Academic literature on the topic 'Contrôle neuromoteur'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Contrôle neuromoteur.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Contrôle neuromoteur"
Mazeas, Jean, Maxime Gold, Maude Traullé, Florian Forelli, Timothy Hewett, and Alexandre Rambaud. "Contrôle neuromoteur et adaptations électromyographiques après reconstruction du ligament croisé antérieur dans les tâches unipodales." Kinésithérapie, la Revue 23, no. 255 (March 2023): 92–93. http://dx.doi.org/10.1016/j.kine.2022.12.161.
Full textFreitas, Záira Moura da Paixão, Carlos Umberto Pereira, and Débora Moura da Paixão Oliveira. "Importância da Avaliação Neurológica Seriada e seus Reflexos no Prognóstico Funcional de Recém-Nascidos com Asfixia Perinatal." JBNC - JORNAL BRASILEIRO DE NEUROCIRURGIA 31, no. 3 (May 10, 2020): 201–9. http://dx.doi.org/10.22290/jbnc.v31i3.1863.
Full textOliveira, Karollyna Corrêa, Jonas Eligio Garcia De Azevedo, Maria Luiza Rodrigues De Castro-da-Silva, Isabella Ravazoli, Ricardo Nery De Castro, Natália Tribuiani, Valéria de Campos Orsi, Danilo Augusto Alves Pereira, Rafael Menck De Almeida, and Yoko Oshima-Franco. "Impacto da administração crônica de canabidiol em ratos." CONTRIBUCIONES A LAS CIENCIAS SOCIALES 16, no. 9 (September 15, 2023): 15350–72. http://dx.doi.org/10.55905/revconv.16n.9-094.
Full textLima, Fernanda Rodrigues, and Tiago Peçanha. "Prescrição de atividade física em pacientes com doenças reumáticas." Atividade física em pacientes reumáticos, no. 2019 out-dez;18(4) (December 31, 2019): 17–24. http://dx.doi.org/10.46833/reumatologiasp.2019.18.4.17-24.
Full textBertoldi, Andréa Lúcia Sério, Vera Lúcia Israel, and Iverson Ladewig. "O papel da atenção na fisioterapia neurofuncional." Fisioterapia e Pesquisa 18, no. 2 (June 2011): 195–200. http://dx.doi.org/10.1590/s1809-29502011000200016.
Full textKrebs, H. I., B. T. Volpe, M. L. Aisen, W. Hening, S. Adamovich, H. Poizner, K. Subrahmanyan, and N. Hogan. "Robotic applications in neuromotor rehabilitation." Robotica 21, no. 1 (January 2003): 3–11. http://dx.doi.org/10.1017/s0263574702004587.
Full textSenna, Gabriel Omena, and Leonardo Malta. "INTERVENÇÃO DA FISIOTERAPIA EM LESÃO DO LIGAMENTO COLATERAL LATERAL (LCL) EM JOGADORES DE FUTEBOL: UMA REVISÃO INTEGRATIVA." Revista Ibero-Americana de Humanidades, Ciências e Educação 10, no. 11 (November 27, 2024): 7242–47. http://dx.doi.org/10.51891/rease.v10i11.17101.
Full textFunayama, Carolina A. R., Maria Valeriana L. de Moura-Ribeiro, and Arthur Lopes Gonçalves. "Encefalopatia hipóxico-isquêmica em recém-nascidos a termo: aspectos da fase aguda e evolução." Arquivos de Neuro-Psiquiatria 55, no. 4 (1997): 771–79. http://dx.doi.org/10.1590/s0004-282x1997000500014.
Full textCosta, Manoel Da Cunha, Raphael José Perrier-Melo, Jorge Luiz de Brito-Gomes, Tetsuo Tashiro, and José Manuel Costa Soares. "Crioterapia moderada: uma alternativa no tratamento da lesão celular induzida pelo exercício." Revista de Terapia Ocupacional da Universidade de São Paulo 28, no. 2 (October 25, 2017): 239. http://dx.doi.org/10.11606/issn.2238-6149.v28i2p239-245.
Full textVaca Benitez, Luis Manuel, Marc Tabie, Niels Will, Steffen Schmidt, Mathias Jordan, and Elsa Andrea Kirchner. "Exoskeleton Technology in Rehabilitation: Towards an EMG-Based Orthosis System for Upper Limb Neuromotor Rehabilitation." Journal of Robotics 2013 (2013): 1–13. http://dx.doi.org/10.1155/2013/610589.
Full textDissertations / Theses on the topic "Contrôle neuromoteur"
Memain, Geoffrey. "Évaluation et suivi du contrôle neuromoteur des footballeurs de haut-niveau lors d'un countermovement-jump. Application à la réathlétisation et à la prophylaxie des pathologies des membres inférieurs." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASW010.
Full textThis thesis had two principal objectives: i), to provide an objective analysis of the impact of sport-specific-rehab (SSR) on the neuromotor control of high-level soccer players ; ii) to develop a theoretical model that could predict the likelihood of injury in healthy athletes. The experimental countermovement jump (CMJ) model was employed to test the specific hypotheses associated with each of the five studies. The kinetic, kinematic and electromyographic (EMG) parameters of the CMJ were calculate using a force platform, a high-speed camera and surface electrodes, respectively. Three pathologies of the lower-limb were considered: anterior cruciate ligament rupture of the knee, knee chondropathy and muscular lesions of the thigh. The initial study demonstrated that the biomechanical and electromyographic parameters of the CMJ of the injured leg and the non-injured leg were altered in all pathological groups. The three-week SSR programme led to a notable improvement in these parameters, which are indicative of neuromotor control. In a second study, the level of functional recovery of the soccer players was evaluated using two methods: the LSI (limb symmetry index) and the Norm-Values method. The findings indicated that the Norm-Values method was the most effective in discriminating between the groups. In a third study, an intergroup comparison of biomechanical and EMG parameters revealed the existence of a 'neuromotor signature' specific to each pathology. In a fourth study, the results demonstrated that superimposing a visual information-gathering task (secondary task) had a beneficial effect on CMJ parameters (primary task). This was likely due to the injured athletes' attention being defocused towards the secondary task. In a final study, healthy players were monitored over the course of a season with the objective of developing a theoretical predictive model of injury. This model, based on a machine learning method, revealed non-significant trends in the occurrence of injuries as a function of the neuromotor characteristics of the players. Overall, these results contribute to advancing knowledge and practices in the field of rehabilitation
Saïb, Souad. "Prévention des chutes, effet d'un programme d'entraînement neuromoteur multisensoriel sur le contrôle postural chez les personnes âgées de 75 ans et plus à risque de chutes et vivant à domicile." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ62110.pdf.
Full textSaïb, Souad. "Prévention des chutes effet d'un programme d'entraînement neuromoteur multisensoriel sur le contrôle postural chez les personnes âgées de 75 ans et plus à risque de chutes et vivant à domicile." Mémoire, Université de Sherbrooke, 2000. http://savoirs.usherbrooke.ca/handle/11143/740.
Full textIshihara, Abraham K. "Feedback error learning in neuromotor control /." May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textMarchetti, Paulo Henrique. ""Investigações sobre o controle neuromotor do músculo reto do abdome"." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/39/39132/tde-10072006-091308/.
Full textThe rectus abdominis is an important muscle of the abdominal wall; it is responsible for the stabilization and function of the spine, as to athletic activity as daily activity. However, we do not have enough knowledge about the neuromotor control of this structure in voluntary activities, like abdominal exercises and how different tasks alter the segmental activation of the different parts of the abdomen. The aims of the present dissertation were to investigate the neuromotor control of the rectus abdominis in different voluntary tasks by four experiments. The aim of the first experiment was to describe morphologic characteristics of the rectus abdominis, in particular its transverse cross section, using the visible human project (NLM). The aim of the second experiment was to define motor points to each portion of the rectus abdominis. The aim of the third experiment was to investigate the neuromotor control of the each portion of the rectus abdominis in isometric low intensity tasks. And, the fourth experiment investigated the behavior of the different portions of the rectus abdominis in different isometric tasks on neuromuscular fatigue. The present experiments showed that the rectus abdominis muscle has an extremely complex structure in its architecture, defined by different portions without connection one each other and it is defined by a lot of portions that connect by tendinius aponeuroses. It could be considered that the control of the different portions, by your anatomic characteristics, have different nerves to each portion that facilitates the motor control. We found at least one nerve to each portion. But it is possible that exist different neuromotor control to each portion, so the next experiments related to low intensity of the muscular activation showed a central control shared by all portions and the gain associated to each task. The result of the fatigue experiment showed differences on spectral analysis and changes in neuromuscular control by the tasks, but did not present differences on temporal analysis. In conclusion, there is selective activation to each muscular portion; however, it could not be activated only one portion of the rectus abdominis to a specific task. Therefore, it can be that the alteration of the task has an important value on each muscular portion, but it does not know if this gain has any value to strength and hypertrophy.
Zietsma, Rutger C. "Designing a comprehensive system for analysis of handwriting biomechanics in relation to neuromotor control of handwriting." Thesis, University of Strathclyde, 2010. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=18820.
Full textSaïb, Souad. "Prévention des chutes : effet d'un programme d'entraînement neuromoteur multisensoriel sur le contrôle postural chez les personnes âgées de 75 ans et plus à risque de chutes et vivant à domicile." Sherbrooke : Université de Sherbrooke, 2001.
Find full textReister, Brandlynn N. "The Effect of Rate Change on the Relative Timing of Speakers with Multiple Sclerosis." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4753.
Full textHuang, Cheng-Ya, and 黃正雅. "Neuromotor Control of Postural-suprapostural Tasks." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/51140736060598274346.
Full text國立成功大學
健康照護科學研究所
97
Upright stance requires substantial attentional demands to integrate different forms of sensory information from the vestibular, visual, and proprioceptive systems. Haptic cues could facilitate postural synergy to augment stance stability for provision of body orientation respecting to the environment. When a suprapostural task is superimposed, attentional load multiplies to process extra sensory inputs and to update movement synergies for parallel execution of suprapostural task and stance maintenance at the same time. The purposes of the work were to investigate neural correlates for postural synergies in a dual-tasking, following addition of sensory or motor suprapostural task under the conditions of varying task constraints. The particular interests were directional effect of haptic stabilization and mutual influences of postural-suprapostural tasks. For the first study, the effects of stance pattern (bilateral stance vs. unilateral stance) and directional influence of light finger touch (medial-lateral vs. anterior-posterior) in unilateral stance upon the soleus H reflex and center of pressure (CoP) sway were studied. Subjects participated in four postural tasks, including the bilateral stance (BS), the unilateral stance without finger touch (USNT), and with finger touch in the medial-lateral direction (USML) and anterior-posterior direction (USAP). In reference to the BS, the USNT resulted in a significant stance effect on suppression of the soleus H reflex (H/Mmax) associated with enhancement of CoP sway. Among the conditions of unilateral stance, there was a marked directional effect of finger touch on modulation of the H/Mmax. A greater disinhibition of the H/Mmax and a more pronounced reduction in CoP sway in consequence to light touch in the ML direction than in the AP direction was noted (H/Mmax: USML > USAP > USNT; CoP: USML < NSAP < NSNT). In the second study, the reciprocal influences of stance pattern (bilateral stance vs. unilateral stance) and thumb-index precision grip task (static target vs. dynamic target) on postural-suprapostural tasks by manipulating task-load were studied. Subjects participated in four postural-suprapostural tasks, including static/dynamic force-matching in bilateral/unilateral stance (BS_static; US_static; BS_dynamic; US_dynamic), and two control tasks in bilateral and unilateral stances without a finger task. The normalized force error (NFE), reaction time (RT) of the finger tasks, and normalized change in center of pressure sway (ΔNCoP) were measured. For suprapostural performance, a significant interaction effect between postural and suprapostural tasks on NFE was noted (static: BS < US; dynamic: BS > US) without RT difference. For postural performance, negative ΔNCoP during unilateral stance indicated a reduction in postural sway due to added force-matching. In contrast, addition of force-matching increased postural sway during bilateral stance, but sway decreased as task-load of suprapostural task increased (BS_dynamic < BS_static). With similar design as the second study, the third study focused on investigating interplay and resource allocation for a postural-suprapostural task with a motor suprapostural goal. On top of behavioral data, event-related potentials (ERPs) and movement-related potential (MRP) were also included in the analysis. The results showed analogue interaction effects on precision of force-matching and MRP onset depending on the suprapostural or postural tasks applied (matching error & latency of MRP onset: BS_static < US_static; BS_dynamic > US_dynamic), which was assumed to prepare for optimizing suprapostural task in various stance dynamics. From the results of ERPs, N1 component was subject to stance effect with a greater amplitude around parietal cortex across both unilateral stance conditions (N1: US > BS) associated with decreased postural sway. In contrast, P2 was differentially modulated by force-matching version with smaller amplitude over the most right parietal cortex for dynamic force-matching (P2: static > dynamic). In summary, haptic modulation on the soleus H reflex and the degree of postural sway was directionally dependent. When finger touch was provided in line with prevailing postural threat, postural sway reduced together with disinhibition of the soleus H reflex. Next, performance of postural and suprapostural tasks could be differently modulated by task-load increment. MRP and RT results supported adaptive expansion of resource capacity for postural-suprapostural tasking with a motor suprapostural goal. Higher cortical structures must involve with flexible resource allocation, according to relative importance of postural and suprapostural tasks.
""Investigações sobre o controle neuromotor do músculo reto do abdome"." Tese, Biblioteca Digital de Teses e Dissertações da USP, 2005. http://www.teses.usp.br/teses/disponiveis/39/39132/tde-10072006-091308/.
Full textBooks on the topic "Contrôle neuromoteur"
Aprendizagem Motora e Controle Neuromotor Nos Esportes - Volume 3. Independently Published, 2020.
Find full textSilva, Vernon Furtado da, Luís Felipe Silio, and Ricardo Pablo Passos. Aprendizagem Motora e Controle Neuromotor Nos Esportes - Volume 2. Independently Published, 2020.
Find full textAprendizagem Motora e Controle Neuromotor Nos Esportes - Volume 1. Independently Published, 2020.
Find full textBook chapters on the topic "Contrôle neuromoteur"
Plamondon, Réjean, Asma Bensalah, Karina Lebel, Romeo Salameh, Guillaume Séguin de Broin, Christian O’Reilly, Mickael Begon, et al. "Lognormality: An Open Window on Neuromotor Control." In Graphonomics in Human Body Movement. Bridging Research and Practice from Motor Control to Handwriting Analysis and Recognition, 205–58. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-45461-5_15.
Full textFogarty, Matthew J., and Gary C. Sieck. "Spinal Cord Physiology: Neuromotor Control of Diaphragm Muscle." In Myelopathy, 17–40. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99906-3_2.
Full textFraile, Juan-Carlos, Javier Pérez-Turiel, Pablo Viñas, Rubén Alonso, Alejandro Cuadrado, Laureano Ayuso, Francisco García-Bravo, Felix Nieto, Laurentiu Mihai, and Manuel Franco-Martin. "Control of the E2REBOT Platform for Upper Limb Rehabilitation in Patients with Neuromotor Impairment." In Advances in Intelligent Systems and Computing, 303–14. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27149-1_24.
Full text"Models of Neuromotor Control." In Encyclopedia of Computational Neuroscience, 1751. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_100349.
Full textWebb, Wanda G. "Neuromotor Control of Speech." In Neurology for the Speech-Language Pathologist, 110–39. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-323-10027-4.00006-3.
Full textKimura, Doreen. "Oral movement control and speech." In Neuromotor Mechanisms in Human Communication, 64–78. Oxford University Press, 1993. http://dx.doi.org/10.1093/acprof:oso/9780195054927.003.0005.
Full textLove, Russell J., and Wanda G. Webb. "The Neuromotor Control of Speech." In Neurology for the Speech-Language Pathologist, 81–111. Elsevier, 1992. http://dx.doi.org/10.1016/b978-0-7506-9076-8.50012-5.
Full textAnson, J. Greg. "Chapter 13 Neuromotor Control and Down Syndrome." In Approaches to the Study of Motor Control and Learning, 387–412. Elsevier, 1992. http://dx.doi.org/10.1016/s0166-4115(08)61693-3.
Full textBeuter, A. "Normal and Abnormal Rhythms in Neuromotor Control: Analysis, Modelling And Implications." In Advances in Psychology, 67–87. Elsevier, 1990. http://dx.doi.org/10.1016/s0166-4115(08)61177-2.
Full textCharafeddine, Jinan, Samer Alfayad, Adrian Olaru, and Eric Dychus. "Characterization and Integration of Muscle Signals for the Control of an Exoskeleton of the Lower Limbs during Locomotor Activities." In Rehabilitation of the Human Bone-Muscle System [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102843.
Full textConference papers on the topic "Contrôle neuromoteur"
Rovetta, Alberto. "Daphne System for Neuromotor Control Evaluation: Reconfiguration Concepts." In 2009 Advanced Technologies for Enhanced Quality of Life (AT-EQUAL). IEEE, 2009. http://dx.doi.org/10.1109/at-equal.2009.10.
Full textChannamallu, Raghu Ram, Michael J. Jorgensen, and Sara E. Wilson. "Dynamic Lumbar Tracking With Occupational Whole-Body Vibration Exposure." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67864.
Full textLamis, Farhana, and Sara E. Wilson. "Neuromotor Effects of Whole Body Horizontal Vibration." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-193167.
Full textKaushik, Ankit, and Otis Smart. "An eLORETA EEG analysis to spatially resolve real and imagined neuromotor control." In 2014 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, 2014. http://dx.doi.org/10.1109/cibcb.2014.6845531.
Full textCaraiman, Simona, Andrei Stan, Nicolae Botezatu, Paul Herghelegiu, Robert Gabriel Lupu, and Alin Moldoveanu. "Architectural Design of a Real-Time Augmented Feedback System for Neuromotor Rehabilitation." In 2015 20th International Conference on Control Systems and Computer Science (CSCS). IEEE, 2015. http://dx.doi.org/10.1109/cscs.2015.106.
Full textKim, Nam H., Michael Wininger, Gail Forrest, Thomas Edwards, and William Craelius. "A Dynamic Speed vs. Accuracy Trade-Off (DSAT) Paradigm for Measuring and Training Grip Force Control for Stroke Population." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206306.
Full textTakemura, Kentaro, Euisun Kim, and Jun Ueda. "Individualized Inter-Stimulus Interval Estimation for Neural Facilitation in Human Motor System: A Particle Filtering Approach." In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9155.
Full textSoltys, Joseph, and Sara Wilson. "A Pneumatic Vibrator Created Using Rapid Prototyping Technology for the fMRI Environment." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53777.
Full textBehidj, Ayoub, Sofiane Achiche, and Abolfazl Mohebbi. "Upper-Limb Rehabilitation of Patients with Neuromotor Deficits Using Impedance-Based Control of a 6-DOF Robot." In 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2023. http://dx.doi.org/10.1109/embc40787.2023.10340328.
Full textNeptune, Richard R., David J. Clark, and Steven A. Kautz. "Modular Control of Human Walking: A Modeling and Simulation Study." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-204166.
Full text