Academic literature on the topic 'Controlled Fabrication - Nanostructures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Controlled Fabrication - Nanostructures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Controlled Fabrication - Nanostructures"
Green, Joshua M., Juno Lawrance, and Jun Jiao. "Controlled Fabrication of High-Yield CdS Nanostructures by Compartment Arrangement." Journal of Nanomaterials 2008 (2008): 1–4. http://dx.doi.org/10.1155/2008/107943.
Full textHan, Guoxing, Lihan Xu, and Ze Liu. "Controlled fabrication of hierarchical metal nanostructures." Materials Letters 241 (April 2019): 160–63. http://dx.doi.org/10.1016/j.matlet.2019.01.075.
Full textAseev, Aleksander Leonidovich, Alexander Vasilevich Latyshev, and Anatoliy Vasilevich Dvurechenskii. "Semiconductor Nanostructures for Modern Electronics." Solid State Phenomena 310 (September 2020): 65–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.310.65.
Full textWei, Jian, Xuchun Song, Chunli Yang, and Michael Z. Hu. "1D Nanostructures: Controlled Fabrication and Energy Applications." Journal of Nanomaterials 2013 (2013): 1–2. http://dx.doi.org/10.1155/2013/674643.
Full textUnno, Noriyuki, and Jun Taniguchi. "3D nanofabrication using controlled-acceleration-voltage electron beam lithography with nanoimprinting technology." Advanced Optical Technologies 8, no. 3-4 (June 26, 2019): 253–66. http://dx.doi.org/10.1515/aot-2019-0004.
Full textYang, Hai Feng, Yan Qing Wang, Lei Liu, Liang Fang, and Shi Rong Ge. "Experimental Investigation on Nanoprocessing of Stainless Steel Surface." Advanced Materials Research 154-155 (October 2010): 987–90. http://dx.doi.org/10.4028/www.scientific.net/amr.154-155.987.
Full textLee, Won-Kyu, Shuangcheng Yu, Clifford J. Engel, Thaddeus Reese, Dongjoon Rhee, Wei Chen, and Teri W. Odom. "Concurrent design of quasi-random photonic nanostructures." Proceedings of the National Academy of Sciences 114, no. 33 (July 31, 2017): 8734–39. http://dx.doi.org/10.1073/pnas.1704711114.
Full textRajkumar, K., K. Rajavel, D. C. Cameron, and R. T. Rajendra Kumar. "Controlled fabrication and electrowetting properties of silicon nanostructures." Journal of Adhesion Science and Technology 31, no. 1 (June 24, 2016): 31–40. http://dx.doi.org/10.1080/01694243.2016.1199340.
Full textBeton, P. H., A. Blackburn, B. R. A. Neves, and D. J. Robbins. "Fabrication of Si nanostructures by controlled sidewall oxidation." Solid-State Electronics 40, no. 1-8 (January 1996): 265–69. http://dx.doi.org/10.1016/0038-1101(95)00262-6.
Full textPennelli, Giovanni, and Bruno Pellegrini. "Fabrication of silicon nanostructures by geometry controlled oxidation." Journal of Applied Physics 101, no. 10 (May 15, 2007): 104502. http://dx.doi.org/10.1063/1.2722252.
Full textDissertations / Theses on the topic "Controlled Fabrication - Nanostructures"
Sapcharoenkun, Chaweewan. "Controlled nanostructure fabrication using atomic force microscopy." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7593.
Full textZolatanosha, Viktoryia [Verfasser]. "Site-controlled nanostructure fabrication by selective area epitaxy through shadow masks / Viktoryia Zolatanosha." Paderborn : Universitätsbibliothek, 2020. http://d-nb.info/121250853X/34.
Full textBOI, STEFANIA. "Design and fabrication of polymeric nanoengineered delivery systems for improved performance and controlled release." Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1047611.
Full text"Pseudo-one-dimensional Zn-Fe-O nanostructure arrays: controlled fabrication, magnetic properties and photocatalytic applications." 2013. http://library.cuhk.edu.hk/record=b6116186.
Full text垂直排列的ZnO納米線陣列首先生長在不同的襯底上,然后进一步被用作其他納米結構陣列的生長模板。ZnO納米線不僅僅起到骨架定型的作用,最終還可以为后續納米結構提供原料组分。通過控制ZnO和氯化鐵溶液的反應時間,在煅燒后,我們可以製備ZnO/鐵酸鋅(ZnFe₂O₄)納米線纜陣列,以及化學/非化學計量的ZnFe₂O₄、ZnFe₂O₄/α-三氧化二鐵(α-Fe₂O₃)和α-Fe₂O₃納米管陣列。ZnFe₂O₄和α-Fe₂O₃納米管陣列都表現出了對可見光的吸收,它們的帶隙經估算分別是2.3 eV和1.7 eV。
通過電子能量損失譜(EELS),可以得到ZnFe₂O₄納米管陣列的一些細節的結構信息。我們分別研究了兩個不同系列(溫度和化學計量)的ZnFe₂O₄納米管。研究發現,樣品的磁性和它們的晶體結構有著非常緊密的關係。首先,對於溫度系列的樣品,當樣品的燒結溫度從600 °C降到400 °C時,更多的三價鐵離子(Fe³⁺)佔據了尖晶石結構中的A位置(四面體位置)而並非它們本應佔據的平衡B位置(八面體位置)。這種偏離了正常尖晶石結構的情況使得A和B位置上的Fe³⁺的超交換作用增加,進而增加了樣品的阻隔溫度(TB),磁各向異性常數(K),3K和300 K下的飽和磁化強度(MS)和3K下的矯頑力(HC)。同時使3K和300K下的MS的比值變小。其次,對於化學計量系列的樣品,通過比較在同一燒結溫度下製備的化學計量和非化學計量的ZnFe₂O₄納米管,我們發現在鐵鋅比大於2的納米管中,Fe³⁺佔據A和B位置的比例和化學計量的樣品是类似的。這些多出的Fe³⁺也會增加超交換作用,從而導致較大的TB, K, MS(3K和300 K),HC(3K)和較小的MS(3 K)/MS(300 K)比值。最後,作為非化學計量的極端情況,α-Fe₂O₃納米管在小的外加磁場下表現出了典型的Morin相變,在大的外加磁場下出現了場致spin-flop轉變。
另一方面,我們發現,當使用羅丹明B(RhB)作為指示劑時,ZnO/ZnFe₂O₄納米線纜陣列表現出了優於纯ZnO和纯ZnFe₂O₄納米管陣列的可見光降解活性,但是它們的降解路徑各不相同。ZnO由於染料敏化機制而具有可見光降解能力,但是其降解活性最差。ZnO/ZnFe₂O₄納米線纜陣列和ZnFe₂O₄納米管陣列的基本降解原理是相同的,那就是,利用有可見光活性的ZnFe₂O₄中的光生電子和空穴所生成的活性自由基降解RhB。但是,ZnO/ZnFe₂O₄納米線纜陣列的降解能力明顯優於ZnFe₂O₄納米管陣列,這是由於ZnO與ZnFe₂O₄之間的II型能帶匹配顯著地促進了光生電子和空穴的分離。
In the present thesis, several kinds of pseudo-one-dimensional Zn-Fe-O nanostructure arrays with tunable chemical compositions, crystal structures and morphologies are successfully synthesized via a simple wet-chemical ZnO-nanowire-array templating method.
Vertically-aligned ZnO nanowire arrays are firstly fabricated on several different substrates and then serve as templates for other nanostructured arrays growth. The ZnO nanowires not only act as morphology-defining skeleton but also contribute chemically to the final composition of the nanostructures. By controlling the reaction time between ZnO and FeCl₃ solution, ZnO/ZnFe₂O₄ nanocable arrays, stoichiometric ZnFe₂O₄ nanotube arrays, nonstoichiometric ZnFe₂O₄ nanotube arrays, ZnFe₂O₄/α-Fe₂O₃ nanotube arrays and α-Fe₂O₃ nanotube arrays can be synthesized in a controlled manner after calcination. Both ZnFe₂O₄ and α-Fe₂O₃ nanotube arrays exhibit visible light absorption and their bandgap are estimated to be ~2.3 eV and ~1.7 eV, respectively.
The detailed structural information of the ZnFe₂O₄ nanotube arrays are obtained by electron energy loss spectroscopy (EELS). In particular, EELS are carried out for two different series (i.e., temperature and stoichiometric series). The magnetic properties of these samples are found to closely correlate to their structural characteristics. Firstly, with the decrease of the calcination temperature from 600 °C to 400 °C, more Fe³⁺ions occupy A sites (tetrahedral sites in spinel structure) rather than their equilibrium B sites (octahedral sites in spinel structure). The deviation from the normal spinel structure leads to the enhancement of superexchange interactions between Fe³⁺ions in A and B sites, and thus results in an increase in blocking temperature (TB), magnetic anisotropic constant (K), saturation magnetization (MS, at 3 K and 300 K), coercivity (HC, at 3 K) and a decrease in MS(3 K)/MS(300 K) ratios. Secondly, by comparing stoichiometric and nonstoichiometric ZnFe₂O₄ nanotubes calcinated at the same temperature, we found that the nonstoichiometric nanotubes (Fe:Zn > 2) shows similar ratios of Fe³⁺in A and B sites to that of the stoichiometric one. The extra Fe³⁺in the crystal also enhances the superexchange interactions of Fe³⁺, which results in larger TB, K, MS(at 3 K and 300 K) and HC(at 3 K), and smaller MS(3 K)/MS(300 K) ratio. Lastly, α-Fe₂O₃ nanotubes, as an extreme case of the nonstoichiometric sample, show typical Morin-transition characterization under small external field, and field-induced spin-flop transition at large external field.
On the other hand, we found that the visible-light-driven photodegradation activities of ZnO/ZnFe₂O₄ nanocable arrays are superior to those of the ZnO nanowire arrays and ZnFe₂O₄ nanotube arrays using RhB as the probe molecules. All the three nanostructures show degradation of RhB molecules under visible light irradiation, but they take different degradation pathways. The degradation of RhB in the presence of ZnO nanowire arrays is attributed to the dye-sensitized mechanism, and the photodegradation activity is the worst. ZnO/ZnFe₂O₄ nanocable arrays and ZnFe₂O₄ nanotube arrays have the same degradation mechanism, that is, reactive radicals produced by photogenerated electron-hole pairs in the visible-light-active ZnFe₂O₄ are responsible for the photodegradation of RhB. However, the nanocable arrays show much higher degradation capability. This is owing to the type II band alignment between ZnO and ZnFe₂O₄, which greatly promotes the separation of photogenerated electronsand holes in ZnFe₂O₄.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Guo, Xuan = 準一維鋅-鐵-氧納米結構陣列 : 控制製備, 磁學性質以及光催化方面的應用 / 郭璇.
Thesis (Ph.D.) Chinese University of Hong Kong, 2013.
Includes bibliographical references (leaves 107-117).
Abstracts also in Chinese.
Guo, Xuan = Zhun yi wei xin-tie-yang na mi jie gou zhen lie : kong zhi zhi bei, ci xue xing zhi yi ji guang cui hua fang mian de ying yong / Guo Xuan.
Book chapters on the topic "Controlled Fabrication - Nanostructures"
Sakaki, H. "Fabrication of Atomically Controlled Nanostructures and Their Device Application." In Nanotechnology, 207–56. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0531-9_5.
Full textPathiraja, Gayani, Sherine Obare, and Hemali Rathnayake. "Oriented Attachment Crystal Growth Dynamics of Anisotropic One-dimensional Metal/Metal Oxide Nanostructures: Mechanism, Evidence, and Challenges." In Crystal Growth - Technologies and Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.107463.
Full textÇakır Hatır, Pınar. "Biomedical Nanotechnology." In Research Anthology on Emerging Technologies and Ethical Implications in Human Enhancement, 634–62. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8050-9.ch033.
Full textÇakır Hatır, Pınar. "Biomedical Nanotechnology." In Biomedical and Clinical Engineering for Healthcare Advancement, 30–65. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-0326-3.ch003.
Full textHontañón, Esther, and Stella Vallejos. "One-Dimensional Metal Oxide Nanostructures for Chemical Sensors." In Nanostructured Materials - Classification, Growth, Simulation, Characterization, and Devices [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.101749.
Full textMurali, A. "Bioinspired Nanomaterials for Supercapacitor Applications." In Bioinspired Nanomaterials for Energy and Environmental Applications, 141–74. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901830-5.
Full textMuthukrishnan, Lakshmipathy. "Encountering the Survival Strategies Using Various Nano Assemblages." In Handbook of Research on Nano-Strategies for Combatting Antimicrobial Resistance and Cancer, 159–87. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-5049-6.ch007.
Full textNakajima, Bunichiro, Jifan Li, and Yang Yang Li. "Nanostructured Porous Biomaterials for Controlled Drug Release Systems." In Biomaterials Fabrication and Processing Handbook, 193–215. CRC Press, 2008. http://dx.doi.org/10.1201/9780849379741.ch8.
Full textMatsui, Shinji. "Nanostructure fabrication using electron and ion beams." In Nanotechnology and Nano-Interface Controlled Electronic Devices, 3–20. Elsevier, 2003. http://dx.doi.org/10.1016/b978-044451091-4/50002-9.
Full textPathiraja, Gayani, and Hemali Rathnayake. "Ultrathin Metal Hydroxide/Oxide Nanowires: Crystal Growth, Self-Assembly, and Fabrication for Optoelectronic Applications." In Nanostructured Materials - Classification, Growth, Simulation, Characterization, and Devices [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.101117.
Full textConference papers on the topic "Controlled Fabrication - Nanostructures"
Mondal, Shyamal, S. Jana, and S. R. Bhattacharyya. "Size-selected copper nanolclusters for fabrication of isolated size-controlled nanostructures." In PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810171.
Full textBorras, Ana, Manuel Macias-Montero, Angel Barranco, Jose Cotrino, Juan Espinos, and Augustin R. González-Elipe. "Fabrication of heterostructured M@M´Ox Nanorods by low temperature PECVD." In 13th International Conference on Plasma Surface Engineering September 10 - 14, 2012, in Garmisch-Partenkirchen, Germany. Linköping University Electronic Press, 2013. http://dx.doi.org/10.3384/wcc2.47-50.
Full textBarna, Shama F., Kyle E. Jacobs, Glennys A. Mensing, and Placid M. Ferreira. "Direct Writing on Phosphate Glass Using Atomic Force Microscopy for Rapid Fabrication of Nanostructures." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67471.
Full textBaykul, M. C., and N. Orhan. "Fabrication and characterization of size-controlled CdS nanostructures by a modified chemical bath deposition method." In 2011 International Semiconductor Device Research Symposium (ISDRS). IEEE, 2011. http://dx.doi.org/10.1109/isdrs.2011.6135348.
Full textPhan, Vinh-Nguyen, Patrick Abgrall, Nam-Trung Nguyen, Peige Shao, and Jeroen Anton Van Kan. "Fabrication of Nanochannels on Polymer Thin Film." In ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82057.
Full textDe Luca, Anna Chiara. "SERS-bases biosensors for biomedical applications." In Optical Manipulation and Its Applications. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/oma.2023.atu2d.4.
Full textDas, Biswajit. "Nanosystem Implementation Using Nanochannels of Nanoporous Membranes." In ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2007. http://dx.doi.org/10.1115/icnmm2007-30147.
Full textChung, I.-Cheng, Ching-Wen Li, and Gou-Jen Wang. "Nanomolding of Nanostructured Biodegradable Tissue Engineering Scaffolds." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12175.
Full text"Fabrication Of Periodic Si Nanostructure By Controlled Anodization." In Microprocesses and Nanotechnology '98. 1998 International Microprocesses and Nanotechnology Conference. IEEE, 1998. http://dx.doi.org/10.1109/imnc.1998.730022.
Full textYeo, Woonhong, Jae-Hyun Chung, Kyong-Hoon Lee, Yaling Liu, and Wing Kam Liu. "Hybrid Fiber Fabrication Using an AC Electric Field and Capillary Action." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42305.
Full text