynamique d'interface." Phd thesis, Université Paris Sud - Paris XI, 2006. http://tel.archives-ouvertes.fr/tel-00134258.

Full text
Abstract:
Cette thèse porte sur la limite singulière d'équations et de systèmes d'équations paraboliques non-inéaires de type bistable, avec des conditions initiales générales. Nous prouvons des propriétés de génération d'interface et analysons le déplacement d'interface. Nous obtenons une estimation nouvelle et
optimale de l'épaisseur et de la localisation de la zone de transition, améliorant ainsi des résultats connus pour différents problèmes modèles.
APA, Harvard, Vancouver, ISO, and other styles
20

Akman, Tugba. "Discontinuous Galerkin Methods For Time-dependent Convection Dominated Optimal Control Problems." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613394/index.pdf.

Full text
Abstract:
Distributed optimal control problems with transient convection dominated diffusion convection reaction equations are considered. The problem is discretized in space by using three types of discontinuous Galerkin (DG) method: symmetric interior penalty Galerkin (SIPG), nonsymmetric interior penalty Galerkin (NIPG), incomplete interior penalty Galerkin (IIPG). For time discretization, Crank-Nicolson and backward Euler methods are used. The discretize-then-optimize approach is used to obtain the finite dimensional problem. For one-dimensional unconstrained problem, Newton-Conjugate Gradient method with Armijo line-search. For two-dimensional control constrained problem, active-set method is applied. A priori error estimates are derived for full discretized optimal control problem. Numerical results for one and two-dimensional distributed optimal control problems for diffusion convection equations with boundary layers confirm the predicted orders derived by a priori error estimates.
APA, Harvard, Vancouver, ISO, and other styles
21

Lao, Kun Leng. "Multigrid algorithm based on cyclic reduction for convection diffusion equations." Thesis, University of Macau, 2010. http://umaclib3.umac.mo/record=b2148274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Texier-Picard, Rozenn. "Problèmes de réaction-diffusion avec convection : Une étude mathématique et numérique." Phd thesis, Université Claude Bernard - Lyon I, 2002. http://tel.archives-ouvertes.fr/tel-00002038.

Full text
Abstract:
Nous étudions mathématiquement et numériquement des problèmes de réaction-diffusion avec convection. Dans la première partie, nous montrons sous certaines conditions que les opérateurs considérés ont la propriété de Fredholm, sont propres, et nous construisons un degré topologique pour ces opérateurs. Nous utilisons le degré pour étudier les bifurcations pour un problème d'ondes progressives de réaction-diffusion-convection, et nous montrons l'existence de fronts de réaction modifiés par la convection naturelle. Nous nous intéressons également aux instabilités convectives pour ces solutions. Nous étudions dans la deuxième partie l'influence de la tension de surface sur la stabilité des fronts. Dans le cas de liquides non miscibles, nous montrons que l'interaction de la tension de surface et de la réaction chimique peut conduire à une instabilité nouvelle. Dans le cas de liquides miscibles, nous modélisons la tension transitoire par une contrainte supplémentaire dans les équations de Navier-Stokes. Nous montrons que le problème mathématique correspondant a une solution unique, et nous observons numériquement que les gradients de concentration peuvent engendrer des courants convectifs. Nous simulons l'évolution d'une goutte miscible sous l'influence de ces courants~: elle est comparable à celle d'une goutte non miscible sous l'action de la tension de surface, avec une tendance à s'arrondir ou à se scinder en gouttelettes. Nous montrons numé\-ri\-quement que la tension transitoire peut amplifier de petites déformations de fronts plans.
APA, Harvard, Vancouver, ISO, and other styles
23

Yarimpabuc, Durmus. "Numerical Simulation Of Thermal Convection Under The Influence Of A Magnetic Field By Using Solenoidal Bases." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613393/index.pdf.

Full text
Abstract:
The effect of an imposed magnetic field on the thermal convection between rigid plates heated from below under the influence of gravity is numerically simulated in a computational domain with periodic horizontal extent. The numerical technique is based on solenoidal basis functions satisfying the boundary conditions for both velocity and induced magnetic field. The expansion bases for the thermal field are also constructed to satisfy the boundary conditions. The governing partial differential equations are reduced to a system of ordinary differential equations governing the time evolution of the expansion coefficients under Galerkin projection onto the subspace spanned by the dual bases. In the process, the pressure term in the momentum equation is eliminated. The system validated in the linear regime is then used for some numerical experiments in the nonlinear regime.
APA, Harvard, Vancouver, ISO, and other styles
24

Auth, Christian. "Plate tectonics in computational simulations of terrestrial mantle convection with grain-size-dependent rheology." [S.l.] : [s.n.], 2001. http://webdoc.sub.gwdg.de/diss/2002/auth/auth.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Pankratova, Iryna. "L'homogénéisation d'équations de convection-diffusion singulières et de problèmes spectraux à poids indéfini." Phd thesis, Ecole Polytechnique X, 2011. http://pastel.archives-ouvertes.fr/pastel-00593511.

Full text
Abstract:
Le but de la thèse est d'étudier l'homogénéisation d'équations de convection-diffusion singulières et de problèmes spectraux à poids indéfini. La thèse se compose de deux parties. La première partie contient des résultats qualitatifs et asymptotiques pour les solutions d'équations de type convection-diffusion stationnaires et instationnaires, qui sont définies dans des domaines bornés ou nonbornés. Les problèmes examinés comprennent des études qualitatives pour une équation elliptique avec des termes du premier ordre dans un cylindre semi-infini, l'homogénéisation de modèles de convection-diffusion dans des cylindres minces et une analyse asymptotique d'équations de convection-diffusion instationnaires avec un grand terme du premier ordre, posées dans un domaine borné. La deuxième partie de la thèse porte sur l'homogénéisation de problèmes spectraux à poids indéfini, pouvant changer de signe. On montre que le comportement asymptotique dépend essentiellement de la moyenne du poids, notamment si la moyenne est nulle ou non nulle. On construit alors le développement asymptotique du spectre dans les deux cas.
APA, Harvard, Vancouver, ISO, and other styles
26

Wood, Dylan M. "Solving Unsteady Convection-Diffusion Problems in One and More Dimensions with Local Discontinuous Galerkin Methods and Implicit-Explicit Runge-Kutta Time Stepping." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461181441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Coudière, Yves. "Contributions à l'analyse numérique de méthodes de volumes finis, à la modélisation et au calcul en électrocardiologie." Habilitation à diriger des recherches, Université de Nantes, 2009. http://tel.archives-ouvertes.fr/tel-00421901.

Full text
Abstract:
L'étude mathématique des modèles et des méthodes de calcul en électrophysiologie des tissus cardiaques constitue la principale motivation de mes travaux de recherche en mathématiques appliquées. Ces travaux ont trouvé des applications en imagerie médicale et en bioingénierie grâce aux simulations numériques que nous avons rendues possibles. Les équations d'électrocardiologie, de type réaction-diffusion dégénérée, peuvent être discrétisées efficacement par des méthodes de volumes finis.
Ce mémoire synthétise l'ensemble des résultats de mes travaux dans ces domaines, c'est à dire : analyse des équations aux dérivées partielles d'électrocardiologie, expérimentation et applications numériques d'une part; introduction de nouveaux schémas et analyse numérique de méthodes de volumes finis pour des problèmes de diffusion anisotrope, de convection-diffusion et des systèmes hyperboliques linéaires d'autre part.
Ces travaux visent une meilleure compréhension scientifique des équations de l'électrophysiologie et plus généralement du fonctionnement électrique d'un tissu cardiaque ou du coeur entier.
APA, Harvard, Vancouver, ISO, and other styles
28

Pachev, Benjamin Alexander. "Bounds on Heat Transfer in the Presence of Ekman Pumping." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8424.

Full text
Abstract:
Rigorous bounds on heat transfer in rapidly rotating convection have existed for several years in the case of free-slip or stress-free boundary conditions. No-slip boundary conditions result in a phenomenon known as Ekman pumping, which significantly impacts the heat transport. A recent collaborative effort in which the author was involved significantly sharpened the bound on heat transfer in the presence of Ekman pumping. The resulting publication was targeted for an audience consisting primarily of physicists and other non-mathematicians. This work stems from the same effort, but is intended for a mathematical audience. Two additional, new results are presented that provide a more solid mathematical footing. These are firstly, a rigorous justification of the infinite Prandtl limit relied on in the referenced work, and secondly, a maximum principle for the temperature field, which provides the needed justification for the application of the background method.
APA, Harvard, Vancouver, ISO, and other styles
29

Michel, Anthony. "Convergence de schémas volumes finis pour des problèmes de convection diffusion non linéaires." Phd thesis, Université de Provence - Aix-Marseille I, 2001. http://tel.archives-ouvertes.fr/tel-00002553.

Full text
Abstract:
Ce mémoire est centré autour de l'analyse numérique de schémas volumes finis pour un modèle simplifié d'écoulement de deux fluides incompressibles en milieu poreux. Ces phénomènes sont souvent qualifiés de phénomènes de convection diffusion à convection dominante (``convection dominated problems'' en anglais). La première partie du mémoire est consacrée à l'approximation numérique d'équations paraboliques hyperboliques faiblement ou fortement dégénérées. Les trois premiers chapitres sont consacrés à l'étude de la convergence de schémas volumes finis. Le dernier chapitre est consacré à l'analyse des résultats numériques obtenus. La seconde partie est consacrée à l'analyse numérique d'un modèle simplifié d'écoulement diphasique en milieu poreux par deux schémas différents. Le premier schéma dit ``des mathématiciens'' est basé sur la réécriture du système étudié sous la forme d'une équation parabolique hyperbolique sur la saturation et d'une équation elliptique sur la pression, ces deux équations étant couplées par le coefficient de diffusion. Le second schéma dit schéma ``des pétroliers'' est une méthode numérique utilisée en pratique dans l'industrie pétrolière. Les deux schémas sont analysés séparément et ils sont ensuite comparés numériquement.
APA, Harvard, Vancouver, ISO, and other styles
30

Chalhoub, Nancy. "Estimations a posteriori pour l'équation de convection-diffusion-réaction instationnaire et applications aux volumes finis." Phd thesis, Université Paris-Est, 2012. http://pastel.archives-ouvertes.fr/pastel-00794392.

Full text
Abstract:
On considère l'équation de convection-diffusion-réaction instationnaire. On s'intéresse à la dérivation d'estimations d'erreur a posteriori pour la discrétisation de cette équation par la méthode des volumes finis centrés par mailles en espace et un schéma d'Euler implicite en temps. Les estimations, qui sont établies dans la norme d'énergie, bornent l'erreur entre la solution exacte et une solution post-traitée à l'aide de reconstructions H(div, Ω)-conformes du flux diffusif et du flux convectif, et d'une reconstruction H_0^1(Ω)-conforme du potentiel. On propose un algorithme adaptatif qui permet d'atteindre une précision relative fixée par l'utilisateur en raffinant les maillages adaptativement et en équilibrant les contributions en espace et en temps de l'erreur. On présente également des essais numériques. Enfin, on dérive une estimation d'erreur a posteriori dans la norme d'énergie augmentée d'une norme duale de la dérivée en temps et de la partie antisymétrique de l'opérateur différentiel. Cette nouvelle estimation est robuste dans des régimes dominés par la convection et des bornes inférieures locales en temps et globales en espace sont également obtenues.
APA, Harvard, Vancouver, ISO, and other styles
31

PARDO, OLIVIER. "Contribution à l'étude et à la modélisation d'un modèle de convection-diffusion dégénéré : application à l'étude du comportement migratoire des civelles dans l'estuaire de l'Adour." Phd thesis, Université de Pau et des Pays de l'Adour, 2002. http://tel.archives-ouvertes.fr/tel-00002291.

Full text
Abstract:
La gestion des ressources marines est l'un des enjeux majeurs du XXIe siècle. Les travaux présentés dans cette thèse portent sur l'étude du comportement migratoire des civelles (larves d'anguilles) dans l'estuaire de l'Adour. Le modèle, qui est constitué d'une équation aux dérivées partielles dégénérée de convection diffusion en 2D, prend en compte l'influence de la marée dynamique (système d'équations non linéaires dégénérées de Saint-Venant) et l'intensité lumineuse dans la colonne d'eau. Dans un premier temps, en appliquant la théorie du degré topologique nous avons montré l'existence de solutions stationnaires du modèle hydrodynamique. Par la suite, en injectant ces solutions dans notre modèle migratoire, nous avons établi l'existence de solutions en employant la théorie des semi-groupes, la méthode des caractéristiques et le théorème de J.-L. Lions. La positivité et des estimations a priori des densités biologiques avaient été fournies auparavant. Dans un second temps, nous présentons notre approche numérique. A l'aide des directions alternées et des pas fractionnaires dans un domaine réel de 30 km de long et de hauteur d'eau variable (bathymétrie réelle et influence de la marée) les résultats obtenus reproduisent bien qualitativement ce qui était attendu.
APA, Harvard, Vancouver, ISO, and other styles
32

Bessemoulin-Chatard, Marianne. "Développement et analyse de schémas volumes finis motivés par la préservation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2012. http://tel.archives-ouvertes.fr/tel-00763720.

Full text
Abstract:
Cette thèse est dédiée au développement et à l'analyse de schémas numériques de type volumes finis pour des équations de convection-diffusion, qui apparaissent notamment dans des modèles issus de la physique ou de la biologie. Nous nous intéressons plus particulièrement à la préservation de comportements asymptotiques au niveau discret. Ce travail s'articule en trois parties, composées chacune de deux chapitres. Dans la première partie, nous considérons la discrétisation du système de dérive-diffusion linéaire pour les semi-conducteurs par le schéma de Scharfetter-Gummel implicite en temps. Nous nous intéressons à la préservation par ce schéma de deux types d'asymptotiques : l'asymptotique en temps long et la limite quasi-neutre. Nous démontrons des estimations d'énergie--dissipation d'énergie discrètes qui permettent de prouver d'une part la convergence en temps long de la solution approchée vers une approximation de l'équilibre thermique, d'autre part la stabilité à la limite quasi-neutre du schéma. Dans la deuxième partie, nous nous intéressons à des schémas volumes finis préservant l'asymptotique en temps long dans un cadre plus général. Plus précisément, nous considérons des équations de type convection-diffusion non linéaires qui apparaissent dans plusieurs contextes physiques : équations des milieux poreux, système de dérive-diffusion pour les semi-conducteurs... Nous proposons deux discrétisations en espace permettant de préserver le comportement en temps long des solutions approchées. Dans un premier temps, nous étendons la définition du flux de Scharfetter-Gummel pour une diffusion non linéaire. Ce schéma fournit des résultats numériques satisfaisants si la diffusion ne dégénère pas. Dans un second temps, nous proposons une discrétisation dans laquelle nous prenons en compte ensemble les termes de convection et de diffusion, en réécrivant le flux sous la forme d'un flux d'advection. Le flux numérique est défini de telle sorte que les états d'équilibre soient préservés, et nous utilisons une méthode de limiteurs de pente pour obtenir un schéma précis à l'ordre deux en espace, même dans le cas dégénéré. Enfin, la troisième et dernière partie est consacrée à l'étude d'un schéma numérique pour un modèle de chimiotactisme avec diffusion croisée pour lequel les solutions n'explosent pas en temps fini, quelles que soient les données initiales. L'étude de la convergence du schéma repose sur une estimation d'entropie discrète nécessitant l'utilisation de versions discrètes d'inégalités fonctionnelles telles que les inégalités de Poincaré-Sobolev et de Gagliardo-Nirenberg-Sobolev. La démonstration de ces inégalités fait l'objet d'un chapitre indépendant dans lequel nous proposons leur étude dans un contexte assez général, incluant notamment le cas de conditions aux limites mixtes et une généralisation au cadre des schémas DDFV.
APA, Harvard, Vancouver, ISO, and other styles
33

Tyler, Jonathan G. "Analysis and Implementation of High-Order Compact Finite Difference Schemes." BYU ScholarsArchive, 2007. https://scholarsarchive.byu.edu/etd/1278.

Full text
Abstract:
The derivation of centered compact schemes at interior and boundary grid points is performed and an analysis of stability and computational efficiency is given. Compact schemes are high order implicit methods for numerical solutions of initial and/or boundary value problems modeled by differential equations. These schemes generally require smaller stencils than the traditional explicit finite difference counterparts. To avoid numerical instabilities at and near boundaries and in regions of mesh non-uniformity, a numerical filtering technique is employed. Experiments for non-stationary linear problems (convection, heat conduction) and also for nonlinear problems (Burgers' and KdV equations) were performed. The compact solvers were combined with Euler and fourth-order Runge-Kutta time differencing. In most cases, the order of convergence of the numerical solution to the exact solution was the same as the formal order of accuracy of the compact schemes employed.
APA, Harvard, Vancouver, ISO, and other styles
34

Droniou, Jérôme. "Etude théorique et numérique d'équations aux dérivées partielles elliptiques, paraboliques et non-locales." Habilitation à diriger des recherches, Université Montpellier II - Sciences et Techniques du Languedoc, 2004. http://tel.archives-ouvertes.fr/tel-00008007.

Full text
Abstract:
Nous étudions:

1) la régularité locale de solutions d'EDP elliptiques non-linéaires à données mesures

2) des schémas numériques de type volumes finis pour équations elliptiques à seconds membres peu réguliers

3) l'approximation, par sa régularisation parabolique, d'une loi de conservation scalaire avec conditions au bord

4) des EDP faisant intervenir un opérateur non-local (de type laplacien fractionnaire).
APA, Harvard, Vancouver, ISO, and other styles
35

Bessemoulin-Chatard, Marianne. "Développement et analyse de schémas volumes finis motivés par la présentation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2012. http://tel.archives-ouvertes.fr/tel-00836514.

Full text
Abstract:
Cette thèse est dédiée au développement et à l'analyse de schémas numériques de type volumes finis pour des équations de convection-diffusion, qui apparaissent notamment dans des modèles issus de la physique ou de la biologie. Nous nous intéressons plus particulièrement à la préservation de comportements asymptotiques au niveau discret. Ce travail s'articule en trois parties, composées chacune de deux chapitres. Dans la première partie, nous considérons la discrétisation du système de dérive diffusion linéaire pour les semi-conducteurs par le schéma de Scharfetter-Gummel implicite en temps. Nous nous intéressons à la préservation par ce schéma de deux types d'asymptotiques : l'asymptotique en temps long et la limite quasi-neutre. Nous démontrons des estimations d'énergie-dissipation d'énergie discrètes qui permettent de prouver d'une part la convergence en temps long de la solution approchée vers une approximation de l'équilibre thermique, d'autre part la stabilité à la limite quasi-neutre du schéma. Dans la deuxième partie, nous nous intéressons à des schémas volumes finis préservant l'asymptotique en temps long dans un cadre plus général. Plus précisément, nous considérons des équations de type convection-diffusion non linéaires qui apparaissent dans plusieurs contextes physiques : équations des milieux poreux, système de dérive-diffusion pour les semi-conducteurs... Nous proposons deux discrétisations en espace permettant de préserver le comportement en temps long des solutions approchées. Dans un premier temps, nous étendons la définition du flux de Scharfetter-Gummel pour une diffusion non linéaire. Ce schéma fournit des résultats numériques satisfaisants si la diffusion ne dégénère pas. Dans un second temps, nous proposons une discrétisation dans laquelle nous prenons en compte ensemble les termes de convection et de diffusion, en réécrivant le flux sous la forme d'un flux d'advection. Le flux numérique est défini de telle sorte que les états d'équilibre soient préservés, et nous utilisons une méthode de limiteurs de pente pour obtenir un schéma précis à l'ordre deux en espace, même dans le cas dégénéré. Enfin, la troisième et dernière partie est consacrée à l'étude d'un schéma numérique pour un modèle de chimiotactisme avec diffusion croisée pour lequel les solutions n'explosent pas en temps fini, quelles que soient les données initiales. L'étude de la convergence du schéma repose sur une estimation d'entropie discrète nécessitant l'utilisation de versions discrètes d'inégalités fonctionnelles telles que les inégalités de Poincaré-Sobolev et de Gagliardo-Nirenberg-Sobolev. La démonstration de ces inégalités fait l'objet d'un chapitre indépendant dans lequel nous proposons leur étude dans un contexte assez général, incluant notamment le cas de conditions aux limites mixtes et une généralisation au cadre des schémas DDFV.
APA, Harvard, Vancouver, ISO, and other styles
36

El, Ossmani Mustapha. "Méthodes Numériques pour la Simulation des Ecoulements Miscibles en Milieux Poreux Hétérogènes." Phd thesis, Université de Pau et des Pays de l'Adour, 2005. http://tel.archives-ouvertes.fr/tel-00009683.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à des méthodes numériques pour un modèle d'écoulements incompressibles et miscibles ayant des application dans l'hydrogéologie et l'ingénierie pétrolière. Nous étudions et analysons un schéma numérique combinant une méthode d'éléments finis mixtes (EFM) et une méthode des volumes finis (VF) pour approcher le système couplé entre une équation elliptique (pression-vitesse) et une équation de convection-diffusion-réaction (concentration). Le schéma VF considérée est de type "vertex centred" semi-implicite en temps : explicite pour la convection et implicite pour la diffusion. On utilise un schéma de Godunov pour approcher le terme convectif et une approximation élément fini P1 pour le terme de diffusion. Nous montrons des résultats de stabilité L≂ estimations BV et le principe du maximum discret sous une condition CFL appropriée. Ensuite, nous montrons la convergence de la solution approchée obtenue par le schéma combiné EFM-VF vers la solution du problème couplé. La démonstration de la convergence se fait en plusieurs étapes : premièrement, on déduit la convergence forte de la solution approchée de la concentration dans L2(Q), en utilisant la stabilité L≂, les estimations BV et des arguments de compacité. Dans l'étape suivante, on étudie le schéma découplé EFM, en donnant des résultats de convergence pour la pression et la vitesse. Enfin, le processus de convergence de la solution approchée du schéma combiné EFM-VF vers la solution exacte est obtenu par passage à la limite et par unicité de solution pour le problème continu. Des simulations numériques académiques et réalistes pour des problèmes bidimensionnels confirment la stabilité et l'efficacité du schéma combiné. Enfin, nous étudions des estimateurs d'erreur a posteriori de type résiduel pour une équation de convection-diffusion-réaction discrétisée par un schéma VF "vertex centred" semi-implicite en temps. Nous introduisons deux sortes d'indicateurs. Le premier est local en temps et en espace et constitue un outil efficace pour l'adaptation du maillage à chaque pas de temps. Le second est global en espace mais local en temps et peut être utilisé pour l'adaptation en temps. Nous montrons que l'estimateur est une borne supérieure de l'erreur. Des résultats numériques d'adaptations de maillage sont présentés et montrent l'efficacité de la méthode. La partie logiciels de ce travail porte sur deux volets. Le premier a permis de réaliser un code de calcul 2D, MFlow, écrit en C++, pour la résolution du système des écoulements miscibles considérés dans cette thèse. Le second volet concerne la collaboration avec un groupe de chercheurs pour l'élaboration de la plate-forme Homogenizer++ réalisée dans le cadre du GDR MoMaS (http://momas.univ-lyon1.fr/).
APA, Harvard, Vancouver, ISO, and other styles
37

Martin, Véronique. "Méthodes de décomposition de domaine de type relaxation d'ondes pour des équations de l'océanographie." Phd thesis, Université Paris-Nord - Paris XIII, 2003. http://tel.archives-ouvertes.fr/tel-00583196.

Full text
Abstract:
L'objectif de ce travail est de développer des algorithmes de décomposition de domaine pour des équations de l'océanographie. Les méthodes de décomposition de domaine consistent à décomposer un domaine de calcul de grand taille en plusieurs sous-domaines plus petits. Elles s'appliquaient jusqu'à présent à des problèmes stationnaires, nous généralisons ici ce type de méthodes aux problèmes en temps ('Schwarz Waveform Relaxation Methods'). Le principal but de cette nouvelle approche est de simuler des problèmes multiphysiques pour lesquels il est intéressant d'avoir une discrétisation temporelle différente dans chaque sous-domaine. Nous généralisons aux équations d'évolution une méthode récente qui consiste à écrire les conditions transparentes (Conditions aux Limites Absorbantes) puis les approche par des opérateurs différentiels d'ordre 1 dans la direction normale à l'interface et d'ordre 0 ou 1 dans la direction tangentielle. Nous développons cette méthode premièrement pour l'équation de convection diffusion qui traduit notamment l'advection des traceurs (température, salinité, traceurs passifs) dans l'océan. Nous approchons les opérateurs exacts par développement de Taylor, ou par optimisation du taux de convergence. Nous démontrons que les problèmes aux limites introduits sont bien posés. Puis nous montrons la convergence des algorithmes correspondants. Des résultats numériques sont implémentés dans le cas avec ou sans recouvrement et mettent en évidence la réelle efficacité des méthodes optimisées. Nous faisons ensuite un premier pas vers le couplage d'équations en implémentant un algorithme de couplage de l'équation de convection avec l'équation de convection diffusion. Ensuite nous traitons les équations de Saint Venant, moyennes verticales des équations de Navier-Stokes en milieu tournant. Nous introduisons pour ce système un algorithme de décomposition de domaine avec des conditions d'interface qui s'obtiennent par des considérations physiques. Nous montrons que cet algorithme est bien posé puis nous en démontrons la convergence. Des résultats numériques concluants sont également exposés.
APA, Harvard, Vancouver, ISO, and other styles
38

Guillet, Christophe. "INSTABILITE DE SYSTEMES HAMILTONIENS AU SENS DE CHIRIKOV ET BIFURCATION DANS UN PROBLEME D' EVOLUTION NON LINEAIRE ISSU DE LA PHYSIQUE." Phd thesis, Université de Franche-Comté, 2004. http://tel.archives-ouvertes.fr/tel-00011975.

Full text
Abstract:
Nous mettons en évidence une condition géométrico-dynamique minimale créant de l'hyperbolicité au voisinage d'un tore homocline transverse partiellement hyperbolique dans un système Hamiltonien presque intégrable à trois degrés de liberté. On en déduit une généralisation du théorème de dynamique symbolique d'Easton. Nous donnons ensuite une estimation optimale du temps de diffusion d'Arnold le long d'une chaîne de transition dans les systèmes Hamiltoniens initialement hyperboliques à trois degrés de liberté en utilisant une chaîne d'orbites périodiques hyperboliques sous-jacente.
Nous décrivons ensuite géométriquement à partir d'un système Hamiltonien presque intégrable à trois degrés de liberté à deux paramètres dû à Chirikov, un mécanisme de diffusion mettant en jeu un réseau de plans résonnants parallèles et voisins et un plan résonnant transversal au réseau. Ainsi, nous montrons qu'en dessous d'un certain seuil atteint par le paramètre prépondérant, on peut construire une orbite de transition dérivant en action à travers ce réseau modulationnel. Un des scénarii envisagés, le mécanisme de diffusion modulationnelle, basé sur l'existence de connexions hétéroclines entre tores partiellement hyperboliques issus de deux plans résonnants distincts est valide lorsqu'une condition de chevauchement est vérifiée.
Nous étudions enfin le modèle bidimensionnel décrivant un écoulement laminaire avec convection mixte entre deux plaques planes puis dans un tube vertical. Avec des conditions aux bords réduites, nous montrons via le théorème de la variété centrale qu'il existe dans le premier cas une bifurcation de pitchfork pour une valeur critique du nombre de Rayleigh.
APA, Harvard, Vancouver, ISO, and other styles
39

Dudret, Stéphane. "Modèles de convection-diffusion pour les colonnes de distillation : application à l'estimation et au contrôle des procédés de séparation cryogéniques des gaz de l'air." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2013. http://pastel.archives-ouvertes.fr/pastel-00874677.

Full text
Abstract:
Cette thèse porte sur la modélisation, pour le contrôle, des profils de compositions dans les colonnes de distillation cryogénique. Nous obtenons un modèle non-linéaire de convection-diffusion par réduction d'un modèle d'équations-bilans singulièrement perturbé. Du point de vue de l'automatique, nous nous intéressons à la stabilité des profils de compositions résultants, ainsi qu'à leur observabilité. Du point de vue du procédé, la nouvauté de notre modèle réside dans la prise en compte d'une efficacité de garnissage dépendant des conditions d'opération de la colonne. Le modèle est validé par des comparaisons avec des données de fonctionnement dynamique issues d'une unité de séparation réelle, pour la séparation d'un mélange binaire. Sur le cas plus complexe d'une cascade de colonnes séparant un mélange ternaire, le modèle montre une grande sensibilité aux erreurs d'estimation des taux de reflux. Des résultats adaptés du champ de la chromatographie nous permettent de relier cette sensibilité à des erreurs d'estimation des vitesses d'ondes de compositions cohérentes. En parallèle, nous proposons et testons également un modèle de fonctions de transfert simple (fondé sur des gains statiques et des retards purs uniquement) pour les petites dynamiques de compositions, qui dépend explicitement de valeurs mesurables ou observables sur le procédé
APA, Harvard, Vancouver, ISO, and other styles
40

MURRAY, BRUCE THOMAS. "EXPERIMENTAL AND NUMERICAL INVESTIGATION OF DOUBLE-DIFFUSIVE CONVECTION IN A HORIZONTAL LAYER OF POROUS MEDIUM." Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/183899.

Full text
Abstract:
The onset conditions and the behavior of the developed secondary flow were investigated for double-diffusive convection in a horizontal layer of porous medium. The work concentrated on the case in which the layer is heated from below and saturated with a fluid having a stabilizing concentration gradient. Because the component with the larger diffusivity (heat) is destabilizing and the component with the smaller diffusivity (solute) is stabilizing, the motion at onset is predicted to be oscillatory according to linear stability theory. Experiments were conducted in a rectangular tank 24 cm long x 12 cm wide x 4 cm deep filled with glass beads 3 mm in diameter. The saturating fluid was distilled water and NaCl was the solute. The basic state salinity profiles were slowly diffusing in time, because the salt concentration was not maintained fixed at the solid top and bottom boundaries. Sustained oscillations were not detected at onset in the experiments; instead, there was a dramatic increase in the heat flux at the critical temperature difference. After more than one thermal diffusion time, the heat flux reached a steady value, which increased monotonically if the temperature difference was increased further. When the temperature difference was reduced, the heat flux exhibited hysteresis. Flow visualization indicated that the convection pattern of the developed flow was three-dimensional. In order to better model the experiments, linear theory was extended to include the effects of temperature-dependent thermal expansion coefficient and viscosity for water and the actual solute boundary conditions in the experiment. These extensions of the linear theory required numerical solution procedures. In addition, nonlinear solutions were obtained using finite differences, assuming the problem is two-dimensional. In the nonlinear calculations, the oscillatory motion predicted by linear theory was found to be unstable at finite amplitude. The breakdown of the initial oscillatory motion is followed by a large increase in the heat transport, similar to what was observed in the experiments. Both steady and oscillatory nonlinear asymptotic solutions were found, depending on the governing parameter values. Hysteresis in the heat curve was also obtained.
APA, Harvard, Vancouver, ISO, and other styles
41

Welper, Gerrit [Verfasser]. "Infinite dimensional stabilization of convection-dominated problems / Gerrit Welper." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013. http://d-nb.info/1035687518/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jernigan, Jonathan. "Mathematical Modeling of Convective Heat Transfer in Mammoth Cave." TopSCHOLAR®, 1997. http://digitalcommons.wku.edu/theses/787.

Full text
Abstract:
Around two centuries ago, changes were made to the entrances of Mammoth Cave and its passages. Today the Historic Entrance to Mammoth Cave is enlarged and the passage just beyond the entrance known as Houchins' Narrows has been cleared of rubble and filled with sediments. These enlargements have resulted in an increase in airflow throughout the Historic Section of the cave causing environmental conditions such as air temperature and airflow to fluctuate. These fluctuations have negatively impacted inhabitants and contents of the cave system. To restore natural conditions within the cave, Science and Resource Management personnel at Mammoth Cave National Park have been collecting large data sets on atmospheric conditions inside the cave. The author has access to data from eight sites within the cave. In this thesis, the author provides a brief introduction to the effects of the increase in airflow as well as a short discussion of the data gathered by Science and Resource Management. The author then proposes a natural cause for airflow (i.e., convection) in Mammoth Cave, constructs empirical models with this as the underlying driving force, and uses atmospheric data to verify the validity of the claim of convection as the force driving airflow in Mammoth Cave. Data from the site in Houchins' Narrows is used to predict atmospheric data at other locations in the cave. The author concludes this thesis with time series analysis on data from Houchins' Narrows.
APA, Harvard, Vancouver, ISO, and other styles
43

Al-Ali, Ahmad Abdulla. "Stability of convective flow between vertical planes." Thesis, City University London, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Metri, Prashant G. "Mathematical Analysis of Forced Convective Flow Due to Stretching Sheet and Instabilities of Natural Convective Flow." Doctoral thesis, Mälardalens högskola, Utbildningsvetenskap och Matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-35222.

Full text
Abstract:
The investigations presented in the thesis are theoretical studies of magnetohydrodynamic flows, heat and mass transfer in Newtonian/non-Newtonian cooling liquids, due to horizontal/vertical stretching sheet. The theoretical studies include the effect of magnetic field, uniform and non-uniform heat source/sink (flow and temperature dependent heat source/sink) effects. The considered problems include flow of viscous fluids in the presence of applied magnetic field and electric field with first order chemical reactions. The viscous incompressible Newtonian fluid flow in porous medium with Darcy-Forchheimmer model, electrically conducting fluid and nanofluid is studied. We introduce innovative techniques for finding solutions of highly nonlinear coupled boundary value problems such as Runge-Kutta method, Perturbation method and Differential Transform Method (DTM).   Chapter 1-2 gives a brief introduction. Chapter 3 focuses on Lie group analysis of MHD flow and heat transfer over a stretching sheet. The effects of viscous dissipation, uniform heat source/sink and MHD on heat transfer are addressed. In Chapter 4-6 we examined the laminar flow, thermocapillary flow of a nanoliquid thin film over an unsteady stretching sheet in presence of MHD and thermal Radiation in different situations. An effective medium theory (EMT) based model is used for the thermal conductivity of the nanoliquid.  Metal and metal oxide nanoparticles are considered in carboxymethyl cellulose (CMC) - water base liquid. In Chapter 7-9 we analyzed, heat and mass transfer in MHD, mixed convection, viscoelastic fluid flow, non-Darcian flow due to stretching sheet in presence of viscous dissipation, non-uniform heat source/sink and porous media have been investigated in different situations.  MHD and viscous dissipation have a significant influence on controlling of the dynamics.    In Chapter 10 the linear stability of Maxwell fluid-nanofluid flow in a saturated porous layer is examined theoretically when the walls of the porous layers are subjected to time-periodic temperature modulations. A modified Darcy-Maxwell model is used to describe the fluid motion, and the nanofluid model used includes the effects of the Brownian motion. The thermal conductivity and viscosity are considered to be dependent on the nanoparticle volume fraction. In Chapter 11 we studied MHD flow in a vertical double passage channel taking into account the presence of the first order chemical reactions. The governing equations are solved by using a regular perturbation technique valid for small values of the Brinkman number and a DTM valid for all values of the Brinkman number.
APA, Harvard, Vancouver, ISO, and other styles
45

Japhet, Caroline. "Méthode de décomposition de domaine et conditions aux limites artificielles en mécanique des fluides: méthode Optimisée d'Orde 2." Phd thesis, Université Paris-Nord - Paris XIII, 1998. http://tel.archives-ouvertes.fr/tel-00558701.

Full text
Abstract:
Ce travail a pour objet le développement et l'étude d'une méthode de décomposition de domaine, la méthode Optimisée d'Ordre 2 (OO2), pour la résolution de l'équation de convection-diffusion. Son atout principal est de permettre d'utiliser un découpage quelconque du domaine, sans savoir à l'avance où sont situés les phénomènes physiques tels que les couches limites ou les zones de recirculation. La méthode OO2 est une méthode de décomposition de domaine sans recouvrement, itérative, parallélisable. Le domaine de calcul est divisé en sous-domaines, et on résout le problème de départ dans chaque sous-domaine, avec des conditions de raccord spécifiques sur les interfaces des sous-domaines. Ce sont des conditions différentielles d'ordre 1 dans la direction normale et d'ordre 2 dans la direction tangente à l'interface qui approchent, par une procédure d'optimisation, les Conditions aux Limites Artificielles (CLA). L'utilisation des CLA en décomposition de domaine permet de définir des algorithmes stables. Une reformulation de la méthode de Schwarz conduit à un problème d'interface. Celui-ci est résolu par une méthode itérative de type Krylov (BICG-STAB, GMRES, GCR). La méthode est appliquée à un schéma aux différences finies décentré, puis à un schéma volumes finis. Un préconditionneur ``basses fréquences'' est ensuite introduit et étudié, dans le but d'avoir une convergence indépendante du nombre de sous-domaines. Ce préconditionneur est une extension aux problèmes non-symétriques d'un préconditionneur utilisé pour des problèmes symétriques. Enfin, l'utilisation de conditions différentielles d'ordre 2 le long de l'interface nécessite d'ajouter des conditions de raccord aux points de croisement des sous-domaines. Une étude est menée a ce sujet, qui permet de montrer que les problèmes dans chaque sous-domaine sont bien posés.
APA, Harvard, Vancouver, ISO, and other styles
46

YU, CHUNG-CHYI. "FINITE-ELEMENT ANALYSIS OF TIME-DEPENDENT CONVECTION DIFFUSION EQUATIONS (PETROV-GALERKIN)." Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/183930.

Full text
Abstract:
Petrov-Galerkin finite element methods based on time-space elements are developed for the time-dependent multi-dimensional linear convection-diffusion equation. The methods introduce two parameters in conjunction with perturbed weighting functions. These parameters are determined locally using truncation error analysis techniques. In the one-dimensional case, the new algorithms are thoroughly analyzed for convergence and stability properties. Numerical schemes that are second order in time, third order in space and stable when the Courant number is less than or equal to one are produced. Extensions of the algorithm to nonlinear Navier-Stokes equations are investigated. In this case, it is found more efficient to use a Petrov-Galerkin method based on a one parameter perturbation and a semi-discrete Petrov-Galerkin formulation with a generalized Newmark algorithm in time. The algorithm is applied to the two-dimensional simulation of natural convection in a horizontal circular cylinder when the Boussinesq approximation is valid. New results are obtained for this problem which show the development of three flow regimes as the Rayleigh number increases. Detailed calculations for the fluid flow and heat transfer in the cylinder for the different regimes as the Rayleigh number increases are presented.
APA, Harvard, Vancouver, ISO, and other styles
47

Pankratova, Iryna. "Convection-diffusion equation in unbounded cylinder and related homogenization problems." Licentiate thesis, Luleå : Luleå tekniska universitet, 2009. http://pure.ltu.se/ws/fbspretrieve/2579688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Jha, Abhinav [Verfasser]. "Numerical Algorithms for Algebraic Stabilizations of Scalar Convection-Dominated Problems / Abhinav Jha." Berlin : Freie Universität Berlin, 2020. http://d-nb.info/1221130498/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Alkurdi, Yaser [Verfasser]. "Numerical simulation schemes for inhomogeneous convection-diffusion systems modeling fluidized beds / Yaser Alkurdi." Magdeburg : Universitätsbibliothek, 2017. http://d-nb.info/1135662126/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Dardalhon, Fanny. "Schémas Numériques pour la Simulation des Grandes Echelles." Phd thesis, Aix-Marseille Université, 2012. http://tel.archives-ouvertes.fr/tel-00766722.

Full text
Abstract:
Cette thèse est consacrée à la simulation d'écoulements turbulents, incompressibles ou à faible nombre de Mach pour des applications touchant à la sûreté nucléaire. En particulier, nous nous concentrons sur le développement et l'analyse mathématique de schémas numériques performants pour la méthode dite de Simulation des Grandes Echelles. Ces schémas sont basés sur des méthodes à pas fractionnaires de type correction de pression et des éléments finis non conformes de bas degré. Deux arguments semblent essentiels à la construction de tels schémas: le contrôle de l'énergie cinétique et la précision pour des écoulements à convection dominante. Concernant la discrétisation en temps, nous proposons un schéma de type Crank-Nicolson et nous montrons qu'il satisfait un contrôle de l'énergie cinétique. Ce schéma présente de plus l'avantage d'être peu dissipatif numériquement (résidu d'ordre deux en temps). Concernant le défaut de précision de la discrétisation par l'élément fini de Rannacher-Turek, nous envisageons deux approches. La première consiste à construire un schéma pénalisé contraignant les degrés de liberté tangents aux faces des cellules à s'écrire comme combinaison linéaire des degrés de liberté normaux alentour. La deuxième approche repose sur l'enrichissement de l'espace discret d'approximation pour la pression. Enfin, différents tests numériques sont présentés en dimensions deux et trois et pour des maillages généraux, afin d'illustrer les capacités des schémas étudiés et de confronter les résultats théoriques et expérimentaux.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography